Stochastic Modeling for Wind Energy and Multi-Objective Optimal Power Flow by Novel Meta-Heuristic Method

Wind energy is considered one of the most important alternative energy sources for generating electricity. But the stochastic nature of wind, leads to use the distribution function to present the wind system. The two-parameter Weibull distribution is often used in the wind speed presentation. The tw...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 9; pp. 158353 - 158366
Main Authors: Khamees, Amr Khaled, Abdelaziz, Almoataz Y., Eskaros, Makram Roshdy, Alhelou, Hassan Haes, Attia, Mahmoud Abdallah
Format: Journal Article
Language:English
Published: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Wind energy is considered one of the most important alternative energy sources for generating electricity. But the stochastic nature of wind, leads to use the distribution function to present the wind system. The two-parameter Weibull distribution is often used in the wind speed presentation. The two-parameter Weibull distribution has scale and shape parameters that are important in wind energy applications, thus selecting the optimum method for estimation them is important. The unpredictability in wind speed leads to uncertainty in devolved power which leads to difficult system operation. In this study, two novel artificial intelligence (AI) methods called Mayfly algorithm (MA) and Aquila Optimizer (AO) are used for calculating the Weibull distribution parameters. Results are compared with four classical numerical methods called the Maximum likelihood approach, Energy pattern factor method, Graphical method, and Empirical method. The two AI methods prove superiority and robustness for evaluating two-parameter of Weibull distribution as they give lower errors and higher correlation coefficients. Moreover, to prove the accuracy of the MA method in solving the optimal power flow (OPF) problem, single and multi-objective OPF is applied on a standard IEEE-30 bus system to minimize fuel cost, power loss, thermal unit emissions, and voltage security index (VSI), and results are compared with other metaheuristic methods. The results prove the validity and robustness of the MA method in solving the OPF problem. Then, single and multi-objective stochastic optimal power flow (SCOPF) is applied to modified IEEE-30 which contains two wind farms to minimize total generation cost, power loss, thermal unit emission, and VSI. The fuzzy-based Pareto front technique is utilized in multi-objective optimization (MOO) to obtain the best compromise point solution. The objective function of SCOPF considers reserve cost for overestimation and penalty cost for underestimation of wind energy. Finally, this paper studies the effect of changing Weibull parameters, penalty cost coefficient, and reverse cost coefficient in wind energy generation cost. The proposed MA method could be valuable to system operators as a decision-making aid when dealing with hybrid power systems.
AbstractList Wind energy is considered one of the most important alternative energy sources for generating electricity. But the stochastic nature of wind, leads to use the distribution function to present the wind system. The two-parameter Weibull distribution is often used in the wind speed presentation. The two-parameter Weibull distribution has scale and shape parameters that are important in wind energy applications, thus selecting the optimum method for estimation them is important. The unpredictability in wind speed leads to uncertainty in devolved power which leads to difficult system operation. In this study, two novel artificial intelligence (AI) methods called Mayfly algorithm (MA) and Aquila Optimizer (AO) are used for calculating the Weibull distribution parameters. Results are compared with four classical numerical methods called the Maximum likelihood approach, Energy pattern factor method, Graphical method, and Empirical method. The two AI methods prove superiority and robustness for evaluating two-parameter of Weibull distribution as they give lower errors and higher correlation coefficients. Moreover, to prove the accuracy of the MA method in solving the optimal power flow (OPF) problem, single and multi-objective OPF is applied on a standard IEEE-30 bus system to minimize fuel cost, power loss, thermal unit emissions, and voltage security index (VSI), and results are compared with other metaheuristic methods. The results prove the validity and robustness of the MA method in solving the OPF problem. Then, single and multi-objective stochastic optimal power flow (SCOPF) is applied to modified IEEE-30 which contains two wind farms to minimize total generation cost, power loss, thermal unit emission, and VSI. The fuzzy-based Pareto front technique is utilized in multi-objective optimization (MOO) to obtain the best compromise point solution. The objective function of SCOPF considers reserve cost for overestimation and penalty cost for underestimation of wind energy. Finally, this paper studies the effect of changing Weibull parameters, penalty cost coefficient, and reverse cost coefficient in wind energy generation cost. The proposed MA method could be valuable to system operators as a decision-making aid when dealing with hybrid power systems.
Author Eskaros, Makram Roshdy
Attia, Mahmoud Abdallah
Khamees, Amr Khaled
Alhelou, Hassan Haes
Abdelaziz, Almoataz Y.
Author_xml – sequence: 1
  givenname: Amr Khaled
  orcidid: 0000-0003-4956-4731
  surname: Khamees
  fullname: Khamees, Amr Khaled
  organization: Department of Engineering Physics and Mathematics, Faculty of Engineering, Ain Shams University, Cairo, Egypt
– sequence: 2
  givenname: Almoataz Y.
  orcidid: 0000-0001-5903-5257
  surname: Abdelaziz
  fullname: Abdelaziz, Almoataz Y.
  organization: Faculty of Engineering and Technology, Future University in Egypt, Cairo, Egypt
– sequence: 3
  givenname: Makram Roshdy
  surname: Eskaros
  fullname: Eskaros, Makram Roshdy
  organization: Department of Engineering Physics and Mathematics, Faculty of Engineering, Ain Shams University, Cairo, Egypt
– sequence: 4
  givenname: Hassan Haes
  orcidid: 0000-0002-7427-2848
  surname: Alhelou
  fullname: Alhelou, Hassan Haes
  email: alhelou@ieee.org
  organization: Department of Electrical Power Engineering, Tishreen University, Lattakia, Syria
– sequence: 5
  givenname: Mahmoud Abdallah
  orcidid: 0000-0002-6603-7434
  surname: Attia
  fullname: Attia, Mahmoud Abdallah
  organization: Department of Electrical Power and Machines, Faculty of Engineering, Ain Shams University, Cairo, Egypt
BookMark eNqFkUtrWzEQhUVJoWmaX5CNoOvr6nEf0jIYpwnEccAtXQo9Ro7M7ZWrKyf431fODSFkk9nMMMz55sD5ik6GOABCF5TMKCXyx-V8vlivZ4wwOuOUdbImn9Apo62seMPbkzfzF3Q-jltSSpRV052isM7RPugxB4uX0UEfhg32MeE_YXB4MUDaHLAu43Lf51CtzBZsDo-AV7sc_uoe38cnSPiqj0_YHPBdfIQeLyHr6hr2KUxcyA_RfUOfve5HOH_pZ-j31eLX_Lq6Xf28mV_eVrYmIlfSWOG6RhpnvWTW21oKajpPJNCWGCk0pbo2XDBnGu6t9iBrxm3XCiYdM_wM3UxcF_VW7VJxmQ4q6qCeFzFtlE7FVg-K8844XYSd47Wghep5S0XTWG2Etaywvk-sXYr_9jBmtY37NBT7irWkE11L2uMVn65siuOYwL9-pUQdI1JTROoYkXqJqKjkO5UNWecQh5x06D_QXkzaAACv32RLa1pL_h-QcqC8
CODEN IAECCG
CitedBy_id crossref_primary_10_1038_s41598_024_53249_z
crossref_primary_10_1111_exsy_13716
crossref_primary_10_3390_forecast6020020
crossref_primary_10_3390_math10101749
crossref_primary_10_1016_j_jestch_2023_101551
crossref_primary_10_3390_electricity6020031
crossref_primary_10_3390_app13010527
crossref_primary_10_1038_s41598_024_69483_4
crossref_primary_10_1155_er_5550970
crossref_primary_10_1007_s11831_025_10326_4
crossref_primary_10_1007_s00500_024_10314_z
crossref_primary_10_1007_s10586_024_04790_z
crossref_primary_10_1080_00051144_2024_2329494
crossref_primary_10_1080_01430750_2022_2163287
crossref_primary_10_3390_en18143764
crossref_primary_10_1016_j_asoc_2024_111548
crossref_primary_10_1016_j_asoc_2023_110833
crossref_primary_10_1016_j_energy_2025_135486
crossref_primary_10_3390_pr10112446
crossref_primary_10_1016_j_epsr_2025_111929
crossref_primary_10_1007_s00704_024_05184_2
crossref_primary_10_1088_1742_6596_2767_6_062031
crossref_primary_10_3390_su15010334
Cites_doi 10.1016/j.enconman.2010.08.017
10.1109/59.76723
10.1016/j.apm.2018.10.019
10.1109/PESGM.2014.6939190
10.1016/B978-0-12-820491-7.00005-0
10.1016/j.epsr.2011.02.011
10.1080/15325000252888425
10.1002/etep.494
10.1016/j.energy.2011.09.027
10.1080/15435075.2017.1339045
10.1016/j.renene.2018.11.061
10.1016/j.energy.2020.117314
10.1016/j.apenergy.2010.02.033
10.1109/ICEI.2017.10
10.1016/j.asoc.2019.02.003
10.1016/j.ijepes.2020.106492
10.1108/IJESM-06-2017-0002
10.5019/j.ijcir.2005.32
10.1049/iet-gtd.2011.0851
10.1016/j.ijepes.2010.01.010
10.1016/j.enconman.2009.03.020
10.1016/j.seta.2019.100612
10.1016/j.rser.2008.05.005
10.1016/j.jestch.2016.09.010
10.1016/j.energy.2017.01.071
10.5815/ijitcs.2016.11.08
10.1016/j.enconman.2008.06.014
10.1109/ICRERA.2018.8566889
10.1080/00224065.1993.11979431
10.1016/j.cie.2020.106559
10.1016/j.cie.2021.107250
10.1016/j.rser.2016.12.014
10.3390/en11020356
10.4314/ijest.v9i1.5
10.1016/j.enconman.2017.06.071
10.1080/15325008.2015.1041625
10.1115/1.4010337
10.1016/j.ijepes.2010.12.031
10.1016/j.apenergy.2010.06.018
10.1016/B978-0-12-820491-7.00001-3
10.1016/j.enconman.2017.09.027
10.1016/j.renene.2015.08.060
10.3390/en11092270
10.1109/TPAS.1968.292150
10.1109/JSYST.2011.2162896
10.1016/j.energy.2019.01.021
10.1109/TPWRS.2018.2878385
10.3390/en11112891
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3127940
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 158366
ExternalDocumentID oai_doaj_org_article_337bda6827d34814b3f361855cab8cc2
10_1109_ACCESS_2021_3127940
9614149
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-9bc8d759bdcf92cfc4981b7f09e160b98a11a4b382db53fcafe9423c76829d2b3
IEDL.DBID RIE
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728131900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:49:21 EDT 2025
Mon Jun 30 06:56:13 EDT 2025
Sat Nov 29 06:31:44 EST 2025
Tue Nov 18 22:27:33 EST 2025
Wed Aug 27 05:11:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-9bc8d759bdcf92cfc4981b7f09e160b98a11a4b382db53fcafe9423c76829d2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4956-4731
0000-0002-6603-7434
0000-0001-5903-5257
0000-0002-7427-2848
OpenAccessLink https://ieeexplore.ieee.org/document/9614149
PQID 2607876062
PQPubID 4845423
PageCount 14
ParticipantIDs crossref_primary_10_1109_ACCESS_2021_3127940
doaj_primary_oai_doaj_org_article_337bda6827d34814b3f361855cab8cc2
crossref_citationtrail_10_1109_ACCESS_2021_3127940
proquest_journals_2607876062
ieee_primary_9614149
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
johnson (ref2) 1985
ref58
naderi (ref12) 2021; 125
ref14
ref52
ref55
ref11
ref54
ref10
ref17
ref16
pobocikova (ref19) 2017; 19
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref8
anaya-lara (ref3) 2011
ref7
ref9
ref4
khamees (ref15) 2016; 7
ref6
ref5
ref40
zimmerman (ref49) 1997
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
yong (ref35) 2000
bouzeboudja (ref53) 2005; 5
ref24
ref23
ref26
ref25
ref20
ref22
bowden (ref18) 1983; 7
manwell (ref1) 2010
ref21
ref28
ref27
ref29
weihull (ref44) 1951; 18
(ref43) 2021
References_xml – ident: ref29
  doi: 10.1016/j.enconman.2010.08.017
– ident: ref14
  doi: 10.1109/59.76723
– year: 2021
  ident: ref43
  publication-title: Component Wind Data
– ident: ref13
  doi: 10.1016/j.apm.2018.10.019
– ident: ref33
  doi: 10.1109/PESGM.2014.6939190
– ident: ref27
  doi: 10.1016/B978-0-12-820491-7.00005-0
– ident: ref58
  doi: 10.1016/j.epsr.2011.02.011
– ident: ref54
  doi: 10.1080/15325000252888425
– ident: ref28
  doi: 10.1002/etep.494
– ident: ref55
  doi: 10.1016/j.energy.2011.09.027
– ident: ref39
  doi: 10.1080/15435075.2017.1339045
– ident: ref24
  doi: 10.1016/j.renene.2018.11.061
– ident: ref9
  doi: 10.1016/j.energy.2020.117314
– ident: ref48
  doi: 10.1016/j.apenergy.2010.02.033
– ident: ref42
  doi: 10.1109/ICEI.2017.10
– ident: ref36
  doi: 10.1016/j.asoc.2019.02.003
– volume: 125
  year: 2021
  ident: ref12
  article-title: A novel hybrid self-adaptive heuristic algorithm to handle single-and multi-objective optimal power flow problems
  publication-title: Int J Elect Power Energy Syst
  doi: 10.1016/j.ijepes.2020.106492
– ident: ref20
  doi: 10.1108/IJESM-06-2017-0002
– ident: ref45
  doi: 10.5019/j.ijcir.2005.32
– year: 1997
  ident: ref49
  publication-title: Matpower PSERC
– ident: ref56
  doi: 10.1049/iet-gtd.2011.0851
– year: 2010
  ident: ref1
  publication-title: Wind Energy Explained Theory Design and Application
– ident: ref30
  doi: 10.1016/j.ijepes.2010.01.010
– ident: ref23
  doi: 10.1016/j.enconman.2009.03.020
– ident: ref25
  doi: 10.1016/j.seta.2019.100612
– ident: ref4
  doi: 10.1016/j.rser.2008.05.005
– ident: ref32
  doi: 10.1016/j.jestch.2016.09.010
– ident: ref11
  doi: 10.1016/j.energy.2017.01.071
– ident: ref40
  doi: 10.5815/ijitcs.2016.11.08
– ident: ref52
  doi: 10.1016/j.enconman.2008.06.014
– ident: ref34
  doi: 10.1109/ICRERA.2018.8566889
– year: 2011
  ident: ref3
  publication-title: Wind Energy Generation Modelling and Control
– ident: ref5
  doi: 10.1080/00224065.1993.11979431
– ident: ref17
  doi: 10.1016/j.cie.2020.106559
– ident: ref16
  doi: 10.1016/j.cie.2021.107250
– volume: 19
  start-page: 79
  year: 2017
  ident: ref19
  article-title: Monte Carlo comparison of the methods for estimating the Weibull distribution parameters-wind speed application
  publication-title: Commun Sci Lett Univ Zilina
– ident: ref6
  doi: 10.1016/j.rser.2016.12.014
– ident: ref21
  doi: 10.3390/en11020356
– ident: ref50
  doi: 10.4314/ijest.v9i1.5
– ident: ref46
  doi: 10.1016/j.enconman.2017.06.071
– volume: 7
  start-page: 85
  year: 1983
  ident: ref18
  article-title: The Weibull distribution function and wind power statistics
  publication-title: Wind Eng
– start-page: 147
  year: 1985
  ident: ref2
  publication-title: Wind Energy Systems
– start-page: 237
  year: 2000
  ident: ref35
  article-title: Stochastic optimal power flow: Formulation and solution
  publication-title: Proc Power Eng Soc Summer Meeting
– ident: ref57
  doi: 10.1080/15325008.2015.1041625
– volume: 18
  start-page: 293
  year: 1951
  ident: ref44
  article-title: A statistical distribution function of wide applicability
  publication-title: J Appl Mech
  doi: 10.1115/1.4010337
– ident: ref51
  doi: 10.1016/j.ijepes.2010.12.031
– ident: ref47
  doi: 10.1016/j.apenergy.2010.06.018
– ident: ref37
  doi: 10.1016/B978-0-12-820491-7.00001-3
– ident: ref22
  doi: 10.1016/j.enconman.2017.09.027
– ident: ref26
  doi: 10.1016/j.renene.2015.08.060
– volume: 7
  start-page: 2228
  year: 2016
  ident: ref15
  article-title: Optimal power flow methods: A comprehensive survey
  publication-title: Int J Elect Eng
– ident: ref31
  doi: 10.3390/en11092270
– volume: 5
  start-page: 4
  year: 2005
  ident: ref53
  article-title: Economic dispatch solution using a real-coded genetic algorithm
  publication-title: Acta Electrotech Inform
– ident: ref8
  doi: 10.1109/TPAS.1968.292150
– ident: ref38
  doi: 10.1109/JSYST.2011.2162896
– ident: ref10
  doi: 10.1016/j.energy.2019.01.021
– ident: ref7
  doi: 10.1109/TPWRS.2018.2878385
– ident: ref41
  doi: 10.3390/en11112891
SSID ssj0000816957
Score 2.3738155
Snippet Wind energy is considered one of the most important alternative energy sources for generating electricity. But the stochastic nature of wind, leads to use the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 158353
SubjectTerms Algorithms
Alternative energy
Alternative energy sources
Aquila optimizer
Artificial intelligence
Correlation coefficients
Costs
Decision making
Distribution functions
Electric power loss
Electric power systems
Graphical methods
Heuristic methods
Hybrid systems
Load flow
mayfly algorithm
Methods
multi-objective optimization
Multiple objective analysis
Numerical methods
optimal power flow
Optimization
Parameters
Pareto optimization
Power flow
Robustness (mathematics)
Stochastic models
stochastic optimal power flow
Weibull distribution
Wind energy
Wind power
Wind speed
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQ6qEcqra06gKtfOixEf5IYs-RrlhxoAtSqcrNsieOoNpuEAQq_j1jJ6y2Qmov3JLIceKZ8cy8KPOGsc-oAaFKlb-NN0Uprac9J21RB9oe5DAp5mSe2WMzn9vzczhda_WV_gkb6IEHwe1rbULja6tMk2pGy6BbXVOQqdAHi5i9rzCwBqayD7ayhsqMNENSwP7BdEorIkCoJOFURWYo_gpFmbF_bLHyxC_nYDN7zV6NWSI_GN7uDduIy7dsa407cJtdfu87vPCJZpmnhmaprJxTBsp_Esrmh7mkj3s6zCW2xUn4Nbg2fkJO4jdNfpr6o_HZovvDwz2fd3dxwb_F3hdH8Xagb06nF13zjv2YHZ5Nj4qxb0KBpbB9AQFtYyoIDbagsMUSKDk1rYAoaxHAeik9CdKqJlS6Rd9GoKwKCXkoaFTQ79nmslvGD4z7uvQlKOl1rEpJMgVsK6-ExhJjbcSEqUcROhxJxVNvi4XL4EKAG-TuktzdKPcJ-7K66Wrg1Pj38K9JN6uhiRA7XyAzcaOZuP-ZyYRtJ82uJgFKSwgcTtjeo6bduHlvHEE8cmOE7NTOczx6l71Myxm-2-yxzf76Nn5kL_Cuv7y5_pTt9gGQWuyu
  priority: 102
  providerName: Directory of Open Access Journals
Title Stochastic Modeling for Wind Energy and Multi-Objective Optimal Power Flow by Novel Meta-Heuristic Method
URI https://ieeexplore.ieee.org/document/9614149
https://www.proquest.com/docview/2607876062
https://doaj.org/article/337bda6827d34814b3f361855cab8cc2
Volume 9
WOSCitedRecordID wos000728131900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwEB21FQc4UKCgLpTKB44Nje0kjo_talc90G0lQPQW2WNHbbXdoDZbxIVvZ-y4EQiExCVyItuy8zzjGSfzBuAdSo26DJG_zqis4LUhmeN1VlkSD1KYtOdEntkParGoLy70-QYcjLEw3vv485l_H4rxW77rcB2Oyg417SVk0W_CplLVEKs1nqeEBBK6VIlYiOf68Gg6pTmQCyg4eaaCFl7-2-YTOfpTUpU_NHHcXubb_zewZ_A0mZHsaMD9OWz41Qt48gu54A5cfew7vDSBh5mFjGch7pyRicq-kBvOZjHmjxkqxhjc7MxeD7qPnZEWuaHOz0MCNTZfdt-Y_c4W3b1fslPfm-zErwd-53B72bmX8Hk--zQ9yVJihQyLvO4zbbF2qtTWYasFtlhosl5Vm2vPq9zq2nBuCitr4WwpWzSt12R2IbkmQjth5SvYWnUrvwvMVIUptOBG-rLgBIHGtjQil1igr1Q-AfHwxhtMrOMh-cWyid5HrpsBpibA1CSYJnAwNvo6kG78u_pxgHKsGhiz4wPCqEkC2EiprDM0AeVC7DHNrpUVGSslGlsjignsBFzHThKkE9h7WBhNku67hnxA0nPk-onXf2_1Bh6HAQ5HNXuw1d-u_Vt4hPf91d3tfvT76Xr6Y7YfF_FPBynsOg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQcyqNFXVrAB44NTey8fCyrrhax3VaiiN4se-yoRcumarNF_HvGjhu1AiFxSyLbsvN5Xk7mG4D3KCTKwmf-Wl0leVZrkrmsTkpD4kEKk2xO4JmdVfN5fXYmT9Zgb8iFcc6Fn8_cB38ZvuXbFlf-qGxfki0hj_4BPPSVs2K21nCi4ktIyKKK1EJZKvcPxmNaBQWBPKPYlNPWS--Zn8DSH8uq_KGLg4GZPPu_qT2HjehIsoMe-Rew5pYv4ekdesFNuPjStXiuPRMz8zXPfOY5IyeVfaNAnB2GrD-m6TJk4SbH5nuv_dgx6ZEfNPiJL6HGJov2JzO_2Ly9cQt25DqdTN2qZ3j2t-et3YKvk8PT8TSJpRUSzNO6S6TB2laFNBYbybHBXJL_WjWpdFmZGlnrLNO5ETW3phAN6sZJcryQghMuLTfiFawv26XbBqbLXOeSZ1q4Is8IAolNoXkqMEdXVukI-O0bVxh5x335i4UK8UcqVQ-T8jCpCNMI9oZOlz3txr-bf_RQDk09Z3Z4QBipKIJKiMpYTQuorM8-ptU1oiR3pUBtakQ-gk2P6zBIhHQEu7cbQ0X5vlYUBZKmo-CPv_57r3fweHp6NFOzT_PPO_DET7Y_uNmF9e5q5d7AI7zpLq6v3oZN_BtWd-1d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Modeling+for+Wind+Energy+and+Multi-Objective+Optimal+Power+Flow+by+Novel+Meta-Heuristic+Method&rft.jtitle=IEEE+access&rft.au=Khamees%2C+Amr+Khaled&rft.au=Abdelaziz%2C+Almoataz+Y.&rft.au=Eskaros%2C+Makram+Roshdy&rft.au=Alhelou%2C+Hassan+Haes&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=158353&rft.epage=158366&rft_id=info:doi/10.1109%2FACCESS.2021.3127940&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3127940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon