Stochastic Modeling for Wind Energy and Multi-Objective Optimal Power Flow by Novel Meta-Heuristic Method
Wind energy is considered one of the most important alternative energy sources for generating electricity. But the stochastic nature of wind, leads to use the distribution function to present the wind system. The two-parameter Weibull distribution is often used in the wind speed presentation. The tw...
Saved in:
| Published in: | IEEE access Vol. 9; pp. 158353 - 158366 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Wind energy is considered one of the most important alternative energy sources for generating electricity. But the stochastic nature of wind, leads to use the distribution function to present the wind system. The two-parameter Weibull distribution is often used in the wind speed presentation. The two-parameter Weibull distribution has scale and shape parameters that are important in wind energy applications, thus selecting the optimum method for estimation them is important. The unpredictability in wind speed leads to uncertainty in devolved power which leads to difficult system operation. In this study, two novel artificial intelligence (AI) methods called Mayfly algorithm (MA) and Aquila Optimizer (AO) are used for calculating the Weibull distribution parameters. Results are compared with four classical numerical methods called the Maximum likelihood approach, Energy pattern factor method, Graphical method, and Empirical method. The two AI methods prove superiority and robustness for evaluating two-parameter of Weibull distribution as they give lower errors and higher correlation coefficients. Moreover, to prove the accuracy of the MA method in solving the optimal power flow (OPF) problem, single and multi-objective OPF is applied on a standard IEEE-30 bus system to minimize fuel cost, power loss, thermal unit emissions, and voltage security index (VSI), and results are compared with other metaheuristic methods. The results prove the validity and robustness of the MA method in solving the OPF problem. Then, single and multi-objective stochastic optimal power flow (SCOPF) is applied to modified IEEE-30 which contains two wind farms to minimize total generation cost, power loss, thermal unit emission, and VSI. The fuzzy-based Pareto front technique is utilized in multi-objective optimization (MOO) to obtain the best compromise point solution. The objective function of SCOPF considers reserve cost for overestimation and penalty cost for underestimation of wind energy. Finally, this paper studies the effect of changing Weibull parameters, penalty cost coefficient, and reverse cost coefficient in wind energy generation cost. The proposed MA method could be valuable to system operators as a decision-making aid when dealing with hybrid power systems. |
|---|---|
| AbstractList | Wind energy is considered one of the most important alternative energy sources for generating electricity. But the stochastic nature of wind, leads to use the distribution function to present the wind system. The two-parameter Weibull distribution is often used in the wind speed presentation. The two-parameter Weibull distribution has scale and shape parameters that are important in wind energy applications, thus selecting the optimum method for estimation them is important. The unpredictability in wind speed leads to uncertainty in devolved power which leads to difficult system operation. In this study, two novel artificial intelligence (AI) methods called Mayfly algorithm (MA) and Aquila Optimizer (AO) are used for calculating the Weibull distribution parameters. Results are compared with four classical numerical methods called the Maximum likelihood approach, Energy pattern factor method, Graphical method, and Empirical method. The two AI methods prove superiority and robustness for evaluating two-parameter of Weibull distribution as they give lower errors and higher correlation coefficients. Moreover, to prove the accuracy of the MA method in solving the optimal power flow (OPF) problem, single and multi-objective OPF is applied on a standard IEEE-30 bus system to minimize fuel cost, power loss, thermal unit emissions, and voltage security index (VSI), and results are compared with other metaheuristic methods. The results prove the validity and robustness of the MA method in solving the OPF problem. Then, single and multi-objective stochastic optimal power flow (SCOPF) is applied to modified IEEE-30 which contains two wind farms to minimize total generation cost, power loss, thermal unit emission, and VSI. The fuzzy-based Pareto front technique is utilized in multi-objective optimization (MOO) to obtain the best compromise point solution. The objective function of SCOPF considers reserve cost for overestimation and penalty cost for underestimation of wind energy. Finally, this paper studies the effect of changing Weibull parameters, penalty cost coefficient, and reverse cost coefficient in wind energy generation cost. The proposed MA method could be valuable to system operators as a decision-making aid when dealing with hybrid power systems. |
| Author | Eskaros, Makram Roshdy Attia, Mahmoud Abdallah Khamees, Amr Khaled Alhelou, Hassan Haes Abdelaziz, Almoataz Y. |
| Author_xml | – sequence: 1 givenname: Amr Khaled orcidid: 0000-0003-4956-4731 surname: Khamees fullname: Khamees, Amr Khaled organization: Department of Engineering Physics and Mathematics, Faculty of Engineering, Ain Shams University, Cairo, Egypt – sequence: 2 givenname: Almoataz Y. orcidid: 0000-0001-5903-5257 surname: Abdelaziz fullname: Abdelaziz, Almoataz Y. organization: Faculty of Engineering and Technology, Future University in Egypt, Cairo, Egypt – sequence: 3 givenname: Makram Roshdy surname: Eskaros fullname: Eskaros, Makram Roshdy organization: Department of Engineering Physics and Mathematics, Faculty of Engineering, Ain Shams University, Cairo, Egypt – sequence: 4 givenname: Hassan Haes orcidid: 0000-0002-7427-2848 surname: Alhelou fullname: Alhelou, Hassan Haes email: alhelou@ieee.org organization: Department of Electrical Power Engineering, Tishreen University, Lattakia, Syria – sequence: 5 givenname: Mahmoud Abdallah orcidid: 0000-0002-6603-7434 surname: Attia fullname: Attia, Mahmoud Abdallah organization: Department of Electrical Power and Machines, Faculty of Engineering, Ain Shams University, Cairo, Egypt |
| BookMark | eNqFkUtrWzEQhUVJoWmaX5CNoOvr6nEf0jIYpwnEccAtXQo9Ro7M7ZWrKyf431fODSFkk9nMMMz55sD5ik6GOABCF5TMKCXyx-V8vlivZ4wwOuOUdbImn9Apo62seMPbkzfzF3Q-jltSSpRV052isM7RPugxB4uX0UEfhg32MeE_YXB4MUDaHLAu43Lf51CtzBZsDo-AV7sc_uoe38cnSPiqj0_YHPBdfIQeLyHr6hr2KUxcyA_RfUOfve5HOH_pZ-j31eLX_Lq6Xf28mV_eVrYmIlfSWOG6RhpnvWTW21oKajpPJNCWGCk0pbo2XDBnGu6t9iBrxm3XCiYdM_wM3UxcF_VW7VJxmQ4q6qCeFzFtlE7FVg-K8844XYSd47Wghep5S0XTWG2Etaywvk-sXYr_9jBmtY37NBT7irWkE11L2uMVn65siuOYwL9-pUQdI1JTROoYkXqJqKjkO5UNWecQh5x06D_QXkzaAACv32RLa1pL_h-QcqC8 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1038_s41598_024_53249_z crossref_primary_10_1111_exsy_13716 crossref_primary_10_3390_forecast6020020 crossref_primary_10_3390_math10101749 crossref_primary_10_1016_j_jestch_2023_101551 crossref_primary_10_3390_electricity6020031 crossref_primary_10_3390_app13010527 crossref_primary_10_1038_s41598_024_69483_4 crossref_primary_10_1155_er_5550970 crossref_primary_10_1007_s11831_025_10326_4 crossref_primary_10_1007_s00500_024_10314_z crossref_primary_10_1007_s10586_024_04790_z crossref_primary_10_1080_00051144_2024_2329494 crossref_primary_10_1080_01430750_2022_2163287 crossref_primary_10_3390_en18143764 crossref_primary_10_1016_j_asoc_2024_111548 crossref_primary_10_1016_j_asoc_2023_110833 crossref_primary_10_1016_j_energy_2025_135486 crossref_primary_10_3390_pr10112446 crossref_primary_10_1016_j_epsr_2025_111929 crossref_primary_10_1007_s00704_024_05184_2 crossref_primary_10_1088_1742_6596_2767_6_062031 crossref_primary_10_3390_su15010334 |
| Cites_doi | 10.1016/j.enconman.2010.08.017 10.1109/59.76723 10.1016/j.apm.2018.10.019 10.1109/PESGM.2014.6939190 10.1016/B978-0-12-820491-7.00005-0 10.1016/j.epsr.2011.02.011 10.1080/15325000252888425 10.1002/etep.494 10.1016/j.energy.2011.09.027 10.1080/15435075.2017.1339045 10.1016/j.renene.2018.11.061 10.1016/j.energy.2020.117314 10.1016/j.apenergy.2010.02.033 10.1109/ICEI.2017.10 10.1016/j.asoc.2019.02.003 10.1016/j.ijepes.2020.106492 10.1108/IJESM-06-2017-0002 10.5019/j.ijcir.2005.32 10.1049/iet-gtd.2011.0851 10.1016/j.ijepes.2010.01.010 10.1016/j.enconman.2009.03.020 10.1016/j.seta.2019.100612 10.1016/j.rser.2008.05.005 10.1016/j.jestch.2016.09.010 10.1016/j.energy.2017.01.071 10.5815/ijitcs.2016.11.08 10.1016/j.enconman.2008.06.014 10.1109/ICRERA.2018.8566889 10.1080/00224065.1993.11979431 10.1016/j.cie.2020.106559 10.1016/j.cie.2021.107250 10.1016/j.rser.2016.12.014 10.3390/en11020356 10.4314/ijest.v9i1.5 10.1016/j.enconman.2017.06.071 10.1080/15325008.2015.1041625 10.1115/1.4010337 10.1016/j.ijepes.2010.12.031 10.1016/j.apenergy.2010.06.018 10.1016/B978-0-12-820491-7.00001-3 10.1016/j.enconman.2017.09.027 10.1016/j.renene.2015.08.060 10.3390/en11092270 10.1109/TPAS.1968.292150 10.1109/JSYST.2011.2162896 10.1016/j.energy.2019.01.021 10.1109/TPWRS.2018.2878385 10.3390/en11112891 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2021.3127940 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 158366 |
| ExternalDocumentID | oai_doaj_org_article_337bda6827d34814b3f361855cab8cc2 10_1109_ACCESS_2021_3127940 9614149 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-9bc8d759bdcf92cfc4981b7f09e160b98a11a4b382db53fcafe9423c76829d2b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728131900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:49:21 EDT 2025 Mon Jun 30 06:56:13 EDT 2025 Sat Nov 29 06:31:44 EST 2025 Tue Nov 18 22:27:33 EST 2025 Wed Aug 27 05:11:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-9bc8d759bdcf92cfc4981b7f09e160b98a11a4b382db53fcafe9423c76829d2b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4956-4731 0000-0002-6603-7434 0000-0001-5903-5257 0000-0002-7427-2848 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9614149 |
| PQID | 2607876062 |
| PQPubID | 4845423 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2021_3127940 doaj_primary_oai_doaj_org_article_337bda6827d34814b3f361855cab8cc2 crossref_citationtrail_10_1109_ACCESS_2021_3127940 proquest_journals_2607876062 ieee_primary_9614149 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 johnson (ref2) 1985 ref58 naderi (ref12) 2021; 125 ref14 ref52 ref55 ref11 ref54 ref10 ref17 ref16 pobocikova (ref19) 2017; 19 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref8 anaya-lara (ref3) 2011 ref7 ref9 ref4 khamees (ref15) 2016; 7 ref6 ref5 ref40 zimmerman (ref49) 1997 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 yong (ref35) 2000 bouzeboudja (ref53) 2005; 5 ref24 ref23 ref26 ref25 ref20 ref22 bowden (ref18) 1983; 7 manwell (ref1) 2010 ref21 ref28 ref27 ref29 weihull (ref44) 1951; 18 (ref43) 2021 |
| References_xml | – ident: ref29 doi: 10.1016/j.enconman.2010.08.017 – ident: ref14 doi: 10.1109/59.76723 – year: 2021 ident: ref43 publication-title: Component Wind Data – ident: ref13 doi: 10.1016/j.apm.2018.10.019 – ident: ref33 doi: 10.1109/PESGM.2014.6939190 – ident: ref27 doi: 10.1016/B978-0-12-820491-7.00005-0 – ident: ref58 doi: 10.1016/j.epsr.2011.02.011 – ident: ref54 doi: 10.1080/15325000252888425 – ident: ref28 doi: 10.1002/etep.494 – ident: ref55 doi: 10.1016/j.energy.2011.09.027 – ident: ref39 doi: 10.1080/15435075.2017.1339045 – ident: ref24 doi: 10.1016/j.renene.2018.11.061 – ident: ref9 doi: 10.1016/j.energy.2020.117314 – ident: ref48 doi: 10.1016/j.apenergy.2010.02.033 – ident: ref42 doi: 10.1109/ICEI.2017.10 – ident: ref36 doi: 10.1016/j.asoc.2019.02.003 – volume: 125 year: 2021 ident: ref12 article-title: A novel hybrid self-adaptive heuristic algorithm to handle single-and multi-objective optimal power flow problems publication-title: Int J Elect Power Energy Syst doi: 10.1016/j.ijepes.2020.106492 – ident: ref20 doi: 10.1108/IJESM-06-2017-0002 – ident: ref45 doi: 10.5019/j.ijcir.2005.32 – year: 1997 ident: ref49 publication-title: Matpower PSERC – ident: ref56 doi: 10.1049/iet-gtd.2011.0851 – year: 2010 ident: ref1 publication-title: Wind Energy Explained Theory Design and Application – ident: ref30 doi: 10.1016/j.ijepes.2010.01.010 – ident: ref23 doi: 10.1016/j.enconman.2009.03.020 – ident: ref25 doi: 10.1016/j.seta.2019.100612 – ident: ref4 doi: 10.1016/j.rser.2008.05.005 – ident: ref32 doi: 10.1016/j.jestch.2016.09.010 – ident: ref11 doi: 10.1016/j.energy.2017.01.071 – ident: ref40 doi: 10.5815/ijitcs.2016.11.08 – ident: ref52 doi: 10.1016/j.enconman.2008.06.014 – ident: ref34 doi: 10.1109/ICRERA.2018.8566889 – year: 2011 ident: ref3 publication-title: Wind Energy Generation Modelling and Control – ident: ref5 doi: 10.1080/00224065.1993.11979431 – ident: ref17 doi: 10.1016/j.cie.2020.106559 – ident: ref16 doi: 10.1016/j.cie.2021.107250 – volume: 19 start-page: 79 year: 2017 ident: ref19 article-title: Monte Carlo comparison of the methods for estimating the Weibull distribution parameters-wind speed application publication-title: Commun Sci Lett Univ Zilina – ident: ref6 doi: 10.1016/j.rser.2016.12.014 – ident: ref21 doi: 10.3390/en11020356 – ident: ref50 doi: 10.4314/ijest.v9i1.5 – ident: ref46 doi: 10.1016/j.enconman.2017.06.071 – volume: 7 start-page: 85 year: 1983 ident: ref18 article-title: The Weibull distribution function and wind power statistics publication-title: Wind Eng – start-page: 147 year: 1985 ident: ref2 publication-title: Wind Energy Systems – start-page: 237 year: 2000 ident: ref35 article-title: Stochastic optimal power flow: Formulation and solution publication-title: Proc Power Eng Soc Summer Meeting – ident: ref57 doi: 10.1080/15325008.2015.1041625 – volume: 18 start-page: 293 year: 1951 ident: ref44 article-title: A statistical distribution function of wide applicability publication-title: J Appl Mech doi: 10.1115/1.4010337 – ident: ref51 doi: 10.1016/j.ijepes.2010.12.031 – ident: ref47 doi: 10.1016/j.apenergy.2010.06.018 – ident: ref37 doi: 10.1016/B978-0-12-820491-7.00001-3 – ident: ref22 doi: 10.1016/j.enconman.2017.09.027 – ident: ref26 doi: 10.1016/j.renene.2015.08.060 – volume: 7 start-page: 2228 year: 2016 ident: ref15 article-title: Optimal power flow methods: A comprehensive survey publication-title: Int J Elect Eng – ident: ref31 doi: 10.3390/en11092270 – volume: 5 start-page: 4 year: 2005 ident: ref53 article-title: Economic dispatch solution using a real-coded genetic algorithm publication-title: Acta Electrotech Inform – ident: ref8 doi: 10.1109/TPAS.1968.292150 – ident: ref38 doi: 10.1109/JSYST.2011.2162896 – ident: ref10 doi: 10.1016/j.energy.2019.01.021 – ident: ref7 doi: 10.1109/TPWRS.2018.2878385 – ident: ref41 doi: 10.3390/en11112891 |
| SSID | ssj0000816957 |
| Score | 2.3738155 |
| Snippet | Wind energy is considered one of the most important alternative energy sources for generating electricity. But the stochastic nature of wind, leads to use the... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 158353 |
| SubjectTerms | Algorithms Alternative energy Alternative energy sources Aquila optimizer Artificial intelligence Correlation coefficients Costs Decision making Distribution functions Electric power loss Electric power systems Graphical methods Heuristic methods Hybrid systems Load flow mayfly algorithm Methods multi-objective optimization Multiple objective analysis Numerical methods optimal power flow Optimization Parameters Pareto optimization Power flow Robustness (mathematics) Stochastic models stochastic optimal power flow Weibull distribution Wind energy Wind power Wind speed |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQ6qEcqra06gKtfOixEf5IYs-RrlhxoAtSqcrNsieOoNpuEAQq_j1jJ6y2Qmov3JLIceKZ8cy8KPOGsc-oAaFKlb-NN0Uprac9J21RB9oe5DAp5mSe2WMzn9vzczhda_WV_gkb6IEHwe1rbULja6tMk2pGy6BbXVOQqdAHi5i9rzCwBqayD7ayhsqMNENSwP7BdEorIkCoJOFURWYo_gpFmbF_bLHyxC_nYDN7zV6NWSI_GN7uDduIy7dsa407cJtdfu87vPCJZpmnhmaprJxTBsp_Esrmh7mkj3s6zCW2xUn4Nbg2fkJO4jdNfpr6o_HZovvDwz2fd3dxwb_F3hdH8Xagb06nF13zjv2YHZ5Nj4qxb0KBpbB9AQFtYyoIDbagsMUSKDk1rYAoaxHAeik9CdKqJlS6Rd9GoKwKCXkoaFTQ79nmslvGD4z7uvQlKOl1rEpJMgVsK6-ExhJjbcSEqUcROhxJxVNvi4XL4EKAG-TuktzdKPcJ-7K66Wrg1Pj38K9JN6uhiRA7XyAzcaOZuP-ZyYRtJ82uJgFKSwgcTtjeo6bduHlvHEE8cmOE7NTOczx6l71Myxm-2-yxzf76Nn5kL_Cuv7y5_pTt9gGQWuyu priority: 102 providerName: Directory of Open Access Journals |
| Title | Stochastic Modeling for Wind Energy and Multi-Objective Optimal Power Flow by Novel Meta-Heuristic Method |
| URI | https://ieeexplore.ieee.org/document/9614149 https://www.proquest.com/docview/2607876062 https://doaj.org/article/337bda6827d34814b3f361855cab8cc2 |
| Volume | 9 |
| WOSCitedRecordID | wos000728131900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwEB21FQc4UKCgLpTKB44Nje0kjo_talc90G0lQPQW2WNHbbXdoDZbxIVvZ-y4EQiExCVyItuy8zzjGSfzBuAdSo26DJG_zqis4LUhmeN1VlkSD1KYtOdEntkParGoLy70-QYcjLEw3vv485l_H4rxW77rcB2Oyg417SVk0W_CplLVEKs1nqeEBBK6VIlYiOf68Gg6pTmQCyg4eaaCFl7-2-YTOfpTUpU_NHHcXubb_zewZ_A0mZHsaMD9OWz41Qt48gu54A5cfew7vDSBh5mFjGch7pyRicq-kBvOZjHmjxkqxhjc7MxeD7qPnZEWuaHOz0MCNTZfdt-Y_c4W3b1fslPfm-zErwd-53B72bmX8Hk--zQ9yVJihQyLvO4zbbF2qtTWYasFtlhosl5Vm2vPq9zq2nBuCitr4WwpWzSt12R2IbkmQjth5SvYWnUrvwvMVIUptOBG-rLgBIHGtjQil1igr1Q-AfHwxhtMrOMh-cWyid5HrpsBpibA1CSYJnAwNvo6kG78u_pxgHKsGhiz4wPCqEkC2EiprDM0AeVC7DHNrpUVGSslGlsjignsBFzHThKkE9h7WBhNku67hnxA0nPk-onXf2_1Bh6HAQ5HNXuw1d-u_Vt4hPf91d3tfvT76Xr6Y7YfF_FPBynsOg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQcyqNFXVrAB44NTey8fCyrrhax3VaiiN4se-yoRcumarNF_HvGjhu1AiFxSyLbsvN5Xk7mG4D3KCTKwmf-Wl0leVZrkrmsTkpD4kEKk2xO4JmdVfN5fXYmT9Zgb8iFcc6Fn8_cB38ZvuXbFlf-qGxfki0hj_4BPPSVs2K21nCi4ktIyKKK1EJZKvcPxmNaBQWBPKPYlNPWS--Zn8DSH8uq_KGLg4GZPPu_qT2HjehIsoMe-Rew5pYv4ekdesFNuPjStXiuPRMz8zXPfOY5IyeVfaNAnB2GrD-m6TJk4SbH5nuv_dgx6ZEfNPiJL6HGJov2JzO_2Ly9cQt25DqdTN2qZ3j2t-et3YKvk8PT8TSJpRUSzNO6S6TB2laFNBYbybHBXJL_WjWpdFmZGlnrLNO5ETW3phAN6sZJcryQghMuLTfiFawv26XbBqbLXOeSZ1q4Is8IAolNoXkqMEdXVukI-O0bVxh5x335i4UK8UcqVQ-T8jCpCNMI9oZOlz3txr-bf_RQDk09Z3Z4QBipKIJKiMpYTQuorM8-ptU1oiR3pUBtakQ-gk2P6zBIhHQEu7cbQ0X5vlYUBZKmo-CPv_57r3fweHp6NFOzT_PPO_DET7Y_uNmF9e5q5d7AI7zpLq6v3oZN_BtWd-1d |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Modeling+for+Wind+Energy+and+Multi-Objective+Optimal+Power+Flow+by+Novel+Meta-Heuristic+Method&rft.jtitle=IEEE+access&rft.au=Khamees%2C+Amr+Khaled&rft.au=Abdelaziz%2C+Almoataz+Y.&rft.au=Eskaros%2C+Makram+Roshdy&rft.au=Alhelou%2C+Hassan+Haes&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=158353&rft.epage=158366&rft_id=info:doi/10.1109%2FACCESS.2021.3127940&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3127940 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |