Deep Transfer Network With Multi-Kernel Dynamic Distribution Adaptation for Cross-Machine Fault Diagnosis
Recently, various deep learning models, which are mainly based on data-driven algorithms, have received more and more attention in the field of intelligent fault diagnosis and prognostics. However, there are two major assumptions accepted by default in the existing studies: 1) The training (source d...
Uložené v:
| Vydané v: | IEEE access Ročník 9; s. 16392 - 16409 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Recently, various deep learning models, which are mainly based on data-driven algorithms, have received more and more attention in the field of intelligent fault diagnosis and prognostics. However, there are two major assumptions accepted by default in the existing studies: 1) The training (source domain) and testing (target domain) data sets obey the same feature distribution; 2) Sufficient labeled data with fault information is available for model training. In real industrial scenarios, especially for different machines, these assumptions are mostly invalid, which makes it a huge challenge to build reliable diagnostic model. Motivated by transfer learning, we present a novel intelligent method named deep transfer network (DTN) with multi-kernel dynamic distribution adaptation (MDDA) to address the problem of cross-machine fault diagnosis. In the proposed approach, the DTN has wide first-layer convolutional kernel and several small convolutional layers, which is utilized to extract transferable features across different machines and suppress high frequency noise. Then, the MDDA method constructs a weighted mixed kernel function to map different transferable features to a unified feature space, and the relative importance of the marginal and conditional distributions are also evaluated dynamically. The proposed method is verified by three transfer learning tasks of bearings, in which the health states of wind turbine bearings in real scenario are identified by using diagnosis knowledge from two different bearings in laboratories. The results show that the proposed method can achieve higher diagnosis accuracy and better transfer performance even under different noisy environment conditions than many other state-of-the-art methods. The presented framework offers a promising approach for cross-machine fault diagnosis. |
|---|---|
| AbstractList | Recently, various deep learning models, which are mainly based on data-driven algorithms, have received more and more attention in the field of intelligent fault diagnosis and prognostics. However, there are two major assumptions accepted by default in the existing studies: 1) The training (source domain) and testing (target domain) data sets obey the same feature distribution; 2) Sufficient labeled data with fault information is available for model training. In real industrial scenarios, especially for different machines, these assumptions are mostly invalid, which makes it a huge challenge to build reliable diagnostic model. Motivated by transfer learning, we present a novel intelligent method named deep transfer network (DTN) with multi-kernel dynamic distribution adaptation (MDDA) to address the problem of cross-machine fault diagnosis. In the proposed approach, the DTN has wide first-layer convolutional kernel and several small convolutional layers, which is utilized to extract transferable features across different machines and suppress high frequency noise. Then, the MDDA method constructs a weighted mixed kernel function to map different transferable features to a unified feature space, and the relative importance of the marginal and conditional distributions are also evaluated dynamically. The proposed method is verified by three transfer learning tasks of bearings, in which the health states of wind turbine bearings in real scenario are identified by using diagnosis knowledge from two different bearings in laboratories. The results show that the proposed method can achieve higher diagnosis accuracy and better transfer performance even under different noisy environment conditions than many other state-of-the-art methods. The presented framework offers a promising approach for cross-machine fault diagnosis. |
| Author | Chen, Changzheng Liu, Shixun Su, Xiaoming Lv, Mingzhu |
| Author_xml | – sequence: 1 givenname: Mingzhu orcidid: 0000-0002-0608-0852 surname: Lv fullname: Lv, Mingzhu email: zhaogx@sut.edu.cn organization: School of Mechanical Engineering, Shenyang University of Technology, Shenyang, China – sequence: 2 givenname: Shixun orcidid: 0000-0002-7739-0874 surname: Liu fullname: Liu, Shixun organization: School of Mechanical Engineering, Shenyang University of Technology, Shenyang, China – sequence: 3 givenname: Xiaoming orcidid: 0000-0003-0391-2278 surname: Su fullname: Su, Xiaoming organization: School of Mechanical Engineering, Shenyang University of Technology, Shenyang, China – sequence: 4 givenname: Changzheng orcidid: 0000-0002-7874-8399 surname: Chen fullname: Chen, Changzheng organization: School of Mechanical Engineering, Shenyang University of Technology, Shenyang, China |
| BookMark | eNqFUU1P3DAQjSoqlVJ-AZdIPWfrjyS2j6ssUFRoD1D1aI2dCXgb7K3tVcW_r5cgVPVSXzx6fu_NeN776sgHj1V1RsmKUqI-rYfh_PZ2xQijK046TkT3pjpmtFcN73h_9Ff9rjpNaUvKkQXqxHHlNoi7-i6CTxPG-ivm3yH-rH-4_FDf7Ofsmi8YPc715snDo7P1xqUcndlnF3y9HmGX4bmcQqyHGFJqbsA-OI_1BRR94cO9D8mlD9XbCeaEpy_3SfX94vxu-Nxcf7u8GtbXjW2JzI0yyhghiBQjt9BPbDKGFUhOsseRslH0hkCHreRTx6RUtJXYwwiKEQ6d4SfV1eI7BtjqXXSPEJ90AKefgRDvNcTs7IzaUNF2YHvKrWxHAZIKKQiVlDFsqWXF6-PitYvh1x5T1tuwj76Mr1kZgJWVqr6w-MKyh_9HnF67UqIPEeklIn2ISL9EVFTqH5V1yy5zBDf_R3u2aB0ivnZTnElRXv8AvCaggw |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3233_JIFS_213340 crossref_primary_10_1109_JSEN_2024_3356605 crossref_primary_10_1016_j_measurement_2022_111996 crossref_primary_10_1080_0952813X_2023_2241867 crossref_primary_10_1177_01423312231157118 crossref_primary_10_1088_1361_6501_ad4380 crossref_primary_10_1016_j_ymssp_2021_108487 crossref_primary_10_1109_ACCESS_2023_3239784 crossref_primary_10_1007_s12206_023_0306_z crossref_primary_10_1016_j_psep_2025_107885 crossref_primary_10_1109_TIM_2022_3157007 crossref_primary_10_1088_1361_6501_ac99f4 crossref_primary_10_1016_j_psep_2024_06_060 crossref_primary_10_1109_ACCESS_2022_3205105 crossref_primary_10_1109_TIM_2023_3308251 crossref_primary_10_1016_j_knosys_2023_111158 crossref_primary_10_1007_s13369_023_07810_z crossref_primary_10_1016_j_cja_2021_10_006 |
| Cites_doi | 10.1016/j.patrec.2020.06.007 10.1177/1748006X19867776 10.1109/ACCESS.2020.3020906 10.3390/s17020425 10.1016/j.jkss.2019.05.005 10.3390/s20010234 10.1109/TGRS.2017.2692281 10.1109/TIE.2017.2777383 10.1016/j.cja.2019.07.011 10.1109/TR.2019.2896240 10.1016/j.ymssp.2018.12.051 10.3390/s20051361 10.1016/j.ymssp.2017.11.016 10.3390/ma10060574 10.1016/j.advwatres.2016.05.005 10.1007/s00500-019-04038-8 10.1109/TIE.2016.2627020 10.1016/j.tcs.2018.06.004 10.1016/j.measurement.2019.02.073 10.1016/j.ress.2020.107050 10.1109/TR.2015.2456056 10.1109/JSEN.2019.2936932 10.1002/we.2510 10.1016/j.neunet.2020.01.009 10.1007/s11071-019-05176-2 10.1145/3360309 10.1109/TGRS.2020.2985072 10.1016/j.neucom.2019.12.033 10.1016/j.isatra.2019.08.012 10.1109/TGRS.2019.2928562 10.1109/TIE.2016.2582729 10.1109/TIP.2017.2651375 10.1109/TII.2018.2869429 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2021.3053075 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 16409 |
| ExternalDocumentID | oai_doaj_org_article_b1745ac613c84d7a81787018122e41c2 10_1109_ACCESS_2021_3053075 9328775 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51675350 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-9b9bb77087d3ca6f2fbb29bb8f86ed12d76b0a5e483f52889148e6ada9203a5b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000613542000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:40:15 EDT 2025 Sun Nov 30 05:02:34 EST 2025 Sat Nov 29 06:11:53 EST 2025 Tue Nov 18 21:22:39 EST 2025 Wed Aug 27 05:54:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-9b9bb77087d3ca6f2fbb29bb8f86ed12d76b0a5e483f52889148e6ada9203a5b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0391-2278 0000-0002-7739-0874 0000-0002-7874-8399 0000-0002-0608-0852 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9328775 |
| PQID | 2483253696 |
| PQPubID | 4845423 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b1745ac613c84d7a81787018122e41c2 proquest_journals_2483253696 crossref_primary_10_1109_ACCESS_2021_3053075 crossref_citationtrail_10_1109_ACCESS_2021_3053075 ieee_primary_9328775 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref17 doi: 10.1016/j.patrec.2020.06.007 – ident: ref7 doi: 10.1177/1748006X19867776 – ident: ref31 doi: 10.1109/ACCESS.2020.3020906 – ident: ref10 doi: 10.3390/s17020425 – ident: ref16 doi: 10.1016/j.jkss.2019.05.005 – ident: ref25 doi: 10.3390/s20010234 – ident: ref28 doi: 10.1109/TGRS.2017.2692281 – ident: ref21 doi: 10.1109/TIE.2017.2777383 – ident: ref26 doi: 10.1016/j.cja.2019.07.011 – ident: ref29 doi: 10.1109/TR.2019.2896240 – ident: ref11 doi: 10.1016/j.ymssp.2018.12.051 – ident: ref30 doi: 10.3390/s20051361 – ident: ref1 doi: 10.1016/j.ymssp.2017.11.016 – ident: ref33 doi: 10.3390/ma10060574 – ident: ref15 doi: 10.1016/j.advwatres.2016.05.005 – ident: ref20 doi: 10.1007/s00500-019-04038-8 – ident: ref3 doi: 10.1109/TIE.2016.2627020 – ident: ref14 doi: 10.1016/j.tcs.2018.06.004 – ident: ref9 doi: 10.1016/j.measurement.2019.02.073 – ident: ref12 doi: 10.1016/j.ress.2020.107050 – ident: ref5 doi: 10.1109/TR.2015.2456056 – ident: ref8 doi: 10.1109/JSEN.2019.2936932 – ident: ref13 doi: 10.1002/we.2510 – ident: ref24 doi: 10.1016/j.neunet.2020.01.009 – ident: ref4 doi: 10.1007/s11071-019-05176-2 – ident: ref19 doi: 10.1145/3360309 – ident: ref18 doi: 10.1109/TGRS.2020.2985072 – ident: ref2 doi: 10.1016/j.neucom.2019.12.033 – ident: ref23 doi: 10.1016/j.isatra.2019.08.012 – ident: ref32 doi: 10.1109/TGRS.2019.2928562 – ident: ref27 doi: 10.1109/TIE.2016.2582729 – ident: ref22 doi: 10.1109/TIP.2017.2651375 – ident: ref6 doi: 10.1109/TII.2018.2869429 |
| SSID | ssj0000816957 |
| Score | 2.3119798 |
| Snippet | Recently, various deep learning models, which are mainly based on data-driven algorithms, have received more and more attention in the field of intelligent... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 16392 |
| SubjectTerms | Adaptation Algorithms Bearings Cognitive tasks cross-machine fault diagnosis Deep transfer network Diagnostic systems Domains Fault diagnosis Feature extraction Kernel Kernel functions Machine learning multi-kernel dynamic distribution adaptation Task analysis Testing Training transfer learning Vibrations Wind turbines |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHvQgahWrVXLw6Go2-0hyrK1FEIsHxd5CXosFqaWt_n4nj5aKoBev2SSbzMxmZnZnvw-hC2VKXjR5mRW6NFnJuIZzUNuMVEopoTVcagLZBBsO-WgkHteovnxNWIQHjoK71hAyV8qA1zG8tEzx3JuY90vUlbkJpy9hYi2ZCmcwz2tRsQQzlBNx3e31YEeQENL8CmwcTLv65ooCYn-iWPlxLgdnM9hDuylKxN24un204SYHaGcNO7CFxn3npji4msbN8DCWc-OX8eIVh79qs3s3m7g33I-c87jvIXITuxXuWjWNH-ExRK245xeYPYTCSocHCsZD_1CEN54foufB7VPvLku8CZkpCV9kQoOQGSOc2cKouqGN1hSaeMNrZ3NqWa2JqpzXUkU5F5ASuVpZJSgpVKWLI7Q5eZ-4Y4QLCFCs5oZayDs4EdrDCSrLeFkwC7llG9GlCKVJoOKe2-JNhuSCCBnlLr3cZZJ7G12uBk0jpsbv3W-8blZdPSB2aAAzkclM5F9m0kYtr9nVJBC2cubn7iw1LdPDO5cUBEMrT3R48h-3PkXbfjvxvU0HbS5mH-4MbZnPxXg-Ow92-wXBAOyY priority: 102 providerName: Directory of Open Access Journals |
| Title | Deep Transfer Network With Multi-Kernel Dynamic Distribution Adaptation for Cross-Machine Fault Diagnosis |
| URI | https://ieeexplore.ieee.org/document/9328775 https://www.proquest.com/docview/2483253696 https://doaj.org/article/b1745ac613c84d7a81787018122e41c2 |
| Volume | 9 |
| WOSCitedRecordID | wos000613542000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB2SkEN7aJukpdumQYce48SWLUs6bnezFEKWHFqSm9DHmC6EzbK76bG_vSNZMS0pgV6MkSUj6Y2kGWn0BuCz9Y2qu6opatf4opHK0TzoQlEKa612jj51KdiEnM_V7a2-3oHT4S4MIibnMzyLr-ksP9z7h7hVdk66hpJS7MKulG1_V2vYT4kBJLSQmVioKvX5eDKhNpAJyKszkmoSZvHX4pM4-nNQlSczcVpeZq__r2Jv4FVWI9m4x_0AdnB5CC__IBc8gsUUccXSWtThms17f292s9j-YOnabXGJ6yXesWkflJ5NI4duDn_FxsGu-lN6Rmotm8T2FFfJ8xLZzFJ5yp-89Babt_B9dvFt8rXIgRUK35RqW2hHKEhZKhlqb9uOd85xSlKdajFUPMjWlVZghFFwpTTZTNjaYDUvaytc_Q72lvdLfA-sJg0mOOV5IMNEldpFvkEbpGpqGcj4HAF_7HHjM-t4DH5xZ5L1UWrTw2QiTCbDNILTodCqJ914PvuXCOWQNTJmpwTCyOQBaByZXsJ60l68aoK0qopTVdRvODaV5yM4irgOP8mQjuD4UTBMHt0bw6ljuIiRED_8u9RHeBEr2G_VHMPedv2An2Df_9wuNuuTZPfT8-rXxUkS4t8pre1p |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VggQ9lEdBpC3gA8du6_XasX0MCVFR24hDEb1Zfq0aqUqjJO3v79jrrkAgJG4rr71a-_Njxh5_H8Bn67lq2ppXjeO-4lI5nAddqKiw1mrn8FWbxSbkbKaurvT3LTjq78LEGHPwWTxOj_ksP9z6u7RVdoK2hpJSPIGngnNGu9ta_Y5KkpDQQhZqoZrqk9F4jLVAJ5DVx9ivsTuL35afzNJfZFX-mIvzAjN9-X-_9gp2iyFJRh3yr2ErLt7Azi_0gnswn8S4JHk1auOKzLqIb_Jzvrkm-eJtdRZXi3hDJp0sPZkkFt0igEVGwS67c3qChi0Zp_pUFzn2MpKpxfKYP8fpzddv4cf06-X4tCrSCpXnVG0q7RAHKamSofF22LLWOYZJqlXDGGoW5NBRK2ICUjClNHpNcWiD1Yw2VrjmHWwvbhfxPZAGbZjglGcBXRNFtUuMgzZIxRsZ0P0cAHtsceML73iSv7gx2f-g2nQwmQSTKTAN4KgvtOxoN_6d_UuCss-aOLNzAmJkyhA0Dp0vYT3aL17xIK2q02SVLBwWee3ZAPYSrv1HCqQDOHzsGKaM77Vh2DBMJC3E_b-X-gTPTy8vzs35t9nZAbxIP9tt3BzC9mZ1Fz_AM3-_ma9XH3MnfgB2pu6K |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Transfer+Network+With+Multi-Kernel+Dynamic+Distribution+Adaptation+for+Cross-Machine+Fault+Diagnosis&rft.jtitle=IEEE+access&rft.au=Lv%2C+Mingzhu&rft.au=Liu%2C+Shixun&rft.au=Su%2C+Xiaoming&rft.au=Chen%2C+Changzheng&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=16392&rft.epage=16409&rft_id=info:doi/10.1109%2FACCESS.2021.3053075&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3053075 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |