Deep Transfer Network With Multi-Kernel Dynamic Distribution Adaptation for Cross-Machine Fault Diagnosis

Recently, various deep learning models, which are mainly based on data-driven algorithms, have received more and more attention in the field of intelligent fault diagnosis and prognostics. However, there are two major assumptions accepted by default in the existing studies: 1) The training (source d...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 9; s. 16392 - 16409
Hlavní autori: Lv, Mingzhu, Liu, Shixun, Su, Xiaoming, Chen, Changzheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recently, various deep learning models, which are mainly based on data-driven algorithms, have received more and more attention in the field of intelligent fault diagnosis and prognostics. However, there are two major assumptions accepted by default in the existing studies: 1) The training (source domain) and testing (target domain) data sets obey the same feature distribution; 2) Sufficient labeled data with fault information is available for model training. In real industrial scenarios, especially for different machines, these assumptions are mostly invalid, which makes it a huge challenge to build reliable diagnostic model. Motivated by transfer learning, we present a novel intelligent method named deep transfer network (DTN) with multi-kernel dynamic distribution adaptation (MDDA) to address the problem of cross-machine fault diagnosis. In the proposed approach, the DTN has wide first-layer convolutional kernel and several small convolutional layers, which is utilized to extract transferable features across different machines and suppress high frequency noise. Then, the MDDA method constructs a weighted mixed kernel function to map different transferable features to a unified feature space, and the relative importance of the marginal and conditional distributions are also evaluated dynamically. The proposed method is verified by three transfer learning tasks of bearings, in which the health states of wind turbine bearings in real scenario are identified by using diagnosis knowledge from two different bearings in laboratories. The results show that the proposed method can achieve higher diagnosis accuracy and better transfer performance even under different noisy environment conditions than many other state-of-the-art methods. The presented framework offers a promising approach for cross-machine fault diagnosis.
AbstractList Recently, various deep learning models, which are mainly based on data-driven algorithms, have received more and more attention in the field of intelligent fault diagnosis and prognostics. However, there are two major assumptions accepted by default in the existing studies: 1) The training (source domain) and testing (target domain) data sets obey the same feature distribution; 2) Sufficient labeled data with fault information is available for model training. In real industrial scenarios, especially for different machines, these assumptions are mostly invalid, which makes it a huge challenge to build reliable diagnostic model. Motivated by transfer learning, we present a novel intelligent method named deep transfer network (DTN) with multi-kernel dynamic distribution adaptation (MDDA) to address the problem of cross-machine fault diagnosis. In the proposed approach, the DTN has wide first-layer convolutional kernel and several small convolutional layers, which is utilized to extract transferable features across different machines and suppress high frequency noise. Then, the MDDA method constructs a weighted mixed kernel function to map different transferable features to a unified feature space, and the relative importance of the marginal and conditional distributions are also evaluated dynamically. The proposed method is verified by three transfer learning tasks of bearings, in which the health states of wind turbine bearings in real scenario are identified by using diagnosis knowledge from two different bearings in laboratories. The results show that the proposed method can achieve higher diagnosis accuracy and better transfer performance even under different noisy environment conditions than many other state-of-the-art methods. The presented framework offers a promising approach for cross-machine fault diagnosis.
Author Chen, Changzheng
Liu, Shixun
Su, Xiaoming
Lv, Mingzhu
Author_xml – sequence: 1
  givenname: Mingzhu
  orcidid: 0000-0002-0608-0852
  surname: Lv
  fullname: Lv, Mingzhu
  email: zhaogx@sut.edu.cn
  organization: School of Mechanical Engineering, Shenyang University of Technology, Shenyang, China
– sequence: 2
  givenname: Shixun
  orcidid: 0000-0002-7739-0874
  surname: Liu
  fullname: Liu, Shixun
  organization: School of Mechanical Engineering, Shenyang University of Technology, Shenyang, China
– sequence: 3
  givenname: Xiaoming
  orcidid: 0000-0003-0391-2278
  surname: Su
  fullname: Su, Xiaoming
  organization: School of Mechanical Engineering, Shenyang University of Technology, Shenyang, China
– sequence: 4
  givenname: Changzheng
  orcidid: 0000-0002-7874-8399
  surname: Chen
  fullname: Chen, Changzheng
  organization: School of Mechanical Engineering, Shenyang University of Technology, Shenyang, China
BookMark eNqFUU1P3DAQjSoqlVJ-AZdIPWfrjyS2j6ssUFRoD1D1aI2dCXgb7K3tVcW_r5cgVPVSXzx6fu_NeN776sgHj1V1RsmKUqI-rYfh_PZ2xQijK046TkT3pjpmtFcN73h_9Ff9rjpNaUvKkQXqxHHlNoi7-i6CTxPG-ivm3yH-rH-4_FDf7Ofsmi8YPc715snDo7P1xqUcndlnF3y9HmGX4bmcQqyHGFJqbsA-OI_1BRR94cO9D8mlD9XbCeaEpy_3SfX94vxu-Nxcf7u8GtbXjW2JzI0yyhghiBQjt9BPbDKGFUhOsseRslH0hkCHreRTx6RUtJXYwwiKEQ6d4SfV1eI7BtjqXXSPEJ90AKefgRDvNcTs7IzaUNF2YHvKrWxHAZIKKQiVlDFsqWXF6-PitYvh1x5T1tuwj76Mr1kZgJWVqr6w-MKyh_9HnF67UqIPEeklIn2ISL9EVFTqH5V1yy5zBDf_R3u2aB0ivnZTnElRXv8AvCaggw
CODEN IAECCG
CitedBy_id crossref_primary_10_3233_JIFS_213340
crossref_primary_10_1109_JSEN_2024_3356605
crossref_primary_10_1016_j_measurement_2022_111996
crossref_primary_10_1080_0952813X_2023_2241867
crossref_primary_10_1177_01423312231157118
crossref_primary_10_1088_1361_6501_ad4380
crossref_primary_10_1016_j_ymssp_2021_108487
crossref_primary_10_1109_ACCESS_2023_3239784
crossref_primary_10_1007_s12206_023_0306_z
crossref_primary_10_1016_j_psep_2025_107885
crossref_primary_10_1109_TIM_2022_3157007
crossref_primary_10_1088_1361_6501_ac99f4
crossref_primary_10_1016_j_psep_2024_06_060
crossref_primary_10_1109_ACCESS_2022_3205105
crossref_primary_10_1109_TIM_2023_3308251
crossref_primary_10_1016_j_knosys_2023_111158
crossref_primary_10_1007_s13369_023_07810_z
crossref_primary_10_1016_j_cja_2021_10_006
Cites_doi 10.1016/j.patrec.2020.06.007
10.1177/1748006X19867776
10.1109/ACCESS.2020.3020906
10.3390/s17020425
10.1016/j.jkss.2019.05.005
10.3390/s20010234
10.1109/TGRS.2017.2692281
10.1109/TIE.2017.2777383
10.1016/j.cja.2019.07.011
10.1109/TR.2019.2896240
10.1016/j.ymssp.2018.12.051
10.3390/s20051361
10.1016/j.ymssp.2017.11.016
10.3390/ma10060574
10.1016/j.advwatres.2016.05.005
10.1007/s00500-019-04038-8
10.1109/TIE.2016.2627020
10.1016/j.tcs.2018.06.004
10.1016/j.measurement.2019.02.073
10.1016/j.ress.2020.107050
10.1109/TR.2015.2456056
10.1109/JSEN.2019.2936932
10.1002/we.2510
10.1016/j.neunet.2020.01.009
10.1007/s11071-019-05176-2
10.1145/3360309
10.1109/TGRS.2020.2985072
10.1016/j.neucom.2019.12.033
10.1016/j.isatra.2019.08.012
10.1109/TGRS.2019.2928562
10.1109/TIE.2016.2582729
10.1109/TIP.2017.2651375
10.1109/TII.2018.2869429
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3053075
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 16409
ExternalDocumentID oai_doaj_org_article_b1745ac613c84d7a81787018122e41c2
10_1109_ACCESS_2021_3053075
9328775
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51675350
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-9b9bb77087d3ca6f2fbb29bb8f86ed12d76b0a5e483f52889148e6ada9203a5b3
IEDL.DBID RIE
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000613542000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:40:15 EDT 2025
Sun Nov 30 05:02:34 EST 2025
Sat Nov 29 06:11:53 EST 2025
Tue Nov 18 21:22:39 EST 2025
Wed Aug 27 05:54:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-9b9bb77087d3ca6f2fbb29bb8f86ed12d76b0a5e483f52889148e6ada9203a5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0391-2278
0000-0002-7739-0874
0000-0002-7874-8399
0000-0002-0608-0852
OpenAccessLink https://ieeexplore.ieee.org/document/9328775
PQID 2483253696
PQPubID 4845423
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_b1745ac613c84d7a81787018122e41c2
proquest_journals_2483253696
crossref_primary_10_1109_ACCESS_2021_3053075
crossref_citationtrail_10_1109_ACCESS_2021_3053075
ieee_primary_9328775
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref17
  doi: 10.1016/j.patrec.2020.06.007
– ident: ref7
  doi: 10.1177/1748006X19867776
– ident: ref31
  doi: 10.1109/ACCESS.2020.3020906
– ident: ref10
  doi: 10.3390/s17020425
– ident: ref16
  doi: 10.1016/j.jkss.2019.05.005
– ident: ref25
  doi: 10.3390/s20010234
– ident: ref28
  doi: 10.1109/TGRS.2017.2692281
– ident: ref21
  doi: 10.1109/TIE.2017.2777383
– ident: ref26
  doi: 10.1016/j.cja.2019.07.011
– ident: ref29
  doi: 10.1109/TR.2019.2896240
– ident: ref11
  doi: 10.1016/j.ymssp.2018.12.051
– ident: ref30
  doi: 10.3390/s20051361
– ident: ref1
  doi: 10.1016/j.ymssp.2017.11.016
– ident: ref33
  doi: 10.3390/ma10060574
– ident: ref15
  doi: 10.1016/j.advwatres.2016.05.005
– ident: ref20
  doi: 10.1007/s00500-019-04038-8
– ident: ref3
  doi: 10.1109/TIE.2016.2627020
– ident: ref14
  doi: 10.1016/j.tcs.2018.06.004
– ident: ref9
  doi: 10.1016/j.measurement.2019.02.073
– ident: ref12
  doi: 10.1016/j.ress.2020.107050
– ident: ref5
  doi: 10.1109/TR.2015.2456056
– ident: ref8
  doi: 10.1109/JSEN.2019.2936932
– ident: ref13
  doi: 10.1002/we.2510
– ident: ref24
  doi: 10.1016/j.neunet.2020.01.009
– ident: ref4
  doi: 10.1007/s11071-019-05176-2
– ident: ref19
  doi: 10.1145/3360309
– ident: ref18
  doi: 10.1109/TGRS.2020.2985072
– ident: ref2
  doi: 10.1016/j.neucom.2019.12.033
– ident: ref23
  doi: 10.1016/j.isatra.2019.08.012
– ident: ref32
  doi: 10.1109/TGRS.2019.2928562
– ident: ref27
  doi: 10.1109/TIE.2016.2582729
– ident: ref22
  doi: 10.1109/TIP.2017.2651375
– ident: ref6
  doi: 10.1109/TII.2018.2869429
SSID ssj0000816957
Score 2.3119798
Snippet Recently, various deep learning models, which are mainly based on data-driven algorithms, have received more and more attention in the field of intelligent...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16392
SubjectTerms Adaptation
Algorithms
Bearings
Cognitive tasks
cross-machine fault diagnosis
Deep transfer network
Diagnostic systems
Domains
Fault diagnosis
Feature extraction
Kernel
Kernel functions
Machine learning
multi-kernel dynamic distribution adaptation
Task analysis
Testing
Training
transfer learning
Vibrations
Wind turbines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHvQgahWrVXLw6Go2-0hyrK1FEIsHxd5CXosFqaWt_n4nj5aKoBev2SSbzMxmZnZnvw-hC2VKXjR5mRW6NFnJuIZzUNuMVEopoTVcagLZBBsO-WgkHteovnxNWIQHjoK71hAyV8qA1zG8tEzx3JuY90vUlbkJpy9hYi2ZCmcwz2tRsQQzlBNx3e31YEeQENL8CmwcTLv65ooCYn-iWPlxLgdnM9hDuylKxN24un204SYHaGcNO7CFxn3npji4msbN8DCWc-OX8eIVh79qs3s3m7g33I-c87jvIXITuxXuWjWNH-ExRK245xeYPYTCSocHCsZD_1CEN54foufB7VPvLku8CZkpCV9kQoOQGSOc2cKouqGN1hSaeMNrZ3NqWa2JqpzXUkU5F5ASuVpZJSgpVKWLI7Q5eZ-4Y4QLCFCs5oZayDs4EdrDCSrLeFkwC7llG9GlCKVJoOKe2-JNhuSCCBnlLr3cZZJ7G12uBk0jpsbv3W-8blZdPSB2aAAzkclM5F9m0kYtr9nVJBC2cubn7iw1LdPDO5cUBEMrT3R48h-3PkXbfjvxvU0HbS5mH-4MbZnPxXg-Ow92-wXBAOyY
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Transfer Network With Multi-Kernel Dynamic Distribution Adaptation for Cross-Machine Fault Diagnosis
URI https://ieeexplore.ieee.org/document/9328775
https://www.proquest.com/docview/2483253696
https://doaj.org/article/b1745ac613c84d7a81787018122e41c2
Volume 9
WOSCitedRecordID wos000613542000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB2SkEN7aJukpdumQYce48SWLUs6bnezFEKWHFqSm9DHmC6EzbK76bG_vSNZMS0pgV6MkSUj6Y2kGWn0BuCz9Y2qu6opatf4opHK0TzoQlEKa612jj51KdiEnM_V7a2-3oHT4S4MIibnMzyLr-ksP9z7h7hVdk66hpJS7MKulG1_V2vYT4kBJLSQmVioKvX5eDKhNpAJyKszkmoSZvHX4pM4-nNQlSczcVpeZq__r2Jv4FVWI9m4x_0AdnB5CC__IBc8gsUUccXSWtThms17f292s9j-YOnabXGJ6yXesWkflJ5NI4duDn_FxsGu-lN6Rmotm8T2FFfJ8xLZzFJ5yp-89Babt_B9dvFt8rXIgRUK35RqW2hHKEhZKhlqb9uOd85xSlKdajFUPMjWlVZghFFwpTTZTNjaYDUvaytc_Q72lvdLfA-sJg0mOOV5IMNEldpFvkEbpGpqGcj4HAF_7HHjM-t4DH5xZ5L1UWrTw2QiTCbDNILTodCqJ914PvuXCOWQNTJmpwTCyOQBaByZXsJ60l68aoK0qopTVdRvODaV5yM4irgOP8mQjuD4UTBMHt0bw6ljuIiRED_8u9RHeBEr2G_VHMPedv2An2Df_9wuNuuTZPfT8-rXxUkS4t8pre1p
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VggQ9lEdBpC3gA8du6_XasX0MCVFR24hDEb1Zfq0aqUqjJO3v79jrrkAgJG4rr71a-_Njxh5_H8Bn67lq2ppXjeO-4lI5nAddqKiw1mrn8FWbxSbkbKaurvT3LTjq78LEGHPwWTxOj_ksP9z6u7RVdoK2hpJSPIGngnNGu9ta_Y5KkpDQQhZqoZrqk9F4jLVAJ5DVx9ivsTuL35afzNJfZFX-mIvzAjN9-X-_9gp2iyFJRh3yr2ErLt7Azi_0gnswn8S4JHk1auOKzLqIb_Jzvrkm-eJtdRZXi3hDJp0sPZkkFt0igEVGwS67c3qChi0Zp_pUFzn2MpKpxfKYP8fpzddv4cf06-X4tCrSCpXnVG0q7RAHKamSofF22LLWOYZJqlXDGGoW5NBRK2ICUjClNHpNcWiD1Yw2VrjmHWwvbhfxPZAGbZjglGcBXRNFtUuMgzZIxRsZ0P0cAHtsceML73iSv7gx2f-g2nQwmQSTKTAN4KgvtOxoN_6d_UuCss-aOLNzAmJkyhA0Dp0vYT3aL17xIK2q02SVLBwWee3ZAPYSrv1HCqQDOHzsGKaM77Vh2DBMJC3E_b-X-gTPTy8vzs35t9nZAbxIP9tt3BzC9mZ1Fz_AM3-_ma9XH3MnfgB2pu6K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Transfer+Network+With+Multi-Kernel+Dynamic+Distribution+Adaptation+for+Cross-Machine+Fault+Diagnosis&rft.jtitle=IEEE+access&rft.au=Lv%2C+Mingzhu&rft.au=Liu%2C+Shixun&rft.au=Su%2C+Xiaoming&rft.au=Chen%2C+Changzheng&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=16392&rft.epage=16409&rft_id=info:doi/10.1109%2FACCESS.2021.3053075&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3053075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon