Semantic Segmentation of Anaemic RBCs Using Multilevel Deep Convolutional Encoder-Decoder Network

Pixel-level analysis of blood images plays a pivotal role in diagnosing blood-related diseases, especially Anaemia. These analyses mainly rely on an accurate diagnosis of morphological deformities like shape, size, and precise pixel counting. In traditional segmentation approaches, instance or objec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 9; S. 161326 - 161341
Hauptverfasser: Shahzad, Muhammad, Umar, Arif Iqbal, Shirazi, Syed Hamad, Shaikh, Israr Ahmed
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Pixel-level analysis of blood images plays a pivotal role in diagnosing blood-related diseases, especially Anaemia. These analyses mainly rely on an accurate diagnosis of morphological deformities like shape, size, and precise pixel counting. In traditional segmentation approaches, instance or object-based approaches have been adopted that are not feasible for pixel-level analysis. The convolutional neural network (CNN) model required a large dataset with detailed pixel-level information for the semantic segmentation of red blood cells in the deep learning domain. In current research work, we address these problems by proposing a multi-level deep convolutional encoder-decoder network along with two state-of-the-art healthy and Anaemic-RBC datasets. The proposed multi-level CNN model preserved pixel-level semantic information extracted in one layer and then passed to the next layer to choose relevant features. This phenomenon helps to precise pixel-level counting of healthy and anaemic-RBC elements along with morphological analysis. For experimental purposes, we proposed two state-of-the-art RBC datasets, i.e., Healthy-RBCs and Anaemic-RBCs dataset. Each dataset contains 1000 images, ground truth masks, relevant, complete blood count (CBC), and morphology reports for performance evaluation. The proposed model results were evaluated using crossmatch analysis with ground truth mask by finding IoU, individual training, validation, testing accuracies, and global accuracies using a 05-fold training procedure. This model got training, validation, and testing accuracies as 0.9856, 0.9760, and 0.9720 on the Healthy-RBC dataset and 0.9736, 0.9696, and 0.9591 on an Anaemic-RBC dataset. The IoU and BFScore of the proposed model were 0.9311, 0.9138, and 0.9032, 0.8978 on healthy and anaemic datasets, respectively.
AbstractList Pixel-level analysis of blood images plays a pivotal role in diagnosing blood-related diseases, especially Anaemia. These analyses mainly rely on an accurate diagnosis of morphological deformities like shape, size, and precise pixel counting. In traditional segmentation approaches, instance or object-based approaches have been adopted that are not feasible for pixel-level analysis. The convolutional neural network (CNN) model required a large dataset with detailed pixel-level information for the semantic segmentation of red blood cells in the deep learning domain. In current research work, we address these problems by proposing a multi-level deep convolutional encoder-decoder network along with two state-of-the-art healthy and Anaemic-RBC datasets. The proposed multi-level CNN model preserved pixel-level semantic information extracted in one layer and then passed to the next layer to choose relevant features. This phenomenon helps to precise pixel-level counting of healthy and anaemic-RBC elements along with morphological analysis. For experimental purposes, we proposed two state-of-the-art RBC datasets, i.e., Healthy-RBCs and Anaemic-RBCs dataset. Each dataset contains 1000 images, ground truth masks, relevant, complete blood count (CBC), and morphology reports for performance evaluation. The proposed model results were evaluated using crossmatch analysis with ground truth mask by finding IoU, individual training, validation, testing accuracies, and global accuracies using a 05-fold training procedure. This model got training, validation, and testing accuracies as 0.9856, 0.9760, and 0.9720 on the Healthy-RBC dataset and 0.9736, 0.9696, and 0.9591 on an Anaemic-RBC dataset. The IoU and BFScore of the proposed model were 0.9311, 0.9138, and 0.9032, 0.8978 on healthy and anaemic datasets, respectively.
Author Shahzad, Muhammad
Shaikh, Israr Ahmed
Shirazi, Syed Hamad
Umar, Arif Iqbal
Author_xml – sequence: 1
  givenname: Muhammad
  orcidid: 0000-0003-4971-4875
  surname: Shahzad
  fullname: Shahzad, Muhammad
  organization: Department of Information Technology, Hazara University Mansehra, Dhodial, Pakistan
– sequence: 2
  givenname: Arif Iqbal
  orcidid: 0000-0001-9088-3422
  surname: Umar
  fullname: Umar, Arif Iqbal
  email: drarif.hu@gmail.com
  organization: Department of Information Technology, Hazara University Mansehra, Dhodial, Pakistan
– sequence: 3
  givenname: Syed Hamad
  surname: Shirazi
  fullname: Shirazi, Syed Hamad
  organization: Department of Information Technology, Hazara University Mansehra, Dhodial, Pakistan
– sequence: 4
  givenname: Israr Ahmed
  surname: Shaikh
  fullname: Shaikh, Israr Ahmed
  organization: Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
BookMark eNqFUU1v1DAQtVCRKKW_oBdLnLP1R-Jkjku6QKUCEkvP1sQ7WXnJxoudLeLf19tUFeKCL2M9zXtvZt5bdjaGkRi7kmIhpYDrZduu1uuFEkoutNSyNs0rdq6kgUJX2pz99X_DLlPaifyaDFX1OcM17XGcvONr2u5pnHDyYeSh58sRaZ_x7x_axO-TH7f8y3GY_EAPNPAbogNvw_gQhuOJgQNfjS5sKBY39FT5V5p-h_jzHXvd45Do8rlesPuPqx_t5-Lu26fbdnlXuFI0UwFQ1_XGKVP1EsGVZVOqTkDVAyLm0aWDDgCrBipjmg4VmtoJ1WFvZNeUG33BbmfdTcCdPUS_x_jHBvT2CQhxazHmRQeyUBJJMqUD7Msm3xCorKrs2dXQawlZ6_2sdYjh15HSZHfhGPOSySojhawF1CJ36bnLxZBSpP7FVQp7isbO0dhTNPY5msyCf1jOz1efIvrhP9yrmeuJ6MUNjJZKSf0IOtOdLw
CODEN IAECCG
CitedBy_id crossref_primary_10_7717_peerj_cs_1813
crossref_primary_10_3390_informatics12010019
crossref_primary_10_1109_ACCESS_2024_3378575
crossref_primary_10_3390_jimaging11090309
crossref_primary_10_1093_database_baae120
Cites_doi 10.1186/1471-2121-8-1
10.1201/9781351003827
10.1109/CVPR.2017.634
10.1007/s11071-019-05170-8
10.1111/ijlh.12832
10.1109/ICCV.2019.00933
10.1109/ISPA.2017.8073587
10.1007/978-3-030-00937-3_79
10.1109/ICTAI.2012.133
10.1155/2008/384346
10.3390/app8091575
10.1016/j.neucom.2019.12.042
10.1007/978-3-319-46976-8_19
10.1109/TMM.2020.2991592
10.1007/s11263-014-0733-5
10.1109/ICIP.2011.6115881
10.1016/j.neuroimage.2014.05.078
10.5244/C.27.32
10.1038/nmeth.2083
10.1109/ICCV.2017.530
10.1016/j.compbiomed.2020.104034
10.1109/TIP.2019.2962685
10.1109/CVPR.2019.00875
10.1109/ICCV.2015.203
10.1016/j.isprsjprs.2020.01.013
10.1109/TMI.2019.2959609
10.1109/TIP.2017.2768621
10.1007/s13735-017-0141-z
10.1109/ICPR.2018.8545414
10.1109/CVPR.2016.350
10.3390/app10031176
10.1109/ACCESS.2019.2940034
10.20944/preprints201909.0075.v1
10.5244/C.27.66
10.1109/TBME.2015.2466616
10.1109/CVPR.2015.7298965
10.1109/CVPR.2016.90
10.1631/FITEE.1800083
10.1016/j.irbm.2017.02.003
10.1109/CVPR.2018.00907
10.3390/e22060657
10.1080/01431161.2019.1643937
10.1007/s00530-020-00678-1
10.1109/TMI.2015.2508280
10.1109/JBHI.2020.3000484
10.1109/CVPR.2017.243
10.1007/s11263-020-01373-4
10.1109/JSEN.2018.2888815
10.1109/TIP.2020.2968250
10.1049/iet-ipr.2019.1067
10.1371/journal.pone.0218808
10.1007/s11042-020-09791-9
10.1109/CVPR.2019.00374
10.1145/3065386
10.1109/CVPR.2015.7298594
10.3390/electronics9030427
10.1016/j.neucom.2019.11.118
10.1007/978-3-319-50835-1_22
10.1109/CVPR.2018.00256
10.1038/s41746-020-0282-y
10.1109/ICCV.2015.178
10.1002/rob.21869
10.1155/2020/4015323
10.1109/TMM.2020.3025696
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3131768
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 161341
ExternalDocumentID oai_doaj_org_article_94ee1e64c9af481099e455c44b79f319
10_1109_ACCESS_2021_3131768
9631221
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-99777dc265f1a9c44842b095f9aaa5361c9b99a5895668ba2a67c02baf61b84d3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000730449000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:43 EDT 2025
Sun Jun 29 14:10:09 EDT 2025
Tue Nov 18 21:48:01 EST 2025
Sat Nov 29 06:31:47 EST 2025
Wed Aug 27 05:07:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-99777dc265f1a9c44842b095f9aaa5361c9b99a5895668ba2a67c02baf61b84d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4971-4875
0000-0001-9088-3422
OpenAccessLink https://ieeexplore.ieee.org/document/9631221
PQID 2610170970
PQPubID 4845423
PageCount 16
ParticipantIDs crossref_primary_10_1109_ACCESS_2021_3131768
doaj_primary_oai_doaj_org_article_94ee1e64c9af481099e455c44b79f319
proquest_journals_2610170970
ieee_primary_9631221
crossref_citationtrail_10_1109_ACCESS_2021_3131768
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
mohamed (ref68) 2015
ref17
ref16
szegedy (ref9) 2017
ref19
ref18
ref51
ref50
ref46
tran (ref42) 2019
ref45
ref48
ref47
simonyan (ref6) 2015
ref41
ref43
ref49
ivanova (ref21) 2016; 1
ref7
ref4
ref3
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
merino (ref44) 2020; 22
ref1
ref39
ren (ref59) 2019
ref38
firdaus-nawi (ref8) 2011; 34
ref71
ref70
ref72
ref24
ref23
ref26
ref69
ref25
chen (ref62) 2017
ref64
ref20
ref63
ref66
ref22
ref65
ref28
ref27
sarrafzadeh (ref67) 2014; 9041
ref29
ref60
ref61
References_xml – ident: ref50
  doi: 10.1186/1471-2121-8-1
– ident: ref35
  doi: 10.1201/9781351003827
– ident: ref7
  doi: 10.1109/CVPR.2017.634
– ident: ref11
  doi: 10.1007/s11071-019-05170-8
– ident: ref22
  doi: 10.1111/ijlh.12832
– ident: ref17
  doi: 10.1109/ICCV.2019.00933
– ident: ref18
  doi: 10.1109/ISPA.2017.8073587
– ident: ref41
  doi: 10.1007/978-3-030-00937-3_79
– ident: ref69
  doi: 10.1109/ICTAI.2012.133
– ident: ref49
  doi: 10.1155/2008/384346
– ident: ref25
  doi: 10.3390/app8091575
– start-page: 220
  year: 2015
  ident: ref68
  article-title: An efficient technique for white blood cells nuclei automatic segmentation
  publication-title: Proc Conf IEEE Int Conf Syst Man Cybern
– ident: ref48
  doi: 10.1016/j.neucom.2019.12.042
– ident: ref28
  doi: 10.1007/978-3-319-46976-8_19
– ident: ref57
  doi: 10.1109/TMM.2020.2991592
– ident: ref52
  doi: 10.1007/s11263-014-0733-5
– ident: ref65
  doi: 10.1109/ICIP.2011.6115881
– year: 2019
  ident: ref59
  article-title: Task decomposition and synchronization for semantic biomedical image segmentation
  publication-title: arXiv 1905 08720
– ident: ref32
  doi: 10.1016/j.neuroimage.2014.05.078
– ident: ref63
  doi: 10.5244/C.27.32
– ident: ref70
  doi: 10.1038/nmeth.2083
– ident: ref24
  doi: 10.1109/ICCV.2017.530
– ident: ref43
  doi: 10.1016/j.compbiomed.2020.104034
– ident: ref34
  doi: 10.1109/TIP.2019.2962685
– ident: ref15
  doi: 10.1109/CVPR.2019.00875
– ident: ref19
  doi: 10.1109/ICCV.2015.203
– ident: ref56
  doi: 10.1016/j.isprsjprs.2020.01.013
– ident: ref30
  doi: 10.1109/TMI.2019.2959609
– ident: ref26
  doi: 10.1109/TIP.2017.2768621
– ident: ref37
  doi: 10.1007/s13735-017-0141-z
– volume: 1
  start-page: 13
  year: 2016
  ident: ref21
  publication-title: Laboratory Approach to Anemia
– ident: ref20
  doi: 10.1109/ICPR.2018.8545414
– volume: 34
  start-page: 137
  year: 2011
  ident: ref8
  article-title: DeepLabv3+_encoder-decoder with Atrous separable convolution for semantic image segmentation
  publication-title: Pertanika Journal of Tropical Agriculture Science
– ident: ref53
  doi: 10.1109/CVPR.2016.350
– volume: 9041
  year: 2014
  ident: ref67
  article-title: Selection of the best features for leukocytes classification in blood smear microscopic images
  publication-title: Proc SPIE
– ident: ref72
  doi: 10.3390/app10031176
– ident: ref13
  doi: 10.1109/ACCESS.2019.2940034
– year: 2019
  ident: ref42
  article-title: Blood cell count using deep learning semantic segmentation
  doi: 10.20944/preprints201909.0075.v1
– ident: ref23
  doi: 10.5244/C.27.66
– ident: ref31
  doi: 10.1109/TBME.2015.2466616
– ident: ref55
  doi: 10.1109/CVPR.2015.7298965
– ident: ref2
  doi: 10.1109/CVPR.2016.90
– ident: ref12
  doi: 10.1631/FITEE.1800083
– start-page: 4278
  year: 2017
  ident: ref9
  article-title: Inception-v4, Inception-ResNet and the impact of residual connections on learning
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref51
  doi: 10.1016/j.irbm.2017.02.003
– ident: ref10
  doi: 10.1109/CVPR.2018.00907
– volume: 22
  start-page: 657
  year: 2020
  ident: ref44
  article-title: A deep learning approach for segmentation of red blood cell images and malaria detection
  publication-title: Entropy
  doi: 10.3390/e22060657
– ident: ref61
  doi: 10.1080/01431161.2019.1643937
– ident: ref58
  doi: 10.1007/s00530-020-00678-1
– ident: ref27
  doi: 10.1109/TMI.2015.2508280
– ident: ref40
  doi: 10.1109/JBHI.2020.3000484
– ident: ref3
  doi: 10.1109/CVPR.2017.243
– ident: ref45
  doi: 10.1007/s11263-020-01373-4
– ident: ref36
  doi: 10.1109/JSEN.2018.2888815
– year: 2017
  ident: ref62
  article-title: Dual path networks
  publication-title: arXiv 1707 01629
– ident: ref33
  doi: 10.1109/TIP.2020.2968250
– start-page: 1
  year: 2015
  ident: ref6
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref47
  doi: 10.1049/iet-ipr.2019.1067
– ident: ref39
  doi: 10.1371/journal.pone.0218808
– ident: ref38
  doi: 10.1007/s11042-020-09791-9
– ident: ref16
  doi: 10.1109/CVPR.2019.00374
– ident: ref1
  doi: 10.1145/3065386
– ident: ref4
  doi: 10.1109/CVPR.2015.7298594
– ident: ref71
  doi: 10.3390/electronics9030427
– ident: ref14
  doi: 10.1016/j.neucom.2019.11.118
– ident: ref64
  doi: 10.1007/978-3-319-50835-1_22
– ident: ref5
  doi: 10.1109/CVPR.2018.00256
– ident: ref46
  doi: 10.1038/s41746-020-0282-y
– ident: ref29
  doi: 10.1109/ICCV.2015.178
– ident: ref60
  doi: 10.1002/rob.21869
– ident: ref66
  doi: 10.1155/2020/4015323
– ident: ref54
  doi: 10.1109/TMM.2020.3025696
SSID ssj0000816957
Score 2.226663
Snippet Pixel-level analysis of blood images plays a pivotal role in diagnosing blood-related diseases, especially Anaemia. These analyses mainly rely on an accurate...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 161326
SubjectTerms Anemia
Artificial neural networks
Blood
blood cells
Cells (biology)
CNN
Coders
Computer architecture
Convolutional neural networks
Datasets
deep learning
Encoders-Decoders
Erythrocytes
Image segmentation
Medical imaging
Morphology
multi-level deep convolutional encoder-decoder network
Performance evaluation
Pixels
segmentation analysis
Semantic segmentation
Semantics
Shape
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEBUl5NAcQlI3xM0HOvTYxStZq9UcnU1CTyYkLfgmZmWpBJJ1sJ38_o60sjEU0ktOC4u0Wr0ZaTTS6A1j3x2SkQulKWjsKHJQNBbGQFUohSLmREGQISWbqKdTM5vB3U6qrxgT1tMD98CNQHkvvFYOMCgTz3G8qiqnVFtDGCfCT1nWsONMpTnYCA1VnWmGqNZo0jTUI3IIpSA_laxmJFfdMUWJsT-nWPlnXk7G5vaIHeZVIp_0f3fMPvnuCzvY4Q4cMHzwz4TKo-MP_s9zvkHU8UXgkw5jxDu_v2pWPIUE8HTN9inGB_Fr7194s-jess5RMzddvNi-LK59evJpHxr-lf2-vfnV_CxyvoTCqdKsC6C1XD13UldBIBBERsmWllABELEaa-GgBcCKZKG1aVGirl0pWwxatEbNxydsr1t0_pRxV81RQZgTiF75sYR4nku2Dj048mphyOQGOusymXjMafFkk1NRgu3xthFvm_Eesh_bSi89l8b7xa-iTLZFIxF2ekHqYbN62P-px5ANokS3H6H5Rkgphux8I2GbB-3KkjMZ2YSgLr99RNNn7HPsTr9fc8721stXf8H23dv6cbW8TPr6F6Fr6cg
  priority: 102
  providerName: Directory of Open Access Journals
Title Semantic Segmentation of Anaemic RBCs Using Multilevel Deep Convolutional Encoder-Decoder Network
URI https://ieeexplore.ieee.org/document/9631221
https://www.proquest.com/docview/2610170970
https://doaj.org/article/94ee1e64c9af481099e455c44b79f319
Volume 9
WOSCitedRecordID wos000730449000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKxQEOUCiI7Us-cGxo4nWczHGbbsWFFaIg9WY5zhhVarPV7rbH_vbOOG5UCYTEJYkiO7H92R5_9jyE-OwdCbmQ1xmNHU0ExbisrqHMtHYFx0RxoEIMNlEtFvXlJXzfEsejLQwiRuUz_MKP8Sy_W_o73io7oc5SKLYaf1FVZrDVGvdTOIAElFVyLFTkcDJrGqoDUUBVEDMlOcnuVJ8Jn-ijPwVV-WMmjuLl_O3_FWxHvEnLSDkbcH8ntrB_L14_cy64K9wF3lCzXXl5gb9vkolRL5dBznrHKvHyx2mzllFnQEY73GtWIJJniLeyWfb3qVPSb-Y9W76vsjOMd7kYdMc_iF_n85_N1ywFVMi8zutNBrTYqzqvTBkKB56YmVYtrbECOOfKqSk8tACuJLCMqVunnKl8rloXTNHWupt-FNv9ssdPQvqycxpCR22OGqcK-MCXhKFD8ER7YSLUU0tbn7yNc9CLaxtZRw52gMcyPDbBMxHHY6bbwdnGv5OfMoRjUvaUHV8QNjYNPAsasUCjPbigaz4HRF2WVPe2gkDzz0TsMp7jRxKUE3Hw1CFsGtVrS2yT3Q1Ble_9Pde-eMUFHLZoDsT2ZnWHh-Klv99crVdHke_T9dvD_Ch23kccmele
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQk48CqILQV84NjQxOs85rhNWxVRVogWqTfLcSaoUputdrf9_Z1x3KgSCIlToshObH_jjMee-Qbgs3es5Lq0SnjuGDZQCpdUFeaJMS6TnCgOdReSTZTzeXV-jj82YHeMhSGi4HxGX-Q2nOW3C38jW2V7LCyZlqjxR5I5K0ZrjTsqkkIC8zJSC2Up7s3qmnvBRqDO2DZlTSmEqg_UT2Dpj2lV_vgXBwVz9OL_mvYSnseFpJoNyL-CDepfw7MH9IJb4E7pigfuwqtT-n0Vg4x6tejUrHfiFK9-7tcrFbwGVIjEvRQXInVAdK3qRX8bxZI_c9hL7PsyOaBwVfPBe_wN_Do6PKuPk5hSIfEmrdYJ8nKvbL0u8i5z6Nk2M7rhVVaHzrl8WmQeG0SXM1xFUTVOu6L0qW5cV2RNZdrpW9jsFz29A-Xz1hnsWh5zMjTVKEe-rA4doWfDFyeg70fa-sg3LmkvLm2wO1K0AzxW4LERngnsjpWuB7qNfxffFwjHosKVHR4wNjZOPYuGKKPCeHSdqeQkkEyec9-bEjv-A01gS_AcXxKhnMDOvUDYOK9Xlu1NIRzCMt3-e61P8OT47PuJPfk6__Yenkpjhw2bHdhcL2_oAzz2t-uL1fJjEN47alHqgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+Segmentation+of+Anaemic+RBCs+Using+Multilevel+Deep+Convolutional+Encoder-Decoder+Network&rft.jtitle=IEEE+access&rft.au=Shahzad%2C+Muhammad&rft.au=Umar%2C+Arif+Iqbal&rft.au=Shirazi%2C+Syed+Hamad&rft.au=Shaikh%2C+Israr+Ahmed&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=161326&rft.epage=161341&rft_id=info:doi/10.1109%2FACCESS.2021.3131768&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3131768
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon