ACBiGRU-DAO: Attention Convolutional Bidirectional Gated Recurrent Unit-based Dynamic Arithmetic Optimization for Air Quality Prediction

Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate air pollution. The air quality prediction model trig...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international Vol. 30; no. 37; pp. 86804 - 86820
Main Authors: Panneerselvam, Vinoth, Thiagarajan, Revathi
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2023
Springer Nature B.V
Subjects:
ISSN:1614-7499, 0944-1344, 1614-7499
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate air pollution. The air quality prediction model triggers an alarm when the quality of air changes to hazardous or when the pollutant concentration surpasses the defined limit. Accurate air quality assessment becomes an indispensable step in many urban and industrial areas to monitor and preserve the quality of air. To accomplish this goal, this paper proposes a novel Attention Convolutional Bidirectional Gated Recurrent Unit based Dynamic Arithmetic Optimization (ACBiGRU-DAO) approach. The Attention Convolutional Bidirectional Gated Recurrent Unit (ACBiGRU) model is determined in which the fine-tuning parameters are used to enhance the proposed method by Dynamic Arithmetic Optimization (DAO) algorithm. The air quality data of India was acquired from the Kaggle website. From the dataset, the most-influencing features such as Air Quality Index (AQI), particulate matter namely PM 2.5 and PM 10 , carbon monoxide (CO) concentration, nitrogen dioxide (NO 2 ) concentration, sulfur dioxide (SO 2 ) concentration, and ozone (O 3 ) concentration are taken as input data. Initially, they are preprocessed through two different pipelines namely imputation of missing values and data transformation. Finally, the proposed ACBiGRU-DAO approach predicts air quality and classifies based on their severities into six AQI stages. The efficiency of the proposed ACBiGRU-DAO approach is examined using diverse evaluation indicators namely Accuracy, Maximum Prediction Error (MPE), Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC). The simulation result inherits that the proposed ACBiGRU-DAO approach achieves a greater percentage of accuracy of about 95.34% than other compared methods.
AbstractList Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate air pollution. The air quality prediction model triggers an alarm when the quality of air changes to hazardous or when the pollutant concentration surpasses the defined limit. Accurate air quality assessment becomes an indispensable step in many urban and industrial areas to monitor and preserve the quality of air. To accomplish this goal, this paper proposes a novel Attention Convolutional Bidirectional Gated Recurrent Unit based Dynamic Arithmetic Optimization (ACBiGRU-DAO) approach. The Attention Convolutional Bidirectional Gated Recurrent Unit (ACBiGRU) model is determined in which the fine-tuning parameters are used to enhance the proposed method by Dynamic Arithmetic Optimization (DAO) algorithm. The air quality data of India was acquired from the Kaggle website. From the dataset, the most-influencing features such as Air Quality Index (AQI), particulate matter namely PM 2.5 and PM 10 , carbon monoxide (CO) concentration, nitrogen dioxide (NO 2 ) concentration, sulfur dioxide (SO 2 ) concentration, and ozone (O 3 ) concentration are taken as input data. Initially, they are preprocessed through two different pipelines namely imputation of missing values and data transformation. Finally, the proposed ACBiGRU-DAO approach predicts air quality and classifies based on their severities into six AQI stages. The efficiency of the proposed ACBiGRU-DAO approach is examined using diverse evaluation indicators namely Accuracy, Maximum Prediction Error (MPE), Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC). The simulation result inherits that the proposed ACBiGRU-DAO approach achieves a greater percentage of accuracy of about 95.34% than other compared methods.
Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate air pollution. The air quality prediction model triggers an alarm when the quality of air changes to hazardous or when the pollutant concentration surpasses the defined limit. Accurate air quality assessment becomes an indispensable step in many urban and industrial areas to monitor and preserve the quality of air. To accomplish this goal, this paper proposes a novel Attention Convolutional Bidirectional Gated Recurrent Unit based Dynamic Arithmetic Optimization (ACBiGRU-DAO) approach. The Attention Convolutional Bidirectional Gated Recurrent Unit (ACBiGRU) model is determined in which the fine-tuning parameters are used to enhance the proposed method by Dynamic Arithmetic Optimization (DAO) algorithm. The air quality data of India was acquired from the Kaggle website. From the dataset, the most-influencing features such as Air Quality Index (AQI), particulate matter namely PM₂.₅ and PM₁₀, carbon monoxide (CO) concentration, nitrogen dioxide (NO₂) concentration, sulfur dioxide (SO₂) concentration, and ozone (O₃) concentration are taken as input data. Initially, they are preprocessed through two different pipelines namely imputation of missing values and data transformation. Finally, the proposed ACBiGRU-DAO approach predicts air quality and classifies based on their severities into six AQI stages. The efficiency of the proposed ACBiGRU-DAO approach is examined using diverse evaluation indicators namely Accuracy, Maximum Prediction Error (MPE), Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC). The simulation result inherits that the proposed ACBiGRU-DAO approach achieves a greater percentage of accuracy of about 95.34% than other compared methods.
Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate air pollution. The air quality prediction model triggers an alarm when the quality of air changes to hazardous or when the pollutant concentration surpasses the defined limit. Accurate air quality assessment becomes an indispensable step in many urban and industrial areas to monitor and preserve the quality of air. To accomplish this goal, this paper proposes a novel Attention Convolutional Bidirectional Gated Recurrent Unit based Dynamic Arithmetic Optimization (ACBiGRU-DAO) approach. The Attention Convolutional Bidirectional Gated Recurrent Unit (ACBiGRU) model is determined in which the fine-tuning parameters are used to enhance the proposed method by Dynamic Arithmetic Optimization (DAO) algorithm. The air quality data of India was acquired from the Kaggle website. From the dataset, the most-influencing features such as Air Quality Index (AQI), particulate matter namely PM2.5 and PM10, carbon monoxide (CO) concentration, nitrogen dioxide (NO2) concentration, sulfur dioxide (SO2) concentration, and ozone (O3) concentration are taken as input data. Initially, they are preprocessed through two different pipelines namely imputation of missing values and data transformation. Finally, the proposed ACBiGRU-DAO approach predicts air quality and classifies based on their severities into six AQI stages. The efficiency of the proposed ACBiGRU-DAO approach is examined using diverse evaluation indicators namely Accuracy, Maximum Prediction Error (MPE), Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC). The simulation result inherits that the proposed ACBiGRU-DAO approach achieves a greater percentage of accuracy of about 95.34% than other compared methods.Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate air pollution. The air quality prediction model triggers an alarm when the quality of air changes to hazardous or when the pollutant concentration surpasses the defined limit. Accurate air quality assessment becomes an indispensable step in many urban and industrial areas to monitor and preserve the quality of air. To accomplish this goal, this paper proposes a novel Attention Convolutional Bidirectional Gated Recurrent Unit based Dynamic Arithmetic Optimization (ACBiGRU-DAO) approach. The Attention Convolutional Bidirectional Gated Recurrent Unit (ACBiGRU) model is determined in which the fine-tuning parameters are used to enhance the proposed method by Dynamic Arithmetic Optimization (DAO) algorithm. The air quality data of India was acquired from the Kaggle website. From the dataset, the most-influencing features such as Air Quality Index (AQI), particulate matter namely PM2.5 and PM10, carbon monoxide (CO) concentration, nitrogen dioxide (NO2) concentration, sulfur dioxide (SO2) concentration, and ozone (O3) concentration are taken as input data. Initially, they are preprocessed through two different pipelines namely imputation of missing values and data transformation. Finally, the proposed ACBiGRU-DAO approach predicts air quality and classifies based on their severities into six AQI stages. The efficiency of the proposed ACBiGRU-DAO approach is examined using diverse evaluation indicators namely Accuracy, Maximum Prediction Error (MPE), Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC). The simulation result inherits that the proposed ACBiGRU-DAO approach achieves a greater percentage of accuracy of about 95.34% than other compared methods.
Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate air pollution. The air quality prediction model triggers an alarm when the quality of air changes to hazardous or when the pollutant concentration surpasses the defined limit. Accurate air quality assessment becomes an indispensable step in many urban and industrial areas to monitor and preserve the quality of air. To accomplish this goal, this paper proposes a novel Attention Convolutional Bidirectional Gated Recurrent Unit based Dynamic Arithmetic Optimization (ACBiGRU-DAO) approach. The Attention Convolutional Bidirectional Gated Recurrent Unit (ACBiGRU) model is determined in which the fine-tuning parameters are used to enhance the proposed method by Dynamic Arithmetic Optimization (DAO) algorithm. The air quality data of India was acquired from the Kaggle website. From the dataset, the most-influencing features such as Air Quality Index (AQI), particulate matter namely PM2.5 and PM10, carbon monoxide (CO) concentration, nitrogen dioxide (NO2) concentration, sulfur dioxide (SO2) concentration, and ozone (O3) concentration are taken as input data. Initially, they are preprocessed through two different pipelines namely imputation of missing values and data transformation. Finally, the proposed ACBiGRU-DAO approach predicts air quality and classifies based on their severities into six AQI stages. The efficiency of the proposed ACBiGRU-DAO approach is examined using diverse evaluation indicators namely Accuracy, Maximum Prediction Error (MPE), Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC). The simulation result inherits that the proposed ACBiGRU-DAO approach achieves a greater percentage of accuracy of about 95.34% than other compared methods.
Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate air pollution. The air quality prediction model triggers an alarm when the quality of air changes to hazardous or when the pollutant concentration surpasses the defined limit. Accurate air quality assessment becomes an indispensable step in many urban and industrial areas to monitor and preserve the quality of air. To accomplish this goal, this paper proposes a novel Attention Convolutional Bidirectional Gated Recurrent Unit based Dynamic Arithmetic Optimization (ACBiGRU-DAO) approach. The Attention Convolutional Bidirectional Gated Recurrent Unit (ACBiGRU) model is determined in which the fine-tuning parameters are used to enhance the proposed method by Dynamic Arithmetic Optimization (DAO) algorithm. The air quality data of India was acquired from the Kaggle website. From the dataset, the most-influencing features such as Air Quality Index (AQI), particulate matter namely PM and PM , carbon monoxide (CO) concentration, nitrogen dioxide (NO ) concentration, sulfur dioxide (SO ) concentration, and ozone (O ) concentration are taken as input data. Initially, they are preprocessed through two different pipelines namely imputation of missing values and data transformation. Finally, the proposed ACBiGRU-DAO approach predicts air quality and classifies based on their severities into six AQI stages. The efficiency of the proposed ACBiGRU-DAO approach is examined using diverse evaluation indicators namely Accuracy, Maximum Prediction Error (MPE), Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC). The simulation result inherits that the proposed ACBiGRU-DAO approach achieves a greater percentage of accuracy of about 95.34% than other compared methods.
Author Thiagarajan, Revathi
Panneerselvam, Vinoth
Author_xml – sequence: 1
  givenname: Vinoth
  surname: Panneerselvam
  fullname: Panneerselvam, Vinoth
  email: vinoth.ttk@gmail.com, vinoth@mepcoeng.ac.in
  organization: Department of Computer Science and Engineering, Mepco Schlenk Engineering College
– sequence: 2
  givenname: Revathi
  surname: Thiagarajan
  fullname: Thiagarajan, Revathi
  organization: Department of Information Technology, Mepco Schlenk Engineering College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37410321$$D View this record in MEDLINE/PubMed
BookMark eNqFkcuOFCEYhYkZ41z0BVwYEjezQbkVBe5qerQ1maR1Yq8JRVHKpIpqgTJpn8DHlr54ySzGFQfynQP85xychCk4AJ4T_IpgXL9OhLBKIEwZohJTifgjcEYE4ajmSp38o0_BeUp3GFOsaP0EnLKaE8woOQM_m8WVX96u0XWzegObnF3IfgpwMYXv0zDvtBngle98dPa4W5rsOnjr7BxjweE6-Ixak8rh9TaY0VvYRJ-_ji4XudpkP_ofZh_bTxE2PsJPsxl83sKP0XV-n_sUPO7NkNyz43oB1u_efl68Rzer5YdFc4MsxzIjJZ0VRGDRcSskUxT3kisua1W-Q4UVwpietla2tBe2NzXtXMcJNaxvu8oRdgEuD7mbOH2bXcp69Mm6YTDBTXPSjFSM1KyS8r8olYwpJSRhBX15D72b5liGtaN4TSpFiCrUiyM1t6Pr9Cb60cSt_l1HAegBsHFKKbr-D0Kw3nWuD53r0rned655Mcl7Juvzftw5Gj88bGUHayr3hC8u_n32A65fFg2_1g
CitedBy_id crossref_primary_10_1007_s11270_024_07378_w
crossref_primary_10_1007_s00500_024_09633_y
crossref_primary_10_1108_SASBE_10_2024_0428
crossref_primary_10_1007_s11356_024_34623_w
crossref_primary_10_3390_w16233429
Cites_doi 10.1007/s10489-020-02054-y
10.1109/ACCESS.2019.2897754
10.1109/ACCESS.2019.2941732
10.3390/toxics11010051
10.1007/s10098-019-01709-w
10.1007/s11356-021-12657-8
10.3390/app10238400
10.1016/j.jclepro.2020.123231
10.1016/j.neucom.2018.06.049
10.4209/aaqr.2020.03.0097
10.1109/TII.2021.3065425
10.3390/su14042068
10.3390/bdcc2010005
10.1007/s11269-014-0802-0
10.1016/j.asoc.2020.106957
10.1080/10962247.2018.1459956
10.1016/j.scs.2020.102567
10.1016/j.jclepro.2018.10.129
10.3390/atmos13081221
10.1007/s11356-020-11930-6
10.1186/s40537-021-00548-1
10.4209/aaqr.210270
10.1007/s13369-020-05109-x
10.1007/s11356-022-23813-z
10.1016/j.asoc.2019.105898
10.1109/TCYB.2019.2945999
10.1109/ACCESS.2022.3146374
10.1016/j.atmosenv.2019.116885
10.1016/j.scitotenv.2019.135771
10.1155/2021/6630944
10.1007/s12652-019-01344-9
10.1109/INDICON49873.2020.9342529
10.3389/feart.2022.884500
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-023-28028-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (subscription)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Database
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
ProQuest Business Collection (Alumni Edition)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
Mathematics
EISSN 1614-7499
EndPage 86820
ExternalDocumentID 37410321
10_1007_s11356_023_28028_4
Genre Journal Article
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
ADHKG
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c408t-98ec61606d4c683920f849487932126c66aaf2bc8b2f6cfa72ded412a3fbd5e13
IEDL.DBID BENPR
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001024895600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1614-7499
0944-1344
IngestDate Thu Oct 02 05:59:50 EDT 2025
Sun Nov 09 10:05:06 EST 2025
Tue Dec 02 15:58:59 EST 2025
Thu Apr 03 07:06:19 EDT 2025
Tue Nov 18 22:07:51 EST 2025
Sat Nov 29 05:38:52 EST 2025
Fri Feb 21 02:42:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords Air Quality
Accuracy
Dynamic Arithmetic Optimization Algorithm
Prediction
Attention Convolutional Bidirectional Gated Recurrent Unit
Language English
License 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-98ec61606d4c683920f849487932126c66aaf2bc8b2f6cfa72ded412a3fbd5e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 37410321
PQID 2847159119
PQPubID 54208
PageCount 17
ParticipantIDs proquest_miscellaneous_3153173588
proquest_miscellaneous_2833996813
proquest_journals_2847159119
pubmed_primary_37410321
crossref_primary_10_1007_s11356_023_28028_4
crossref_citationtrail_10_1007_s11356_023_28028_4
springer_journals_10_1007_s11356_023_28028_4
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Liu, Yan, Duan, Chen (CR19) 2021; 102
Zhang, Zeng, Yan (CR31) 2021; 28
Ma, Li, Cheng, Ding, Lin, Xu (CR22) 2020; 705
Jin, Zeng, Yan, Ji (CR14) 2021; 17
Mao, Wang, Jiao, Zhao, Liu (CR24) 2021; 65
Zhang, Wang, Gao, Ma, Zhao, Zhang, Wang, Huang (CR29) 2019; 7
Khodadadi, Snasel, Mirjalili (CR15) 2022; 10
Dairi, Harrou, Sun, Khadraoui (CR3) 2020; 10
CR13
Guo, He, Wang (CR9) 2023; 11
CR34
Guo, He (CR6) 2021; 28
Zhang, Thé, Xie, Yu (CR30) 2020; 277
Xu, Yoneda (CR28) 2019; 51
Ge, Wu, Zeng, Chang, Wang, Li (CR5) 2021; 51
Guo, Wang, He, Li, Meng, Hou, Yang (CR8) 2021; 21
Guo, He, Wang (CR10) 2023; 30
Guo, He, Li, Li, Meng, Hou, Liu, Chen (CR7) 2020; 20
Lin, Lee, Ouyang, Wu (CR18) 2020; 86
Maleki, Sorooshian, Goudarzi, Baboli, Tahmasebi Birgani, Rahmati (CR23) 2019; 21
Kristiani, Lin, Lin, Chuang, Huang, Yang (CR16) 2022; 14
Ma, Cheng, Lin, Tan, Zhang (CR21) 2019; 214
He, Guo, Wang, Li (CR12) 2022; 13
Freeman, Taylor, Gharabaghi, Thé (CR4) 2018; 68
Zhu, Cai, Yang, Zhou (CR33) 2018; 2
CR26
CR25
Wang, Song (CR27) 2018; 314
He, Zhang, Guo, Zhao (CR11) 2014; 28
CR20
Li, Wang, Li, Lu (CR17) 2019; 208
Bekkar, Hssina, Douzi, Douzi (CR1) 2021; 8
Zhao, Huang, He, He, Ren (CR32) 2019; 7
Benhaddi, Ouarzazi (CR2) 2021; 46
W Mao (28028_CR24) 2021; 65
E Kristiani (28028_CR16) 2022; 14
Z He (28028_CR12) 2022; 13
Y Zhang (28028_CR29) 2019; 7
K Zhang (28028_CR30) 2020; 277
28028_CR26
Z He (28028_CR11) 2014; 28
28028_CR25
J Ma (28028_CR22) 2020; 705
G Zhao (28028_CR32) 2019; 7
Q Guo (28028_CR9) 2023; 11
28028_CR34
A Dairi (28028_CR3) 2020; 10
N Jin (28028_CR14) 2021; 17
H Maleki (28028_CR23) 2019; 21
L Ge (28028_CR5) 2021; 51
D Zhu (28028_CR33) 2018; 2
H Li (28028_CR17) 2019; 208
N Khodadadi (28028_CR15) 2022; 10
Z Zhang (28028_CR31) 2021; 28
A Bekkar (28028_CR1) 2021; 8
Q Guo (28028_CR7) 2020; 20
28028_CR13
Q Guo (28028_CR10) 2023; 30
J Ma (28028_CR21) 2019; 214
BS Freeman (28028_CR4) 2018; 68
X Xu (28028_CR28) 2019; 51
M Benhaddi (28028_CR2) 2021; 46
28028_CR20
Q Guo (28028_CR8) 2021; 21
J Wang (28028_CR27) 2018; 314
Q Guo (28028_CR6) 2021; 28
YC Lin (28028_CR18) 2020; 86
H Liu (28028_CR19) 2021; 102
References_xml – volume: 51
  start-page: 3491
  issue: 6
  year: 2021
  end-page: 3505
  ident: CR5
  article-title: Multi-scale spatiotemporal graph convolution network for air quality prediction
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-02054-y
– volume: 7
  start-page: 30732
  year: 2019
  end-page: 30743
  ident: CR29
  article-title: A predictive data feature exploration-based air quality prediction approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897754
– volume: 7
  start-page: 134903
  year: 2019
  end-page: 134919
  ident: CR32
  article-title: Regional spatiotemporal collaborative prediction model for air quality
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2941732
– volume: 11
  start-page: 51
  issue: 1
  year: 2023
  ident: CR9
  article-title: Predicting of daily PM2.5 concentration employing wavelet artificial neural networks based on meteorological elements in Shanghai, China
  publication-title: Toxics
  doi: 10.3390/toxics11010051
– volume: 21
  start-page: 1341
  issue: 6
  year: 2019
  end-page: 1352
  ident: CR23
  article-title: Air pollution prediction by using an artificial neural network model
  publication-title: Clean Technol Environ Policy
  doi: 10.1007/s10098-019-01709-w
– volume: 28
  start-page: 39409
  issue: 29
  year: 2021
  end-page: 39422
  ident: CR31
  article-title: A hybrid deep learning technology for PM2.5 air quality forecasting
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-12657-8
– volume: 10
  start-page: 8400
  issue: 23
  year: 2020
  ident: CR3
  article-title: Short-term forecasting of photovoltaic solar power production using variational auto-encoder driven deep learning approach
  publication-title: Appl Sci
  doi: 10.3390/app10238400
– volume: 277
  start-page: 123231
  year: 2020
  ident: CR30
  article-title: Multi-step ahead forecasting of regional air quality using spatial-temporal deep neural networks: a case study of Huaihai Economic Zone
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.123231
– volume: 314
  start-page: 198
  year: 2018
  end-page: 206
  ident: CR27
  article-title: A deep spatial-temporal ensemble model for air quality prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.049
– volume: 20
  start-page: 1429
  issue: 6
  year: 2020
  end-page: 1439
  ident: CR7
  article-title: Air pollution forecasting using artificial and wavelet neural networks with meteorological conditions
  publication-title: Aerosol Air Qual Res
  doi: 10.4209/aaqr.2020.03.0097
– volume: 17
  start-page: 8514
  issue: 12
  year: 2021
  end-page: 8522
  ident: CR14
  article-title: Multivariate air quality forecasting with nested long short term memory neural network
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2021.3065425
– volume: 14
  start-page: 2068
  issue: 4
  year: 2022
  ident: CR16
  article-title: Short-term prediction of PM2. 5 using LSTM deep learning methods
  publication-title: Sustainability
  doi: 10.3390/su14042068
– volume: 2
  start-page: 5
  issue: 1
  year: 2018
  ident: CR33
  article-title: A machine learning approach for air quality prediction: Model regularization and optimization
  publication-title: Big Data Cogn Comput
  doi: 10.3390/bdcc2010005
– volume: 28
  start-page: 5297
  year: 2014
  end-page: 5317
  ident: CR11
  article-title: Comparative study of artificial neural networks and wavelet artificial neural networks for groundwater depth data forecasting with various curve fractal dimensions
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0802-0
– volume: 102
  start-page: 106957
  year: 2021
  ident: CR19
  article-title: Intelligent modeling strategies for forecasting air quality time series: A review
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106957
– ident: CR25
– volume: 68
  start-page: 866
  issue: 8
  year: 2018
  end-page: 886
  ident: CR4
  article-title: Forecasting air quality time series using deep learning
  publication-title: J Air Waste Manag Assoc
  doi: 10.1080/10962247.2018.1459956
– volume: 65
  start-page: 102567
  year: 2021
  ident: CR24
  article-title: Modeling air quality prediction using a deep learning approach: Method optimization and evaluation
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2020.102567
– volume: 208
  start-page: 1365
  year: 2019
  end-page: 1383
  ident: CR17
  article-title: Novel analysis–forecast system based on multi-objective optimization for air quality index
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.10.129
– volume: 13
  start-page: 1221
  issue: 8
  year: 2022
  ident: CR12
  article-title: Prediction of monthly PM2.5 concentration in Liaocheng in China employing artificial neural network
  publication-title: Atmosphere
  doi: 10.3390/atmos13081221
– volume: 28
  start-page: 11672
  year: 2021
  end-page: 11682
  ident: CR6
  article-title: Prediction of the confirmed cases and deaths of global COVID-19 using artificial intelligence
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-11930-6
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  end-page: 21
  ident: CR1
  article-title: Air-pollution prediction in smart city, deep learning approach
  publication-title: J Big Data
  doi: 10.1186/s40537-021-00548-1
– volume: 21
  start-page: 210270
  issue: 12
  year: 2021
  ident: CR8
  article-title: Changes in air quality from the COVID to the post-COVID era in the beijing-tianjin-tangshan region in China
  publication-title: Aerosol Air Qual Res
  doi: 10.4209/aaqr.210270
– volume: 46
  start-page: 3423
  issue: 4
  year: 2021
  end-page: 3442
  ident: CR2
  article-title: Multivariate time series forecasting with dilated residual convolutional neural networks for urban air quality prediction
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-020-05109-x
– ident: CR13
– volume: 30
  start-page: 22319
  issue: 9
  year: 2023
  end-page: 22329
  ident: CR10
  article-title: Long-term projection of future climate change over the twenty-first century in the Sahara region in Africa under four Shared Socio-Economic Pathways scenarios
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-23813-z
– ident: CR34
– volume: 86
  start-page: 105898
  year: 2020
  ident: CR18
  article-title: Air quality prediction by neuro-fuzzy modeling approach
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105898
– volume: 51
  start-page: 2577
  issue: 5
  year: 2019
  end-page: 2586
  ident: CR28
  article-title: Multitask air-quality prediction based on LSTM-autoencoder model
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2945999
– volume: 10
  start-page: 16188
  year: 2022
  end-page: 16208
  ident: CR15
  article-title: Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3146374
– volume: 214
  start-page: 116885
  year: 2019
  ident: CR21
  article-title: Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2019.116885
– ident: CR26
– volume: 705
  start-page: 135771
  year: 2020
  ident: CR22
  article-title: Air quality prediction at new stations using spatially transferred bi-directional long short-term memory network
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.135771
– ident: CR20
– volume: 2
  start-page: 5
  issue: 1
  year: 2018
  ident: 28028_CR33
  publication-title: Big Data Cogn Comput
  doi: 10.3390/bdcc2010005
– ident: 28028_CR34
  doi: 10.1155/2021/6630944
– volume: 51
  start-page: 3491
  issue: 6
  year: 2021
  ident: 28028_CR5
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-02054-y
– volume: 7
  start-page: 134903
  year: 2019
  ident: 28028_CR32
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2941732
– volume: 7
  start-page: 30732
  year: 2019
  ident: 28028_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897754
– volume: 86
  start-page: 105898
  year: 2020
  ident: 28028_CR18
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105898
– volume: 30
  start-page: 22319
  issue: 9
  year: 2023
  ident: 28028_CR10
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-23813-z
– volume: 28
  start-page: 5297
  year: 2014
  ident: 28028_CR11
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0802-0
– volume: 208
  start-page: 1365
  year: 2019
  ident: 28028_CR17
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.10.129
– ident: 28028_CR26
– volume: 277
  start-page: 123231
  year: 2020
  ident: 28028_CR30
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.123231
– volume: 10
  start-page: 8400
  issue: 23
  year: 2020
  ident: 28028_CR3
  publication-title: Appl Sci
  doi: 10.3390/app10238400
– volume: 314
  start-page: 198
  year: 2018
  ident: 28028_CR27
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.049
– volume: 21
  start-page: 210270
  issue: 12
  year: 2021
  ident: 28028_CR8
  publication-title: Aerosol Air Qual Res
  doi: 10.4209/aaqr.210270
– ident: 28028_CR20
  doi: 10.1007/s12652-019-01344-9
– volume: 28
  start-page: 11672
  year: 2021
  ident: 28028_CR6
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-11930-6
– volume: 214
  start-page: 116885
  year: 2019
  ident: 28028_CR21
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2019.116885
– volume: 21
  start-page: 1341
  issue: 6
  year: 2019
  ident: 28028_CR23
  publication-title: Clean Technol Environ Policy
  doi: 10.1007/s10098-019-01709-w
– volume: 28
  start-page: 39409
  issue: 29
  year: 2021
  ident: 28028_CR31
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-12657-8
– volume: 51
  start-page: 2577
  issue: 5
  year: 2019
  ident: 28028_CR28
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2945999
– ident: 28028_CR25
  doi: 10.1109/INDICON49873.2020.9342529
– volume: 13
  start-page: 1221
  issue: 8
  year: 2022
  ident: 28028_CR12
  publication-title: Atmosphere
  doi: 10.3390/atmos13081221
– volume: 20
  start-page: 1429
  issue: 6
  year: 2020
  ident: 28028_CR7
  publication-title: Aerosol Air Qual Res
  doi: 10.4209/aaqr.2020.03.0097
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  ident: 28028_CR1
  publication-title: J Big Data
  doi: 10.1186/s40537-021-00548-1
– volume: 11
  start-page: 51
  issue: 1
  year: 2023
  ident: 28028_CR9
  publication-title: Toxics
  doi: 10.3390/toxics11010051
– volume: 102
  start-page: 106957
  year: 2021
  ident: 28028_CR19
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106957
– volume: 68
  start-page: 866
  issue: 8
  year: 2018
  ident: 28028_CR4
  publication-title: J Air Waste Manag Assoc
  doi: 10.1080/10962247.2018.1459956
– volume: 14
  start-page: 2068
  issue: 4
  year: 2022
  ident: 28028_CR16
  publication-title: Sustainability
  doi: 10.3390/su14042068
– volume: 17
  start-page: 8514
  issue: 12
  year: 2021
  ident: 28028_CR14
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2021.3065425
– ident: 28028_CR13
  doi: 10.3389/feart.2022.884500
– volume: 705
  start-page: 135771
  year: 2020
  ident: 28028_CR22
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.135771
– volume: 65
  start-page: 102567
  year: 2021
  ident: 28028_CR24
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2020.102567
– volume: 10
  start-page: 16188
  year: 2022
  ident: 28028_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3146374
– volume: 46
  start-page: 3423
  issue: 4
  year: 2021
  ident: 28028_CR2
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-020-05109-x
SSID ssj0020927
Score 2.3979068
Snippet Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 86804
SubjectTerms Accuracy
air
Air Pollutants - analysis
Air pollution
Air Pollution - analysis
Air quality
Air quality assessments
Algorithms
Aquatic Pollution
Arithmetic
arithmetics
Atmospheric Protection/Air Quality Control/Air Pollution
Carbon monoxide
Carbon Monoxide - analysis
Correlation coefficient
Correlation coefficients
Data acquisition
data collection
Developing countries
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental degradation
Environmental Health
Environmental science
India
Industrial areas
Internet
LDCs
Mathematics
Mean square errors
Nitrogen dioxide
Nitrogen Dioxide - analysis
Optimization
Outdoor air quality
Ozone
Particulate emissions
Particulate matter
Particulate Matter - analysis
particulates
pollutants
prediction
Prediction models
Quality assessment
Quality control
Research Article
Root-mean-square errors
Sulfur
Sulfur Dioxide
Waste Water Technology
Water Management
Water Pollution Control
SummonAdditionalLinks – databaseName: Springer Nature - Connect here FIRST to enable access
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VlgMXoEAhUCpX4gaWNvbGdril29eprQpFvUVex1Yj0SzaTSvxD_jZzCTOrlApUjlGHisje8bf58fMAHywImiVSc-lEZZTdhT0uaC401KFUOG0ONMVm9AnJ-byMj-LQWGL4bX7cCXZrdSrYLdUZvRgVnJhujOhR7CRUbYZ2qN_-bbcZo1yoWN4zN_7_QlBd3jlnTvRDmoOn_2fks_haaSWrOhtYRPWfPMCtg5WkWzYGF158RJ-FZO9-uj8gu8Xp59Z0bb9u0c2mTW30RxRfq_uMa__oqO2ip3TET0ldWJEWDnhYMX2-8r2-Pe6vbqmyEh2iqvRdQzzZMiNWVHPWZ-z4yc7m9MNETW9govDg6-TYx7LMnA3HpmW58Y7leLGpxo7RfxqFAwlmUFPRxxUTilrg5g6MxVBuWC1qHw1ToWVYVplPpVbsN7MGv8GWG6s09rmRhvkZQiTU6k9cv4qt0JYbxNIh5kqXcxZTqUzvperbMs04CUOeNkNeDlO4OOyz48-Y8c_pbcHAyij9y7KDrIzhIE8gd1lM_odXabYxs9uSEYit1MmlffLSISTVMvMmARe98a1VEkilRvhgCXwabCklQL36_v2YeLv4IkgY-xeLG7Deju_8e_hsbtt68V8p_Ob3-bEEvk
  priority: 102
  providerName: Springer Nature
Title ACBiGRU-DAO: Attention Convolutional Bidirectional Gated Recurrent Unit-based Dynamic Arithmetic Optimization for Air Quality Prediction
URI https://link.springer.com/article/10.1007/s11356-023-28028-4
https://www.ncbi.nlm.nih.gov/pubmed/37410321
https://www.proquest.com/docview/2847159119
https://www.proquest.com/docview/2833996813
https://www.proquest.com/docview/3153173588
Volume 30
WOSCitedRecordID wos001024895600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM global
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: M0C
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: PATMY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health Medical collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 7X7
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 7WY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: M2P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw0GIbD_DAx2CsMCYj8QYWiZ3YDi8ozTp4WVcVBuUpcp1ERKLp1mST9g_42dwlbio0bS-8nBTZlk65T9_57gh5a3ihZChyJjQ3DLujgMwVklklZFFkQBar22ETajzWs1k0cQG32j2rXOvEVlFnS4sx8g-tGg1BNKNP5xcMp0ZhdtWN0NgiO9ipDPh8ZzgaT6b9lcuLuqGtURAwXwSBK5vpiud8EeIDXMG4bmNM_5qmG_7mjVxpa4KOH_8v8k_II-d80rjjlqfkXl7tkr3RptYNFp2w17vk4Unf0rV-Rv7EybD8PD1jR_HpRxo3TfdOkibL6sqxL5welp2N7L4wNJfRKYb0sQkURQeXod3M6NF1ZRalBVzK5tcCKynpKWivhSsLpeBL07hc0a7HxzWdrDCjhEvPydnx6FvyhbkxDswGnm5YpHMrfbgoZYGV6I95hcamNKAZwG5KK6UxBZ9bPeeFtIVRPMuzwOdGFPMszH2xR7arZZXvExppY5UykVYa_Dgwq3OhcrgjZJHh3ORmQPw1BVPrepzjqI3f6aY7M1I9BaqnLdXTYEDe9WfOuw4fd-4-WFM4ddJepxvyDsibfhnkFJMvpsqXl7hHgC8otS9u3yPA_PhKhFoPyIuO6XqUBLh-HvywAXm_5sINArfj-_JufF-RBxwloH3ReEC2m9Vl_prct1dNWa8OyZb68RPhTLVQA9SJf-ikDL5OvAQhnwCcfv3-F03FK08
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fT9RAEJ8gmqgP_kHBU9Q10SfZ2O722q2JMeUOhMAdhEDCW93bbkMTr4fXgrlv4KfxMzrTP3cxBN548LHZbTPZ_mb2Nzs7MwDvtUgDvystl0poTtVRUOdSn5tA-mma4G8xqmo2EQyH6vQ0PFyCP20uDF2rbG1iZaiTiaEz8k-VGe2iaoZfz39y6hpF0dW2hUYNiz07-4UuW_Flt4__94MQ21vHvR3edBXgxnNUyUNlje8ib0884xM9cFJFNVIQqGjGfeP7WqdiZNRIpL5JdSASm3iu0DIdJV3rSvzuHbjroeNFejVwenMHzwnrFrGh53FXel6TpFOn6rmyS9d9JReqOtH6dyO8wm6vRGarDW_78f-2VE_gUUOtWVTrwlNYsvkKrG4tMvlwsDFlxQo8HMwL1hbP4HfU28y-HZ3wfnTwmUVlWd8CZb1JftkoJ769mdUMoH6ig8eEHVHAgkpcMaLvnFhBwvqzXI8zg7Jk5dmY8kTZAdrmcZP0ytBTYFE2ZXUFkxk7nFK8jIaew8mtrNEqLOeT3L4AFiptgkCHKlDIUpE0jGRg0QNKQi2EtroDbouY2DQV3KmRyI94UXuaUBYjyuIKZbHXgY_zd87r-iU3zl5vERU3tqyIF3DqwLv5MFohCi3p3E4uaI5EpusrV14_R-Lm6gayq1QH1mqQz0WSSGwdXLAObLSoXwhwvbwvb5b3LdzfOR7sx_u7w71X8ECQ9lV3N9dhuZxe2Ndwz1yWWTF9U-kxg--3rQ1_AXCMgAM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAceBQKCwWMBCewurHzcJAQSne7UBW2q4pKvQWv44hIbLZs0qL9B_wmfh0zea1Q1d564BjZiUbON-PPnhfAKy3SwPek5VIJzak6Cupc6nMTSD9NE_wtRlXNJoLxWB0fh5M1-NPmwlBYZWsTK0OdzA3dkW9XZtRD1Qy30yYsYjIcfTj5yamDFHla23YaNUT27fIXHt-K93tD_NevhRjtfh184k2HAW7cvip5qKzxHeTwiWt8ogr9VFG9FAQtmnTf-L7WqZgaNRWpb1IdiMQmriO0TKeJZx2J370G1wOqikVhg2LSHfb6Yd0uNnRd7kjXbRJ26rQ9R3oU-iu5UNXt1r-b4jmme85LW21-o7v_87LdgzsN5WZRrSP3Yc3mG7C5u8rww8HGxBUbcPtLV8i2eAC_o8FO9vHwiA-jg3csKss6OpQN5vlZo7T49k5WM4P6iS4kE3ZIjgwqfcWI1nNiCwkbLnM9ywzKkpXfZ5Q_yg7QZs-aZFiGJwgWZQtWVzZZssmC_Gg09BCOrmSNNmE9n-f2MbBQaRMEOlSBQvaKZGIqA4snoyTUQmire-C06IlNU9mdGoz8iFc1qQlxMSIurhAXuz14071zUtc1uXT2VouuuLFxRbyCVg9edsNoncjlpHM7P6U5Ehmwrxx58RyJm64TSE-pHjyqAd-JJJHw9nHBevC21YCVABfL--RyeV_ATVSC-PPeeP8p3BKkiFVI5xasl4tT-wxumLMyKxbPK5Vm8O2qleEv8sGI7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ACBiGRU-DAO%3A+Attention+Convolutional+Bidirectional+Gated+Recurrent+Unit-based+Dynamic+Arithmetic+Optimization+for+Air+Quality+Prediction&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Panneerselvam%2C+Vinoth&rft.au=Thiagarajan%2C+Revathi&rft.date=2023-08-01&rft.eissn=1614-7499&rft.volume=30&rft.issue=37&rft.spage=86804&rft_id=info:doi/10.1007%2Fs11356-023-28028-4&rft_id=info%3Apmid%2F37410321&rft.externalDocID=37410321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon