ACBiGRU-DAO: Attention Convolutional Bidirectional Gated Recurrent Unit-based Dynamic Arithmetic Optimization for Air Quality Prediction
Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate air pollution. The air quality prediction model trig...
Uloženo v:
| Vydáno v: | Environmental science and pollution research international Ročník 30; číslo 37; s. 86804 - 86820 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 1614-7499, 0944-1344, 1614-7499 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate air pollution. The air quality prediction model triggers an alarm when the quality of air changes to hazardous or when the pollutant concentration surpasses the defined limit. Accurate air quality assessment becomes an indispensable step in many urban and industrial areas to monitor and preserve the quality of air. To accomplish this goal, this paper proposes a novel Attention Convolutional Bidirectional Gated Recurrent Unit based Dynamic Arithmetic Optimization (ACBiGRU-DAO) approach. The Attention Convolutional Bidirectional Gated Recurrent Unit (ACBiGRU) model is determined in which the fine-tuning parameters are used to enhance the proposed method by Dynamic Arithmetic Optimization (DAO) algorithm. The air quality data of India was acquired from the Kaggle website. From the dataset, the most-influencing features such as Air Quality Index (AQI), particulate matter namely PM
2.5
and PM
10
, carbon monoxide (CO) concentration, nitrogen dioxide (NO
2
) concentration, sulfur dioxide (SO
2
) concentration, and ozone (O
3
) concentration are taken as input data. Initially, they are preprocessed through two different pipelines namely imputation of missing values and data transformation. Finally, the proposed ACBiGRU-DAO approach predicts air quality and classifies based on their severities into six AQI stages. The efficiency of the proposed ACBiGRU-DAO approach is examined using diverse evaluation indicators namely Accuracy, Maximum Prediction Error (MPE), Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC). The simulation result inherits that the proposed ACBiGRU-DAO approach achieves a greater percentage of accuracy of about 95.34% than other compared methods. |
|---|---|
| AbstractList | Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate air pollution. The air quality prediction model triggers an alarm when the quality of air changes to hazardous or when the pollutant concentration surpasses the defined limit. Accurate air quality assessment becomes an indispensable step in many urban and industrial areas to monitor and preserve the quality of air. To accomplish this goal, this paper proposes a novel Attention Convolutional Bidirectional Gated Recurrent Unit based Dynamic Arithmetic Optimization (ACBiGRU-DAO) approach. The Attention Convolutional Bidirectional Gated Recurrent Unit (ACBiGRU) model is determined in which the fine-tuning parameters are used to enhance the proposed method by Dynamic Arithmetic Optimization (DAO) algorithm. The air quality data of India was acquired from the Kaggle website. From the dataset, the most-influencing features such as Air Quality Index (AQI), particulate matter namely PM
2.5
and PM
10
, carbon monoxide (CO) concentration, nitrogen dioxide (NO
2
) concentration, sulfur dioxide (SO
2
) concentration, and ozone (O
3
) concentration are taken as input data. Initially, they are preprocessed through two different pipelines namely imputation of missing values and data transformation. Finally, the proposed ACBiGRU-DAO approach predicts air quality and classifies based on their severities into six AQI stages. The efficiency of the proposed ACBiGRU-DAO approach is examined using diverse evaluation indicators namely Accuracy, Maximum Prediction Error (MPE), Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC). The simulation result inherits that the proposed ACBiGRU-DAO approach achieves a greater percentage of accuracy of about 95.34% than other compared methods. Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate air pollution. The air quality prediction model triggers an alarm when the quality of air changes to hazardous or when the pollutant concentration surpasses the defined limit. Accurate air quality assessment becomes an indispensable step in many urban and industrial areas to monitor and preserve the quality of air. To accomplish this goal, this paper proposes a novel Attention Convolutional Bidirectional Gated Recurrent Unit based Dynamic Arithmetic Optimization (ACBiGRU-DAO) approach. The Attention Convolutional Bidirectional Gated Recurrent Unit (ACBiGRU) model is determined in which the fine-tuning parameters are used to enhance the proposed method by Dynamic Arithmetic Optimization (DAO) algorithm. The air quality data of India was acquired from the Kaggle website. From the dataset, the most-influencing features such as Air Quality Index (AQI), particulate matter namely PM₂.₅ and PM₁₀, carbon monoxide (CO) concentration, nitrogen dioxide (NO₂) concentration, sulfur dioxide (SO₂) concentration, and ozone (O₃) concentration are taken as input data. Initially, they are preprocessed through two different pipelines namely imputation of missing values and data transformation. Finally, the proposed ACBiGRU-DAO approach predicts air quality and classifies based on their severities into six AQI stages. The efficiency of the proposed ACBiGRU-DAO approach is examined using diverse evaluation indicators namely Accuracy, Maximum Prediction Error (MPE), Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC). The simulation result inherits that the proposed ACBiGRU-DAO approach achieves a greater percentage of accuracy of about 95.34% than other compared methods. Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate air pollution. The air quality prediction model triggers an alarm when the quality of air changes to hazardous or when the pollutant concentration surpasses the defined limit. Accurate air quality assessment becomes an indispensable step in many urban and industrial areas to monitor and preserve the quality of air. To accomplish this goal, this paper proposes a novel Attention Convolutional Bidirectional Gated Recurrent Unit based Dynamic Arithmetic Optimization (ACBiGRU-DAO) approach. The Attention Convolutional Bidirectional Gated Recurrent Unit (ACBiGRU) model is determined in which the fine-tuning parameters are used to enhance the proposed method by Dynamic Arithmetic Optimization (DAO) algorithm. The air quality data of India was acquired from the Kaggle website. From the dataset, the most-influencing features such as Air Quality Index (AQI), particulate matter namely PM2.5 and PM10, carbon monoxide (CO) concentration, nitrogen dioxide (NO2) concentration, sulfur dioxide (SO2) concentration, and ozone (O3) concentration are taken as input data. Initially, they are preprocessed through two different pipelines namely imputation of missing values and data transformation. Finally, the proposed ACBiGRU-DAO approach predicts air quality and classifies based on their severities into six AQI stages. The efficiency of the proposed ACBiGRU-DAO approach is examined using diverse evaluation indicators namely Accuracy, Maximum Prediction Error (MPE), Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC). The simulation result inherits that the proposed ACBiGRU-DAO approach achieves a greater percentage of accuracy of about 95.34% than other compared methods.Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate air pollution. The air quality prediction model triggers an alarm when the quality of air changes to hazardous or when the pollutant concentration surpasses the defined limit. Accurate air quality assessment becomes an indispensable step in many urban and industrial areas to monitor and preserve the quality of air. To accomplish this goal, this paper proposes a novel Attention Convolutional Bidirectional Gated Recurrent Unit based Dynamic Arithmetic Optimization (ACBiGRU-DAO) approach. The Attention Convolutional Bidirectional Gated Recurrent Unit (ACBiGRU) model is determined in which the fine-tuning parameters are used to enhance the proposed method by Dynamic Arithmetic Optimization (DAO) algorithm. The air quality data of India was acquired from the Kaggle website. From the dataset, the most-influencing features such as Air Quality Index (AQI), particulate matter namely PM2.5 and PM10, carbon monoxide (CO) concentration, nitrogen dioxide (NO2) concentration, sulfur dioxide (SO2) concentration, and ozone (O3) concentration are taken as input data. Initially, they are preprocessed through two different pipelines namely imputation of missing values and data transformation. Finally, the proposed ACBiGRU-DAO approach predicts air quality and classifies based on their severities into six AQI stages. The efficiency of the proposed ACBiGRU-DAO approach is examined using diverse evaluation indicators namely Accuracy, Maximum Prediction Error (MPE), Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC). The simulation result inherits that the proposed ACBiGRU-DAO approach achieves a greater percentage of accuracy of about 95.34% than other compared methods. Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate air pollution. The air quality prediction model triggers an alarm when the quality of air changes to hazardous or when the pollutant concentration surpasses the defined limit. Accurate air quality assessment becomes an indispensable step in many urban and industrial areas to monitor and preserve the quality of air. To accomplish this goal, this paper proposes a novel Attention Convolutional Bidirectional Gated Recurrent Unit based Dynamic Arithmetic Optimization (ACBiGRU-DAO) approach. The Attention Convolutional Bidirectional Gated Recurrent Unit (ACBiGRU) model is determined in which the fine-tuning parameters are used to enhance the proposed method by Dynamic Arithmetic Optimization (DAO) algorithm. The air quality data of India was acquired from the Kaggle website. From the dataset, the most-influencing features such as Air Quality Index (AQI), particulate matter namely PM2.5 and PM10, carbon monoxide (CO) concentration, nitrogen dioxide (NO2) concentration, sulfur dioxide (SO2) concentration, and ozone (O3) concentration are taken as input data. Initially, they are preprocessed through two different pipelines namely imputation of missing values and data transformation. Finally, the proposed ACBiGRU-DAO approach predicts air quality and classifies based on their severities into six AQI stages. The efficiency of the proposed ACBiGRU-DAO approach is examined using diverse evaluation indicators namely Accuracy, Maximum Prediction Error (MPE), Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC). The simulation result inherits that the proposed ACBiGRU-DAO approach achieves a greater percentage of accuracy of about 95.34% than other compared methods. Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate air pollution. The air quality prediction model triggers an alarm when the quality of air changes to hazardous or when the pollutant concentration surpasses the defined limit. Accurate air quality assessment becomes an indispensable step in many urban and industrial areas to monitor and preserve the quality of air. To accomplish this goal, this paper proposes a novel Attention Convolutional Bidirectional Gated Recurrent Unit based Dynamic Arithmetic Optimization (ACBiGRU-DAO) approach. The Attention Convolutional Bidirectional Gated Recurrent Unit (ACBiGRU) model is determined in which the fine-tuning parameters are used to enhance the proposed method by Dynamic Arithmetic Optimization (DAO) algorithm. The air quality data of India was acquired from the Kaggle website. From the dataset, the most-influencing features such as Air Quality Index (AQI), particulate matter namely PM and PM , carbon monoxide (CO) concentration, nitrogen dioxide (NO ) concentration, sulfur dioxide (SO ) concentration, and ozone (O ) concentration are taken as input data. Initially, they are preprocessed through two different pipelines namely imputation of missing values and data transformation. Finally, the proposed ACBiGRU-DAO approach predicts air quality and classifies based on their severities into six AQI stages. The efficiency of the proposed ACBiGRU-DAO approach is examined using diverse evaluation indicators namely Accuracy, Maximum Prediction Error (MPE), Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC). The simulation result inherits that the proposed ACBiGRU-DAO approach achieves a greater percentage of accuracy of about 95.34% than other compared methods. |
| Author | Thiagarajan, Revathi Panneerselvam, Vinoth |
| Author_xml | – sequence: 1 givenname: Vinoth surname: Panneerselvam fullname: Panneerselvam, Vinoth email: vinoth.ttk@gmail.com, vinoth@mepcoeng.ac.in organization: Department of Computer Science and Engineering, Mepco Schlenk Engineering College – sequence: 2 givenname: Revathi surname: Thiagarajan fullname: Thiagarajan, Revathi organization: Department of Information Technology, Mepco Schlenk Engineering College |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37410321$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcuOFCEYhYkZ41z0BVwYEjezQbkVBe5qerQ1maR1Yq8JRVHKpIpqgTJpn8DHlr54ySzGFQfynQP85xychCk4AJ4T_IpgXL9OhLBKIEwZohJTifgjcEYE4ajmSp38o0_BeUp3GFOsaP0EnLKaE8woOQM_m8WVX96u0XWzegObnF3IfgpwMYXv0zDvtBngle98dPa4W5rsOnjr7BxjweE6-Ixak8rh9TaY0VvYRJ-_ji4XudpkP_ofZh_bTxE2PsJPsxl83sKP0XV-n_sUPO7NkNyz43oB1u_efl68Rzer5YdFc4MsxzIjJZ0VRGDRcSskUxT3kisua1W-Q4UVwpietla2tBe2NzXtXMcJNaxvu8oRdgEuD7mbOH2bXcp69Mm6YTDBTXPSjFSM1KyS8r8olYwpJSRhBX15D72b5liGtaN4TSpFiCrUiyM1t6Pr9Cb60cSt_l1HAegBsHFKKbr-D0Kw3nWuD53r0rned655Mcl7Juvzftw5Gj88bGUHayr3hC8u_n32A65fFg2_1g |
| CitedBy_id | crossref_primary_10_1007_s11270_024_07378_w crossref_primary_10_1007_s00500_024_09633_y crossref_primary_10_1108_SASBE_10_2024_0428 crossref_primary_10_1007_s11356_024_34623_w crossref_primary_10_3390_w16233429 |
| Cites_doi | 10.1007/s10489-020-02054-y 10.1109/ACCESS.2019.2897754 10.1109/ACCESS.2019.2941732 10.3390/toxics11010051 10.1007/s10098-019-01709-w 10.1007/s11356-021-12657-8 10.3390/app10238400 10.1016/j.jclepro.2020.123231 10.1016/j.neucom.2018.06.049 10.4209/aaqr.2020.03.0097 10.1109/TII.2021.3065425 10.3390/su14042068 10.3390/bdcc2010005 10.1007/s11269-014-0802-0 10.1016/j.asoc.2020.106957 10.1080/10962247.2018.1459956 10.1016/j.scs.2020.102567 10.1016/j.jclepro.2018.10.129 10.3390/atmos13081221 10.1007/s11356-020-11930-6 10.1186/s40537-021-00548-1 10.4209/aaqr.210270 10.1007/s13369-020-05109-x 10.1007/s11356-022-23813-z 10.1016/j.asoc.2019.105898 10.1109/TCYB.2019.2945999 10.1109/ACCESS.2022.3146374 10.1016/j.atmosenv.2019.116885 10.1016/j.scitotenv.2019.135771 10.1155/2021/6630944 10.1007/s12652-019-01344-9 10.1109/INDICON49873.2020.9342529 10.3389/feart.2022.884500 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U 7X8 7S9 L.6 |
| DOI | 10.1007/s11356-023-28028-4 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM global Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic ProQuest Business Collection (Alumni Edition) MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences Mathematics |
| EISSN | 1614-7499 |
| EndPage | 86820 |
| ExternalDocumentID | 37410321 10_1007_s11356_023_28028_4 |
| Genre | Journal Article |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PJZUB PPXIY ADHKG CGR CUY CVF ECM EIF NPM 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK C1K FR3 K9. L.- M7N P64 PKEHL PQEST PQUKI Q9U 7X8 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c408t-98ec61606d4c683920f849487932126c66aaf2bc8b2f6cfa72ded412a3fbd5e13 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001024895600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1614-7499 0944-1344 |
| IngestDate | Thu Oct 02 05:59:50 EDT 2025 Sun Nov 09 10:05:06 EST 2025 Tue Dec 02 15:58:59 EST 2025 Thu Apr 03 07:06:19 EDT 2025 Tue Nov 18 22:07:51 EST 2025 Sat Nov 29 05:38:52 EST 2025 Fri Feb 21 02:42:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 37 |
| Keywords | Air Quality Accuracy Dynamic Arithmetic Optimization Algorithm Prediction Attention Convolutional Bidirectional Gated Recurrent Unit |
| Language | English |
| License | 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-98ec61606d4c683920f849487932126c66aaf2bc8b2f6cfa72ded412a3fbd5e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 37410321 |
| PQID | 2847159119 |
| PQPubID | 54208 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_3153173588 proquest_miscellaneous_2833996813 proquest_journals_2847159119 pubmed_primary_37410321 crossref_primary_10_1007_s11356_023_28028_4 crossref_citationtrail_10_1007_s11356_023_28028_4 springer_journals_10_1007_s11356_023_28028_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | Environmental science and pollution research international |
| PublicationTitleAbbrev | Environ Sci Pollut Res |
| PublicationTitleAlternate | Environ Sci Pollut Res Int |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Liu, Yan, Duan, Chen (CR19) 2021; 102 Zhang, Zeng, Yan (CR31) 2021; 28 Ma, Li, Cheng, Ding, Lin, Xu (CR22) 2020; 705 Jin, Zeng, Yan, Ji (CR14) 2021; 17 Mao, Wang, Jiao, Zhao, Liu (CR24) 2021; 65 Zhang, Wang, Gao, Ma, Zhao, Zhang, Wang, Huang (CR29) 2019; 7 Khodadadi, Snasel, Mirjalili (CR15) 2022; 10 Dairi, Harrou, Sun, Khadraoui (CR3) 2020; 10 CR13 Guo, He, Wang (CR9) 2023; 11 CR34 Guo, He (CR6) 2021; 28 Zhang, Thé, Xie, Yu (CR30) 2020; 277 Xu, Yoneda (CR28) 2019; 51 Ge, Wu, Zeng, Chang, Wang, Li (CR5) 2021; 51 Guo, Wang, He, Li, Meng, Hou, Yang (CR8) 2021; 21 Guo, He, Wang (CR10) 2023; 30 Guo, He, Li, Li, Meng, Hou, Liu, Chen (CR7) 2020; 20 Lin, Lee, Ouyang, Wu (CR18) 2020; 86 Maleki, Sorooshian, Goudarzi, Baboli, Tahmasebi Birgani, Rahmati (CR23) 2019; 21 Kristiani, Lin, Lin, Chuang, Huang, Yang (CR16) 2022; 14 Ma, Cheng, Lin, Tan, Zhang (CR21) 2019; 214 He, Guo, Wang, Li (CR12) 2022; 13 Freeman, Taylor, Gharabaghi, Thé (CR4) 2018; 68 Zhu, Cai, Yang, Zhou (CR33) 2018; 2 CR26 CR25 Wang, Song (CR27) 2018; 314 He, Zhang, Guo, Zhao (CR11) 2014; 28 CR20 Li, Wang, Li, Lu (CR17) 2019; 208 Bekkar, Hssina, Douzi, Douzi (CR1) 2021; 8 Zhao, Huang, He, He, Ren (CR32) 2019; 7 Benhaddi, Ouarzazi (CR2) 2021; 46 W Mao (28028_CR24) 2021; 65 E Kristiani (28028_CR16) 2022; 14 Z He (28028_CR12) 2022; 13 Y Zhang (28028_CR29) 2019; 7 K Zhang (28028_CR30) 2020; 277 28028_CR26 Z He (28028_CR11) 2014; 28 28028_CR25 J Ma (28028_CR22) 2020; 705 G Zhao (28028_CR32) 2019; 7 Q Guo (28028_CR9) 2023; 11 28028_CR34 A Dairi (28028_CR3) 2020; 10 N Jin (28028_CR14) 2021; 17 H Maleki (28028_CR23) 2019; 21 L Ge (28028_CR5) 2021; 51 D Zhu (28028_CR33) 2018; 2 H Li (28028_CR17) 2019; 208 N Khodadadi (28028_CR15) 2022; 10 Z Zhang (28028_CR31) 2021; 28 A Bekkar (28028_CR1) 2021; 8 Q Guo (28028_CR7) 2020; 20 28028_CR13 Q Guo (28028_CR10) 2023; 30 J Ma (28028_CR21) 2019; 214 BS Freeman (28028_CR4) 2018; 68 X Xu (28028_CR28) 2019; 51 M Benhaddi (28028_CR2) 2021; 46 28028_CR20 Q Guo (28028_CR8) 2021; 21 J Wang (28028_CR27) 2018; 314 Q Guo (28028_CR6) 2021; 28 YC Lin (28028_CR18) 2020; 86 H Liu (28028_CR19) 2021; 102 |
| References_xml | – volume: 51 start-page: 3491 issue: 6 year: 2021 end-page: 3505 ident: CR5 article-title: Multi-scale spatiotemporal graph convolution network for air quality prediction publication-title: Appl Intell doi: 10.1007/s10489-020-02054-y – volume: 7 start-page: 30732 year: 2019 end-page: 30743 ident: CR29 article-title: A predictive data feature exploration-based air quality prediction approach publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897754 – volume: 7 start-page: 134903 year: 2019 end-page: 134919 ident: CR32 article-title: Regional spatiotemporal collaborative prediction model for air quality publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2941732 – volume: 11 start-page: 51 issue: 1 year: 2023 ident: CR9 article-title: Predicting of daily PM2.5 concentration employing wavelet artificial neural networks based on meteorological elements in Shanghai, China publication-title: Toxics doi: 10.3390/toxics11010051 – volume: 21 start-page: 1341 issue: 6 year: 2019 end-page: 1352 ident: CR23 article-title: Air pollution prediction by using an artificial neural network model publication-title: Clean Technol Environ Policy doi: 10.1007/s10098-019-01709-w – volume: 28 start-page: 39409 issue: 29 year: 2021 end-page: 39422 ident: CR31 article-title: A hybrid deep learning technology for PM2.5 air quality forecasting publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-12657-8 – volume: 10 start-page: 8400 issue: 23 year: 2020 ident: CR3 article-title: Short-term forecasting of photovoltaic solar power production using variational auto-encoder driven deep learning approach publication-title: Appl Sci doi: 10.3390/app10238400 – volume: 277 start-page: 123231 year: 2020 ident: CR30 article-title: Multi-step ahead forecasting of regional air quality using spatial-temporal deep neural networks: a case study of Huaihai Economic Zone publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.123231 – volume: 314 start-page: 198 year: 2018 end-page: 206 ident: CR27 article-title: A deep spatial-temporal ensemble model for air quality prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.049 – volume: 20 start-page: 1429 issue: 6 year: 2020 end-page: 1439 ident: CR7 article-title: Air pollution forecasting using artificial and wavelet neural networks with meteorological conditions publication-title: Aerosol Air Qual Res doi: 10.4209/aaqr.2020.03.0097 – volume: 17 start-page: 8514 issue: 12 year: 2021 end-page: 8522 ident: CR14 article-title: Multivariate air quality forecasting with nested long short term memory neural network publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2021.3065425 – volume: 14 start-page: 2068 issue: 4 year: 2022 ident: CR16 article-title: Short-term prediction of PM2. 5 using LSTM deep learning methods publication-title: Sustainability doi: 10.3390/su14042068 – volume: 2 start-page: 5 issue: 1 year: 2018 ident: CR33 article-title: A machine learning approach for air quality prediction: Model regularization and optimization publication-title: Big Data Cogn Comput doi: 10.3390/bdcc2010005 – volume: 28 start-page: 5297 year: 2014 end-page: 5317 ident: CR11 article-title: Comparative study of artificial neural networks and wavelet artificial neural networks for groundwater depth data forecasting with various curve fractal dimensions publication-title: Water Resour Manag doi: 10.1007/s11269-014-0802-0 – volume: 102 start-page: 106957 year: 2021 ident: CR19 article-title: Intelligent modeling strategies for forecasting air quality time series: A review publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106957 – ident: CR25 – volume: 68 start-page: 866 issue: 8 year: 2018 end-page: 886 ident: CR4 article-title: Forecasting air quality time series using deep learning publication-title: J Air Waste Manag Assoc doi: 10.1080/10962247.2018.1459956 – volume: 65 start-page: 102567 year: 2021 ident: CR24 article-title: Modeling air quality prediction using a deep learning approach: Method optimization and evaluation publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2020.102567 – volume: 208 start-page: 1365 year: 2019 end-page: 1383 ident: CR17 article-title: Novel analysis–forecast system based on multi-objective optimization for air quality index publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.10.129 – volume: 13 start-page: 1221 issue: 8 year: 2022 ident: CR12 article-title: Prediction of monthly PM2.5 concentration in Liaocheng in China employing artificial neural network publication-title: Atmosphere doi: 10.3390/atmos13081221 – volume: 28 start-page: 11672 year: 2021 end-page: 11682 ident: CR6 article-title: Prediction of the confirmed cases and deaths of global COVID-19 using artificial intelligence publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-11930-6 – volume: 8 start-page: 1 issue: 1 year: 2021 end-page: 21 ident: CR1 article-title: Air-pollution prediction in smart city, deep learning approach publication-title: J Big Data doi: 10.1186/s40537-021-00548-1 – volume: 21 start-page: 210270 issue: 12 year: 2021 ident: CR8 article-title: Changes in air quality from the COVID to the post-COVID era in the beijing-tianjin-tangshan region in China publication-title: Aerosol Air Qual Res doi: 10.4209/aaqr.210270 – volume: 46 start-page: 3423 issue: 4 year: 2021 end-page: 3442 ident: CR2 article-title: Multivariate time series forecasting with dilated residual convolutional neural networks for urban air quality prediction publication-title: Arab J Sci Eng doi: 10.1007/s13369-020-05109-x – ident: CR13 – volume: 30 start-page: 22319 issue: 9 year: 2023 end-page: 22329 ident: CR10 article-title: Long-term projection of future climate change over the twenty-first century in the Sahara region in Africa under four Shared Socio-Economic Pathways scenarios publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-23813-z – ident: CR34 – volume: 86 start-page: 105898 year: 2020 ident: CR18 article-title: Air quality prediction by neuro-fuzzy modeling approach publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105898 – volume: 51 start-page: 2577 issue: 5 year: 2019 end-page: 2586 ident: CR28 article-title: Multitask air-quality prediction based on LSTM-autoencoder model publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2945999 – volume: 10 start-page: 16188 year: 2022 end-page: 16208 ident: CR15 article-title: Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3146374 – volume: 214 start-page: 116885 year: 2019 ident: CR21 article-title: Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2019.116885 – ident: CR26 – volume: 705 start-page: 135771 year: 2020 ident: CR22 article-title: Air quality prediction at new stations using spatially transferred bi-directional long short-term memory network publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.135771 – ident: CR20 – volume: 2 start-page: 5 issue: 1 year: 2018 ident: 28028_CR33 publication-title: Big Data Cogn Comput doi: 10.3390/bdcc2010005 – ident: 28028_CR34 doi: 10.1155/2021/6630944 – volume: 51 start-page: 3491 issue: 6 year: 2021 ident: 28028_CR5 publication-title: Appl Intell doi: 10.1007/s10489-020-02054-y – volume: 7 start-page: 134903 year: 2019 ident: 28028_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2941732 – volume: 7 start-page: 30732 year: 2019 ident: 28028_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897754 – volume: 86 start-page: 105898 year: 2020 ident: 28028_CR18 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105898 – volume: 30 start-page: 22319 issue: 9 year: 2023 ident: 28028_CR10 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-23813-z – volume: 28 start-page: 5297 year: 2014 ident: 28028_CR11 publication-title: Water Resour Manag doi: 10.1007/s11269-014-0802-0 – volume: 208 start-page: 1365 year: 2019 ident: 28028_CR17 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.10.129 – ident: 28028_CR26 – volume: 277 start-page: 123231 year: 2020 ident: 28028_CR30 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.123231 – volume: 10 start-page: 8400 issue: 23 year: 2020 ident: 28028_CR3 publication-title: Appl Sci doi: 10.3390/app10238400 – volume: 314 start-page: 198 year: 2018 ident: 28028_CR27 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.049 – volume: 21 start-page: 210270 issue: 12 year: 2021 ident: 28028_CR8 publication-title: Aerosol Air Qual Res doi: 10.4209/aaqr.210270 – ident: 28028_CR20 doi: 10.1007/s12652-019-01344-9 – volume: 28 start-page: 11672 year: 2021 ident: 28028_CR6 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-11930-6 – volume: 214 start-page: 116885 year: 2019 ident: 28028_CR21 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2019.116885 – volume: 21 start-page: 1341 issue: 6 year: 2019 ident: 28028_CR23 publication-title: Clean Technol Environ Policy doi: 10.1007/s10098-019-01709-w – volume: 28 start-page: 39409 issue: 29 year: 2021 ident: 28028_CR31 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-12657-8 – volume: 51 start-page: 2577 issue: 5 year: 2019 ident: 28028_CR28 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2945999 – ident: 28028_CR25 doi: 10.1109/INDICON49873.2020.9342529 – volume: 13 start-page: 1221 issue: 8 year: 2022 ident: 28028_CR12 publication-title: Atmosphere doi: 10.3390/atmos13081221 – volume: 20 start-page: 1429 issue: 6 year: 2020 ident: 28028_CR7 publication-title: Aerosol Air Qual Res doi: 10.4209/aaqr.2020.03.0097 – volume: 8 start-page: 1 issue: 1 year: 2021 ident: 28028_CR1 publication-title: J Big Data doi: 10.1186/s40537-021-00548-1 – volume: 11 start-page: 51 issue: 1 year: 2023 ident: 28028_CR9 publication-title: Toxics doi: 10.3390/toxics11010051 – volume: 102 start-page: 106957 year: 2021 ident: 28028_CR19 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106957 – volume: 68 start-page: 866 issue: 8 year: 2018 ident: 28028_CR4 publication-title: J Air Waste Manag Assoc doi: 10.1080/10962247.2018.1459956 – volume: 14 start-page: 2068 issue: 4 year: 2022 ident: 28028_CR16 publication-title: Sustainability doi: 10.3390/su14042068 – volume: 17 start-page: 8514 issue: 12 year: 2021 ident: 28028_CR14 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2021.3065425 – ident: 28028_CR13 doi: 10.3389/feart.2022.884500 – volume: 705 start-page: 135771 year: 2020 ident: 28028_CR22 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.135771 – volume: 65 start-page: 102567 year: 2021 ident: 28028_CR24 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2020.102567 – volume: 10 start-page: 16188 year: 2022 ident: 28028_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3146374 – volume: 46 start-page: 3423 issue: 4 year: 2021 ident: 28028_CR2 publication-title: Arab J Sci Eng doi: 10.1007/s13369-020-05109-x |
| SSID | ssj0020927 |
| Score | 2.3979068 |
| Snippet | Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, particularly in developing countries... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 86804 |
| SubjectTerms | Accuracy air Air Pollutants - analysis Air pollution Air Pollution - analysis Air quality Air quality assessments Algorithms Aquatic Pollution Arithmetic arithmetics Atmospheric Protection/Air Quality Control/Air Pollution Carbon monoxide Carbon Monoxide - analysis Correlation coefficient Correlation coefficients Data acquisition data collection Developing countries Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental degradation Environmental Health Environmental science India Industrial areas Internet LDCs Mathematics Mean square errors Nitrogen dioxide Nitrogen Dioxide - analysis Optimization Outdoor air quality Ozone Particulate emissions Particulate matter Particulate Matter - analysis particulates pollutants prediction Prediction models Quality assessment Quality control Research Article Root-mean-square errors Sulfur Sulfur Dioxide Waste Water Technology Water Management Water Pollution Control |
| SummonAdditionalLinks | – databaseName: SpringerLINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5B4cCFdyFQkJG4gaU4ThyHW7pt4YDaqtCqt8hxbDUSzVa7aaX-A342M4mzK1SKBMfIY2U0mck39rwA3lsfF7V0BY8bVfPUOcO1yWJeC48AhBCuhykKJ1_z_X19elochqKw5ZTtPoUkhz_1uthNyIwSZiVP9HAndBfuZdRths7o305Wx6y4SPJQHvPnfb9D0A2_8kZMdICavUf_x-RjeBhcS1aOuvAE7rjuKWzurivZcDGY8vIZ_Cxn2-3no2O-Ux58YmXfj3mPbDbvroI6Iv12O2Le-ERXbQ07oit6aurEyGHlhIMN2xkn2-Pb2_7snCoj2QH-jc5DmSdD35iV7YKNPTuu2eGCIkS09ByO93a_z77wMJaB2zTWPS-0s0rgwadJrSL_KvaamsygpSMOKquUMT6pra4Tr6w3edK4JhWJkb5uMifkJmx08869BJajQqB_VhhvZWpqrwunnFBGJjbNmzSPQExfqrKhZzmNzvhRrbstk8ArFHg1CLxKI_iw2nMxduz4K_XWpABVsN5lNUB2hjBQRPButYx2R8EU07n5JdFI9O2UFvJ2GolwInKZaR3Bi1G5VixJdOViFFgEHydNWjNwO7-v_o38NTxISBmHjMUt2OgXl-4N3LdXfbtcvB3s5hd_kxOa priority: 102 providerName: Springer Nature |
| Title | ACBiGRU-DAO: Attention Convolutional Bidirectional Gated Recurrent Unit-based Dynamic Arithmetic Optimization for Air Quality Prediction |
| URI | https://link.springer.com/article/10.1007/s11356-023-28028-4 https://www.ncbi.nlm.nih.gov/pubmed/37410321 https://www.proquest.com/docview/2847159119 https://www.proquest.com/docview/2833996813 https://www.proquest.com/docview/3153173588 |
| Volume | 30 |
| WOSCitedRecordID | wos001024895600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Global (OCUL) customDbUrl: eissn: 1614-7499 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: M0C dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1614-7499 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: PATMY dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1614-7499 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: 7X7 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest ABI/INFORM Collection customDbUrl: eissn: 1614-7499 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: 7WY dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1614-7499 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1614-7499 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: 8C1 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1614-7499 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: M2P dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw0GIbD_DAx2AQGJOReAOLOHYdhxfUdh08sK4qbJSnyHEcEYmmo8km7R_ws7lL3FZo2l54OcmyLZ1yn7nz3RHyxhZhkgmXsDBXGZPOGaZNL2QZL8AAgQnX7RSFsy_xeKxns2TiA261f1a50omtos4XFmPk71s12gPRTD6e_2Y4NQqzq36ExhbZwU5lwOc7g9F4Ml3_coVJN7Q1kZJxIaUvm-mK57jo4QNcwSLdxpj-NU3X_M1rudLWBB09_F_kH5EH3vmk_Y5bHpM7rtole6NNrRtsemGvd8n943VL1_oJ-dMfDspP01N22D_5QPtN072TpMNFdenZF24Pys5GdisMzeV0iiF9bAJF0cFlaDdzenhVmXlpAZey-TnHSkp6Atpr7stCKfjStF8uadfj44pOlphRwq2n5PRo9G34mfkxDszKUDcs0c4qDj9KubQK_bGw0NiUBjQD2E1llTKmiDKrs6hQtjBxlLtc8siIIst7jos9sl0tKvec0BgYCPy5xBRWSJMVOnHKcWVEZGWcyzggfEXB1Poe5zhq41e66c6MVE-B6mlL9VQG5O36znnX4ePW0_srCqde2ut0Q96AvF5vg5xi8sVUbnGBZwT4gkpzcfMZAeaHx6KndUCedUy3RkmA6xfCBwvIuxUXbhC4Gd8Xt-P7ktyLUALaF437ZLtZXrhX5K69bMp6eUC24u8_EM7iFmqAesgPvJTB6jgcIowmAKdfz_4CBbAr8A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwED-NgQQ88GcwCAwwEjyBRRK7iYOEUNdubFrbTdOG9hYcxxGRaDrabKjfgE_DZ-Quf1qhaXvbA4-Rnejk_O7uZ5_vDuCNydwoETbibhokXFqrudIdlydehg4IXbiquih8HYSjkTo5iQ5W4E-bC0PXKlubWBnqdGLojPxDZUY7qJrR59OfnLpGUXS1baFRw2LPzn_hlm32abeP__et729vHfV2eNNVgBvpqpJHyprAQ96eShMQPXAzRTVSEKhoxgMTBFpnfmJU4meByXTopzaVnq9FlqQd6wn87g24KXHjRXo1dHuLDZ4b1S1iIym5J6RsknTqVD1PdOi6r-C-qk60_nWEF9jthchs5fC27_9vS_UA7jXUmnVrXXgIK7ZYg_WtZSYfDjambLYGd4eLgrWzR_C729vMvxwe8353_yPrlmV9C5T1JsV5o5z49mZeM4D6iQ4eU3ZIAQsqccWIvnNiBSnrzws9zg3Kkpffx5QnyvbRNo-bpFeGOwXWzaesrmAyZwdTipfR0GM4vpY1WofVYlLYp8BCVA9kq5HOjJA6yVRkA-sFWvhGhqkMHfBaxMSmqeBOjUR-xMva04SyGFEWVyiLpQPvFu-c1vVLrpy90SIqbmzZLF7CyYHXi2G0QhRa0oWdnNEcgUw3UJ64fI5A5-qFoqOUA09qkC9EEkhsXVwwB963qF8KcLm8z66W9xXc3jkaDuLB7mjvOdzxSfuqu5sbsFpOz-wLuGXOy3w2fVnpMYNv160NfwGRCoCk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAyF44DLYCAwwEjyBtSR2EwcJoa5dYdroqomhvQXHcbRINB1tNtR_wG_i13FOLq3QtL3tgcfITmQ55zvns88N4LXJ3CgRNuJuGiRcWqu50h2XJ16GBghNuKq6KHzbD4dDdXwcjVbgT5sLQ2GVrU6sFHU6MXRHvlWp0Q5CM9rKmrCIUX_w8fQnpw5S5Glt22nUIrJn57_w-Db7sNvHf_3G9wc7X3ufedNhgBvpqpJHyprAQw6fShMQVXAzRfVSUGhRpQcmCLTO_MSoxM8Ck-nQT20qPV-LLEk71hP43RtwM6SqWBQ26I8Whz03qtvFRlJyT0jZJOzUaXue6FDor-C-qm63_jWKF5juBS9tZfwG9__nbXsA9xrKzbo1Rh7Cii3WYH1nmeGHg42Km63B3S-LQrazR_C729vOPx0e8X734D3rlmUdHcp6k-K8AS2-vZ3XzKB-ogvJlB2SI4NKXzGi9ZzYQsr680KPc4NrycuTMeWPsgPU2eMmGZbhCYJ18ymrK5vM2WhKfjQaegxH17JH67BaTAr7BFiIsEEWG-nMCKmTTEU2sF6ghW9kmMrQAa-Vntg0ld2pwciPeFmTmiQuRomLK4mLpQNvF--c1nVNrpy92UpX3Oi4WbwULQdeLYZRO5HLSRd2ckZzBDLgQHni8jkCja4Xio5SDmzUAr9YkkDC6-KGOfCuRcByAZev9-nV630JtxEE8f7ucO8Z3PEJiFVI5yasltMz-xxumfMyn01fVJBm8P26wfAXGW2Jjg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ACBiGRU-DAO%3A+Attention+Convolutional+Bidirectional+Gated+Recurrent+Unit-based+Dynamic+Arithmetic+Optimization+for+Air+Quality+Prediction&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Panneerselvam%2C+Vinoth&rft.au=Thiagarajan%2C+Revathi&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=30&rft.issue=37&rft.spage=86804&rft.epage=86820&rft_id=info:doi/10.1007%2Fs11356-023-28028-4&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon |