Efficient Stochastic Model for Operational Availability Optimization of Cooling Tower Using Metaheuristic Algorithms

Metaheuristic algorithms are extensively utilized to find solutions and optimize complex industrial systems' performance. In this paper, metaheuristic algorithms are utilized to predict the optimum value of the operational availability of a cooling tower in a steam turbine power plant. These te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 10; S. 24659 - 24677
Hauptverfasser: Kumar, Ashish, Saini, Monika, Gupta, Nivedita, Sinwar, Deepak, Singh, Dilbag, Kaur, Manjit, Lee, Heung-No
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Metaheuristic algorithms are extensively utilized to find solutions and optimize complex industrial systems' performance. In this paper, metaheuristic algorithms are utilized to predict the optimum value of the operational availability of a cooling tower in a steam turbine power plant. These techniques have some flaws like poor convergence speed, being stuck in local optima, and premature convergence. For this purpose, a novel efficient stochastic model is proposed for a cooling tower that is configured with six subsystems. The Markovian birth-death process is utilized to develop the Chapman-Kolmogorov differential-difference equations. All the random variables are statically independent, and repairs are perfect. Failure rates are exponentially distributed, while repair rates follow the arbitrary distribution. Steady-state availability (SSA) of the system is derived concerning various failure and repair rates. The sensitivity analysis of SSA is also performed to identify the most critical component. Further, system availability is optimized using genetic algorithm (GA) and particle swarm optimization (PSO) because they are found to be more suitable for such types of problems. It is revealed that the PSO outperforms GA in predicting the availability of cooling towers used in steam turbine power plants.
AbstractList Metaheuristic algorithms are extensively utilized to find solutions and optimize complex industrial systems’ performance. In this paper, metaheuristic algorithms are utilized to predict the optimum value of the operational availability of a cooling tower in a steam turbine power plant. These techniques have some flaws like poor convergence speed, being stuck in local optima, and premature convergence. For this purpose, a novel efficient stochastic model is proposed for a cooling tower that is configured with six subsystems. The Markovian birth-death process is utilized to develop the Chapman-Kolmogorov differential-difference equations. All the random variables are statically independent, and repairs are perfect. Failure rates are exponentially distributed, while repair rates follow the arbitrary distribution. Steady-state availability (SSA) of the system is derived concerning various failure and repair rates. The sensitivity analysis of SSA is also performed to identify the most critical component. Further, system availability is optimized using genetic algorithm (GA) and particle swarm optimization (PSO) because they are found to be more suitable for such types of problems. It is revealed that the PSO outperforms GA in predicting the availability of cooling towers used in steam turbine power plants.
Author Sinwar, Deepak
Saini, Monika
Kaur, Manjit
Singh, Dilbag
Kumar, Ashish
Gupta, Nivedita
Lee, Heung-No
Author_xml – sequence: 1
  givenname: Ashish
  orcidid: 0000-0001-9749-9140
  surname: Kumar
  fullname: Kumar, Ashish
  organization: Department of Mathematics and Statistics, Manipal University Jaipur, Dehmi Kalan, Jaipur, Rajasthan, India
– sequence: 2
  givenname: Monika
  orcidid: 0000-0003-1023-0144
  surname: Saini
  fullname: Saini, Monika
  organization: Department of Mathematics and Statistics, Manipal University Jaipur, Dehmi Kalan, Jaipur, Rajasthan, India
– sequence: 3
  givenname: Nivedita
  surname: Gupta
  fullname: Gupta, Nivedita
  organization: Department of Mathematics and Statistics, Manipal University Jaipur, Dehmi Kalan, Jaipur, Rajasthan, India
– sequence: 4
  givenname: Deepak
  orcidid: 0000-0001-9597-6206
  surname: Sinwar
  fullname: Sinwar, Deepak
  organization: Department of Computer and Communication Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur, Rajasthan, India
– sequence: 5
  givenname: Dilbag
  orcidid: 0000-0001-6475-4491
  surname: Singh
  fullname: Singh, Dilbag
  organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
– sequence: 6
  givenname: Manjit
  orcidid: 0000-0001-8804-9172
  surname: Kaur
  fullname: Kaur, Manjit
  organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
– sequence: 7
  givenname: Heung-No
  orcidid: 0000-0001-8528-5778
  surname: Lee
  fullname: Lee, Heung-No
  email: heungno@gist.ac.kr
  organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
BookMark eNp9UcFqGzEQFSWBpkm-IBdBz3aklbTSHs3iNoGEHJychVY7smXWK1eSW9Kvr-xNS8khc5lh5r3H8N4XdDaGERC6oWROKWluF227XK3mFamqOaOcCU4_oYuK1s2MCVaf_Td_RtcpbUkpVVZCXqC8dM5bD2PGqxzsxqTsLX4MPQzYhYif9hBN9mE0A178NH4wnR98fi2H7Hf-9-mGg8NtCIMf1_g5_IKIX9JxfoRsNnCI_iS6GNYh-rzZpSt07syQ4PqtX6KXb8vn9m728PT9vl08zCwnKs8a6qi0hlrhbG-AUUt65SrXdaZ3VPSkVsJJZ5kTUBPDVIE03IHqXEcaKtglup90-2C2eh_9zsRXHYzXp0WIa21ieW0A7ZQ0ouaykb3iAoyqO6aYpEpw0Vhri9bXSWsfw48DpKy34RCLLUlXNZOcyeJnQTUTysaQUgSnrc8nj3Is5mlK9DEzPWWmj5npt8wKl73j_v34Y9bNxPIA8I_R1KqSjLM_7nSmzQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s10665_024_10342_6
crossref_primary_10_1007_s41870_024_02147_8
crossref_primary_10_1155_2022_5807690
crossref_primary_10_1061_JPCFEV_CFENG_4678
crossref_primary_10_1155_2022_2592365
crossref_primary_10_46481_jnsps_2022_945
crossref_primary_10_1002_qre_3639
crossref_primary_10_1016_j_ijft_2024_100866
crossref_primary_10_1007_s13198_022_01744_9
crossref_primary_10_1155_2022_7194419
crossref_primary_10_1007_s41872_024_00283_5
crossref_primary_10_3233_JIFS_231940
crossref_primary_10_1007_s12008_024_02059_8
crossref_primary_10_1007_s41870_022_01070_0
crossref_primary_10_1134_S1995080223090354
crossref_primary_10_1155_2022_8662254
crossref_primary_10_1108_JQME_11_2021_0088
crossref_primary_10_1155_2023_3875525
crossref_primary_10_1016_j_jksuci_2022_05_018
crossref_primary_10_1155_2022_3767912
crossref_primary_10_1155_2022_9737511
crossref_primary_10_1155_2022_5256133
crossref_primary_10_1177_16878132221115931
crossref_primary_10_3233_JIFS_231513
crossref_primary_10_1016_j_csite_2025_106183
crossref_primary_10_1007_s11804_023_00371_5
crossref_primary_10_1007_s11135_025_02267_8
crossref_primary_10_1155_2022_8516928
crossref_primary_10_1016_j_chaos_2025_116330
crossref_primary_10_1007_s41872_024_00290_6
crossref_primary_10_1155_2022_1140789
crossref_primary_10_1155_2022_1621258
crossref_primary_10_1155_2022_2792639
crossref_primary_10_1155_2022_6163649
crossref_primary_10_3390_math12203296
crossref_primary_10_1371_journal_pone_0284848
Cites_doi 10.3390/en14113281
10.3390/en14102922
10.3390/en14112985
10.1109/ACCESS.2021.3120717
10.2166/wp.2012.018
10.1016/j.applthermaleng.2017.04.120
10.1007/s00521-015-1923-y
10.1023/A:1008202821328
10.1016/j.energy.2018.11.079
10.1115/GT2005-68937
10.1007/s00521-015-1914-z
10.1016/j.apenergy.2020.114555
10.1007/s12293-016-0212-3
10.1016/j.future.2019.02.028
10.3390/en14113225
10.1016/j.apacoust.2016.11.012
10.2495/ESUS140601
10.1080/15567036.2020.1844348
10.1016/j.knosys.2021.107625
10.37965/jait.2020.0051
10.1016/j.tsep.2018.04.015
10.1016/j.energy.2018.07.080
10.1016/j.rser.2017.05.151
10.1049/trit.2019.0028
10.1016/j.rser.2010.12.008
10.1007/bf00113892
10.3390/en14010167
10.1016/j.jclepro.2020.122175
10.1049/trit.2019.0051
10.1016/j.swevo.2011.02.002
10.37965/jait.2020.0037
10.1109/ISCBI.2015.8
10.1007/s11045-020-00739-8
10.1109/ACCESS.2021.3110849
10.1016/j.applthermaleng.2017.10.103
10.1016/j.ress.2020.107130
10.1016/j.advengsoft.2013.12.007
10.3390/en13061305
10.1088/1748-9326/6/3/034015
10.3390/en12101951
10.1007/s42452-020-2520-y
10.1016/j.future.2020.03.055
10.1109/PECON.2010.5697644
10.3390/math7111051
10.1016/j.scs.2021.103181
10.1016/j.icheatmasstransfer.2010.07.011
10.1115/1.4045639
10.17775/CSEEJPES.2016.00026
10.1109/ACCESS.2021.3130933
10.3390/en14051308
10.1016/j.energy.2018.11.111
10.1109/TSMCA.2012.2217320
10.3390/en14112978
10.1016/j.energy.2018.12.046
10.1109/MHS.1995.494215
10.37965/jait.2021.0017
10.1016/1359-4311(95)00068-2
10.1155/2021/8829829
10.1016/j.eswa.2020.113338
10.1109/JSYST.2012.2192065
10.1016/j.ins.2019.08.016
10.3390/en14113097
10.1109/SUPERGEN.2009.5347982
10.1007/s40010-018-0558-7
10.1109/TASE.2013.2266134
10.3390/en14123632
10.4249/scholarpedia.1482
10.1504/IJBIC.2018.093328
10.1007/s12559-021-09933-7
10.3390/en14123682
10.3390/en13215848
10.1007/978-1-4471-2309-5_9
10.1016/j.applthermaleng.2019.114766
10.1049/trit.2018.1006
10.1016/j.seta.2021.101070
10.1016/j.applthermaleng.2016.03.156
10.1109/MCI.2006.329691
10.1061/41031(341)105
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3143541
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 24677
ExternalDocumentID oai_doaj_org_article_f87a564797d845ea86b3837185459ccc
10_1109_ACCESS_2022_3143541
9682734
Genre orig-research
GrantInformation_xml – fundername: IITP (Institute of Information & Communications Technology Planning & Evaluation)
  funderid: 10.13039/501100010418
– fundername: Korean government (MSIP)
  grantid: NRF-2021R1A2B5B03002118
– fundername: Ministry of Science and ICT (MSIT), Korea, under the ITRC (Information Technology Research Center)
  grantid: IITP-2021-0-01835
  funderid: 10.13039/501100014188
– fundername: National Research Foundation of Korea (NRF) Grant
  funderid: 10.13039/501100003725
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-91f17ca1c5fcdae31c0d8f2fbbadf15d0685f7fc3f5e60a38e3194fe8bfb09153
IEDL.DBID RIE
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766544500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:42:50 EDT 2025
Sun Jun 29 15:22:16 EDT 2025
Sat Nov 29 06:31:51 EST 2025
Tue Nov 18 21:08:06 EST 2025
Wed Aug 27 02:49:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-91f17ca1c5fcdae31c0d8f2fbbadf15d0685f7fc3f5e60a38e3194fe8bfb09153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8528-5778
0000-0001-9597-6206
0000-0001-6475-4491
0000-0001-8804-9172
0000-0003-1023-0144
0000-0001-9749-9140
OpenAccessLink https://ieeexplore.ieee.org/document/9682734
PQID 2637437957
PQPubID 4845423
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_f87a564797d845ea86b3837185459ccc
crossref_primary_10_1109_ACCESS_2022_3143541
ieee_primary_9682734
proquest_journals_2637437957
crossref_citationtrail_10_1109_ACCESS_2022_3143541
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
Storn (ref62) 1997; 11
ref9
ref4
ref3
ref6
ref5
ref81
ref40
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref76
ref2
Delgado (ref32) 2012
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
Reichert (ref1) 2019
ref63
ref22
ref66
ref21
ref65
Niemann (ref19) 2011; 91
ref28
ref27
ref29
ref60
ref61
References_xml – ident: ref41
  doi: 10.3390/en14113281
– ident: ref45
  doi: 10.3390/en14102922
– ident: ref10
  doi: 10.3390/en14112985
– ident: ref13
  doi: 10.1109/ACCESS.2021.3120717
– ident: ref36
  doi: 10.2166/wp.2012.018
– ident: ref25
  doi: 10.1016/j.applthermaleng.2017.04.120
– ident: ref55
  doi: 10.1007/s00521-015-1923-y
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: ref62
  article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– ident: ref4
  doi: 10.1016/j.energy.2018.11.079
– ident: ref21
  doi: 10.1115/GT2005-68937
– ident: ref48
  doi: 10.1007/s00521-015-1914-z
– ident: ref33
  doi: 10.1016/j.apenergy.2020.114555
– ident: ref58
  doi: 10.1007/s12293-016-0212-3
– ident: ref60
  doi: 10.1016/j.future.2019.02.028
– ident: ref42
  doi: 10.3390/en14113225
– ident: ref70
  doi: 10.1016/j.apacoust.2016.11.012
– ident: ref28
  doi: 10.2495/ESUS140601
– ident: ref35
  doi: 10.1080/15567036.2020.1844348
– ident: ref71
  doi: 10.1016/j.knosys.2021.107625
– ident: ref75
  doi: 10.37965/jait.2020.0051
– ident: ref26
  doi: 10.1016/j.tsep.2018.04.015
– volume: 91
  start-page: 94
  issue: 9
  year: 2011
  ident: ref19
  article-title: Recent amendments to the VGB Guideline on the design and construction of cooling towers in power plants
  publication-title: VGB Powertech
– ident: ref20
  doi: 10.1016/j.energy.2018.07.080
– ident: ref22
  doi: 10.1016/j.rser.2017.05.151
– ident: ref74
  doi: 10.1049/trit.2019.0028
– ident: ref3
  doi: 10.1016/j.rser.2010.12.008
– ident: ref51
  doi: 10.1007/bf00113892
– ident: ref8
  doi: 10.3390/en14010167
– ident: ref31
  doi: 10.1016/j.jclepro.2020.122175
– ident: ref76
  doi: 10.1049/trit.2019.0051
– year: 2019
  ident: ref1
  article-title: Simulation of power plants steam generators and cooling towers with artificial neural network
– ident: ref61
  doi: 10.1016/j.swevo.2011.02.002
– ident: ref73
  doi: 10.37965/jait.2020.0037
– ident: ref57
  doi: 10.1109/ISCBI.2015.8
– ident: ref63
  doi: 10.1007/s11045-020-00739-8
– ident: ref81
  doi: 10.1109/ACCESS.2021.3110849
– ident: ref16
  doi: 10.1016/j.applthermaleng.2017.10.103
– ident: ref49
  doi: 10.1016/j.ress.2020.107130
– ident: ref53
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref9
  doi: 10.3390/en13061305
– ident: ref24
  doi: 10.1088/1748-9326/6/3/034015
– ident: ref34
  doi: 10.3390/en12101951
– ident: ref14
  doi: 10.1007/s42452-020-2520-y
– ident: ref59
  doi: 10.1016/j.future.2020.03.055
– ident: ref37
  doi: 10.1109/PECON.2010.5697644
– ident: ref65
  doi: 10.3390/math7111051
– ident: ref47
  doi: 10.1016/j.scs.2021.103181
– ident: ref17
  doi: 10.1016/j.icheatmasstransfer.2010.07.011
– ident: ref46
  doi: 10.1115/1.4045639
– ident: ref18
  doi: 10.17775/CSEEJPES.2016.00026
– ident: ref69
  doi: 10.1109/ACCESS.2021.3130933
– ident: ref7
  doi: 10.3390/en14051308
– ident: ref30
  doi: 10.1016/j.energy.2018.11.111
– ident: ref80
  doi: 10.1109/TSMCA.2012.2217320
– ident: ref44
  doi: 10.3390/en14112978
– ident: ref39
  doi: 10.1016/j.energy.2018.12.046
– ident: ref52
  doi: 10.1109/MHS.1995.494215
– ident: ref77
  doi: 10.37965/jait.2021.0017
– ident: ref27
  doi: 10.1016/1359-4311(95)00068-2
– ident: ref66
  doi: 10.1155/2021/8829829
– ident: ref68
  doi: 10.1016/j.eswa.2020.113338
– ident: ref29
  doi: 10.1109/JSYST.2012.2192065
– year: 2012
  ident: ref32
  article-title: Simple model to help understand water use at power plants
– ident: ref64
  doi: 10.1016/j.ins.2019.08.016
– ident: ref43
  doi: 10.3390/en14113097
– ident: ref38
  doi: 10.1109/SUPERGEN.2009.5347982
– ident: ref67
  doi: 10.1007/s40010-018-0558-7
– ident: ref79
  doi: 10.1109/TASE.2013.2266134
– ident: ref12
  doi: 10.3390/en14123632
– ident: ref50
  doi: 10.4249/scholarpedia.1482
– ident: ref56
  doi: 10.1504/IJBIC.2018.093328
– ident: ref72
  doi: 10.1007/s12559-021-09933-7
– ident: ref40
  doi: 10.3390/en14123682
– ident: ref11
  doi: 10.3390/en13215848
– ident: ref15
  doi: 10.1007/978-1-4471-2309-5_9
– ident: ref2
  doi: 10.1016/j.applthermaleng.2019.114766
– ident: ref78
  doi: 10.1049/trit.2018.1006
– ident: ref6
  doi: 10.1016/j.seta.2021.101070
– ident: ref5
  doi: 10.1016/j.applthermaleng.2016.03.156
– ident: ref54
  doi: 10.1109/MCI.2006.329691
– ident: ref23
  doi: 10.1061/41031(341)105
SSID ssj0000816957
Score 2.462358
Snippet Metaheuristic algorithms are extensively utilized to find solutions and optimize complex industrial systems' performance. In this paper, metaheuristic...
Metaheuristic algorithms are extensively utilized to find solutions and optimize complex industrial systems’ performance. In this paper, metaheuristic...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 24659
SubjectTerms Algorithms
Availability
Convergence
Cooling
cooling tower
Cooling towers
Critical components
Difference equations
Differential equations
Failure analysis
Failure rates
genetic algorithm
Genetic algorithms
Heuristic methods
Independent variables
Markov modeling
Markov processes
Mathematical models
Particle swarm optimization
Poles and towers
Power generation
Power plants
Power system reliability
Random variables
Reliability
Repair
Sensitivity analysis
Steam electric power generation
Steam turbines
Stochastic models
Subsystems
Turbines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDiAc9iD9x_iIHjxbTNj-PcygedAoqeAtJmrjBXMdWBf97kyYbE0EvXtv0R_JeX94L6ecLwFmpqBIYi8waUmTYZ7CZ5pRkWFmNqOAaRc7sLev3-cuLeFiS-gp7wiIeOA7cheNMEYqZYBXHxCpOdSiq_DSDiTDGhOiLmFgqptoYzHMqCEuYoRyJi26v53vkC8Ki8HWqTxJw_m0qaon9SWLlR1xuJ5vrLbCZskTYjW-3DVbseAdsLLEDd0Fz1cIf_JwBH5vaDFQALsMgbTaCPhGF9xM7TQt9sPuhhqMI5P70J5rhW_r7EtYO9uqg2_MKn4JeGmy3EMA726iBfY8UZ9gdvdbTYTN4m-2B5-urp95NliQUMoMRb3woczkzKjfEmUrZMjeo4q5wWqvK5aRClBPHnCkdsRSpkvsmAjvLtdM-kyDlPlgd12N7AKAjDAujkPOfLea04mWuNCUlRVUQHuUdUMxHU5rEFw8yFyPZ1hlIyGgCGUwgkwk64Hxx0STiNX5vfhnMtGga2NjtAe8xMnmM_MtjOmA3GHlxE0F5YPx0wPHc6DJ9xzNZ0JIFYiNhh__x6COwHroTl3COwWozfbcnYM18NMPZ9LR14S_Oz_J-
  priority: 102
  providerName: Directory of Open Access Journals
Title Efficient Stochastic Model for Operational Availability Optimization of Cooling Tower Using Metaheuristic Algorithms
URI https://ieeexplore.ieee.org/document/9682734
https://www.proquest.com/docview/2637437957
https://doaj.org/article/f87a564797d845ea86b3837185459ccc
Volume 10
WOSCitedRecordID wos000766544500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SkEN7aJumpdsmQYce40a29Txulw09NA9oArkJSZayC5t12PUGeulvryQrpiWh0IsxtmRkf3rMjDXfB_C51kxLQmThLK0KEizYwghGC6KdwUwKg3ue2e_8_Fzc3MjLLTgecmGcc2nzmfsST9O__Ka1mxgqO5FMRDaWbdjmnPW5WkM8JQpISMozsVCJ5cl4MgnvEFzAqgqeaTALSPnX4pM4-rOoypOZOC0vp6__r2Fv4FU2I9G4x30PttzyLbz8g1xwH7ppYocIFdGPrrUzHRmZUdQ-W6BgqaKLe7fKkUA0ftDzRc_Y_TPc6OZ3OT0TtR5N2ijsc4uuoqAaSnsM0Jnr9MxteppnNF7ctqt5N7tbv4Pr0-nV5FuRNRYKS7DowlznS251aam3jXZ1aXEjfOWN0Y0vaYOZoJ57W3vqGNa1CEUk8U4Yb4KpQev3sLNsl-4DIE85kVZjH8Y1EawRdakNozXDTVQmFSOoHj--spmAPOpgLFRyRLBUPWIqIqYyYiM4Hird9_wb_y7-NaI6FI3k2elCgEvlsai84JoywiVvBKFOC2ainx4sF0KltXYE-xHi4SEZ3REcPPYRlQf6WlWs5pHSkfKPz9f6BC9iA_uozQHsdKuNO4Rd-9DN16ujFAIIx7Nf06PUn38D3h_yjw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4aAwl44DYQhQF-4HFhTuLrY6k2DdEVJIq0N8t27LVS10xtOol_j-14EQiExFuUHEd2Pl_OObG_D-B9rZmWhMjCWVoVJHiwhRGMFkQ7g5kUBvc8s1M-m4mLC_l1D46GszDOubT5zH2Il-lfftPaXUyVHUsmIhvLHbhLCalwf1pryKhECQlJeaYWKrE8Hk8moRUhCKyqEJsGx4CUvy0_iaU_y6r8MRenBeb08f9V7Qk8yo4kGvfIP4U9t34GD3-hFzyA7iTxQ4SC6FvX2oWOnMwoqp-tUPBV0Zdrt8m5QDS-0ctVz9n9Izzollf5gCZqPZq0UdrnEs2jpBpKuwzQuev0wu16omc0Xl22m2W3uNo-h--nJ_PJWZFVFgpLsOjCbOdLbnVpqbeNdnVpcSN85Y3RjS9pg5mgnntbe-oY1rUIJpJ4J4w3wdmg9QvYX7dr9xKQp5xIq7EPI5sI1oi61IbRmuEmapOKEVS3H1_ZTEEelTBWKoUiWKoeMRURUxmxERwNha57Bo5_m3-MqA6mkT473QhwqTwalRdcU0a45I0g1GnBTIzUg-9CqLTWjuAgQjy8JKM7gsPbPqLyUN-qitU8kjpS_urvpd7B_bP5-VRNP80-v4YHsbJ9DucQ9rvNzr2Be_amW243b1N__gks_POw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Stochastic+Model+for+Operational+Availability+Optimization+of+Cooling+Tower+Using+Metaheuristic+Algorithms&rft.jtitle=IEEE+access&rft.au=Kumar%2C+Ashish&rft.au=Saini%2C+Monika&rft.au=Gupta%2C+Nivedita&rft.au=Sinwar%2C+Deepak&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=24659&rft.epage=24677&rft_id=info:doi/10.1109%2FACCESS.2022.3143541&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3143541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon