Efficient Stochastic Model for Operational Availability Optimization of Cooling Tower Using Metaheuristic Algorithms
Metaheuristic algorithms are extensively utilized to find solutions and optimize complex industrial systems' performance. In this paper, metaheuristic algorithms are utilized to predict the optimum value of the operational availability of a cooling tower in a steam turbine power plant. These te...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 10; S. 24659 - 24677 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Metaheuristic algorithms are extensively utilized to find solutions and optimize complex industrial systems' performance. In this paper, metaheuristic algorithms are utilized to predict the optimum value of the operational availability of a cooling tower in a steam turbine power plant. These techniques have some flaws like poor convergence speed, being stuck in local optima, and premature convergence. For this purpose, a novel efficient stochastic model is proposed for a cooling tower that is configured with six subsystems. The Markovian birth-death process is utilized to develop the Chapman-Kolmogorov differential-difference equations. All the random variables are statically independent, and repairs are perfect. Failure rates are exponentially distributed, while repair rates follow the arbitrary distribution. Steady-state availability (SSA) of the system is derived concerning various failure and repair rates. The sensitivity analysis of SSA is also performed to identify the most critical component. Further, system availability is optimized using genetic algorithm (GA) and particle swarm optimization (PSO) because they are found to be more suitable for such types of problems. It is revealed that the PSO outperforms GA in predicting the availability of cooling towers used in steam turbine power plants. |
|---|---|
| AbstractList | Metaheuristic algorithms are extensively utilized to find solutions and optimize complex industrial systems’ performance. In this paper, metaheuristic algorithms are utilized to predict the optimum value of the operational availability of a cooling tower in a steam turbine power plant. These techniques have some flaws like poor convergence speed, being stuck in local optima, and premature convergence. For this purpose, a novel efficient stochastic model is proposed for a cooling tower that is configured with six subsystems. The Markovian birth-death process is utilized to develop the Chapman-Kolmogorov differential-difference equations. All the random variables are statically independent, and repairs are perfect. Failure rates are exponentially distributed, while repair rates follow the arbitrary distribution. Steady-state availability (SSA) of the system is derived concerning various failure and repair rates. The sensitivity analysis of SSA is also performed to identify the most critical component. Further, system availability is optimized using genetic algorithm (GA) and particle swarm optimization (PSO) because they are found to be more suitable for such types of problems. It is revealed that the PSO outperforms GA in predicting the availability of cooling towers used in steam turbine power plants. |
| Author | Sinwar, Deepak Saini, Monika Kaur, Manjit Singh, Dilbag Kumar, Ashish Gupta, Nivedita Lee, Heung-No |
| Author_xml | – sequence: 1 givenname: Ashish orcidid: 0000-0001-9749-9140 surname: Kumar fullname: Kumar, Ashish organization: Department of Mathematics and Statistics, Manipal University Jaipur, Dehmi Kalan, Jaipur, Rajasthan, India – sequence: 2 givenname: Monika orcidid: 0000-0003-1023-0144 surname: Saini fullname: Saini, Monika organization: Department of Mathematics and Statistics, Manipal University Jaipur, Dehmi Kalan, Jaipur, Rajasthan, India – sequence: 3 givenname: Nivedita surname: Gupta fullname: Gupta, Nivedita organization: Department of Mathematics and Statistics, Manipal University Jaipur, Dehmi Kalan, Jaipur, Rajasthan, India – sequence: 4 givenname: Deepak orcidid: 0000-0001-9597-6206 surname: Sinwar fullname: Sinwar, Deepak organization: Department of Computer and Communication Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur, Rajasthan, India – sequence: 5 givenname: Dilbag orcidid: 0000-0001-6475-4491 surname: Singh fullname: Singh, Dilbag organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea – sequence: 6 givenname: Manjit orcidid: 0000-0001-8804-9172 surname: Kaur fullname: Kaur, Manjit organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea – sequence: 7 givenname: Heung-No orcidid: 0000-0001-8528-5778 surname: Lee fullname: Lee, Heung-No email: heungno@gist.ac.kr organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea |
| BookMark | eNp9UcFqGzEQFSWBpkm-IBdBz3aklbTSHs3iNoGEHJychVY7smXWK1eSW9Kvr-xNS8khc5lh5r3H8N4XdDaGERC6oWROKWluF227XK3mFamqOaOcCU4_oYuK1s2MCVaf_Td_RtcpbUkpVVZCXqC8dM5bD2PGqxzsxqTsLX4MPQzYhYif9hBN9mE0A178NH4wnR98fi2H7Hf-9-mGg8NtCIMf1_g5_IKIX9JxfoRsNnCI_iS6GNYh-rzZpSt07syQ4PqtX6KXb8vn9m728PT9vl08zCwnKs8a6qi0hlrhbG-AUUt65SrXdaZ3VPSkVsJJZ5kTUBPDVIE03IHqXEcaKtglup90-2C2eh_9zsRXHYzXp0WIa21ieW0A7ZQ0ouaykb3iAoyqO6aYpEpw0Vhri9bXSWsfw48DpKy34RCLLUlXNZOcyeJnQTUTysaQUgSnrc8nj3Is5mlK9DEzPWWmj5npt8wKl73j_v34Y9bNxPIA8I_R1KqSjLM_7nSmzQ |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s10665_024_10342_6 crossref_primary_10_1007_s41870_024_02147_8 crossref_primary_10_1155_2022_5807690 crossref_primary_10_1061_JPCFEV_CFENG_4678 crossref_primary_10_1155_2022_2592365 crossref_primary_10_46481_jnsps_2022_945 crossref_primary_10_1002_qre_3639 crossref_primary_10_1016_j_ijft_2024_100866 crossref_primary_10_1007_s13198_022_01744_9 crossref_primary_10_1155_2022_7194419 crossref_primary_10_1007_s41872_024_00283_5 crossref_primary_10_3233_JIFS_231940 crossref_primary_10_1007_s12008_024_02059_8 crossref_primary_10_1007_s41870_022_01070_0 crossref_primary_10_1134_S1995080223090354 crossref_primary_10_1155_2022_8662254 crossref_primary_10_1108_JQME_11_2021_0088 crossref_primary_10_1155_2023_3875525 crossref_primary_10_1016_j_jksuci_2022_05_018 crossref_primary_10_1155_2022_3767912 crossref_primary_10_1155_2022_9737511 crossref_primary_10_1155_2022_5256133 crossref_primary_10_1177_16878132221115931 crossref_primary_10_3233_JIFS_231513 crossref_primary_10_1016_j_csite_2025_106183 crossref_primary_10_1007_s11804_023_00371_5 crossref_primary_10_1007_s11135_025_02267_8 crossref_primary_10_1155_2022_8516928 crossref_primary_10_1016_j_chaos_2025_116330 crossref_primary_10_1007_s41872_024_00290_6 crossref_primary_10_1155_2022_1140789 crossref_primary_10_1155_2022_1621258 crossref_primary_10_1155_2022_2792639 crossref_primary_10_1155_2022_6163649 crossref_primary_10_3390_math12203296 crossref_primary_10_1371_journal_pone_0284848 |
| Cites_doi | 10.3390/en14113281 10.3390/en14102922 10.3390/en14112985 10.1109/ACCESS.2021.3120717 10.2166/wp.2012.018 10.1016/j.applthermaleng.2017.04.120 10.1007/s00521-015-1923-y 10.1023/A:1008202821328 10.1016/j.energy.2018.11.079 10.1115/GT2005-68937 10.1007/s00521-015-1914-z 10.1016/j.apenergy.2020.114555 10.1007/s12293-016-0212-3 10.1016/j.future.2019.02.028 10.3390/en14113225 10.1016/j.apacoust.2016.11.012 10.2495/ESUS140601 10.1080/15567036.2020.1844348 10.1016/j.knosys.2021.107625 10.37965/jait.2020.0051 10.1016/j.tsep.2018.04.015 10.1016/j.energy.2018.07.080 10.1016/j.rser.2017.05.151 10.1049/trit.2019.0028 10.1016/j.rser.2010.12.008 10.1007/bf00113892 10.3390/en14010167 10.1016/j.jclepro.2020.122175 10.1049/trit.2019.0051 10.1016/j.swevo.2011.02.002 10.37965/jait.2020.0037 10.1109/ISCBI.2015.8 10.1007/s11045-020-00739-8 10.1109/ACCESS.2021.3110849 10.1016/j.applthermaleng.2017.10.103 10.1016/j.ress.2020.107130 10.1016/j.advengsoft.2013.12.007 10.3390/en13061305 10.1088/1748-9326/6/3/034015 10.3390/en12101951 10.1007/s42452-020-2520-y 10.1016/j.future.2020.03.055 10.1109/PECON.2010.5697644 10.3390/math7111051 10.1016/j.scs.2021.103181 10.1016/j.icheatmasstransfer.2010.07.011 10.1115/1.4045639 10.17775/CSEEJPES.2016.00026 10.1109/ACCESS.2021.3130933 10.3390/en14051308 10.1016/j.energy.2018.11.111 10.1109/TSMCA.2012.2217320 10.3390/en14112978 10.1016/j.energy.2018.12.046 10.1109/MHS.1995.494215 10.37965/jait.2021.0017 10.1016/1359-4311(95)00068-2 10.1155/2021/8829829 10.1016/j.eswa.2020.113338 10.1109/JSYST.2012.2192065 10.1016/j.ins.2019.08.016 10.3390/en14113097 10.1109/SUPERGEN.2009.5347982 10.1007/s40010-018-0558-7 10.1109/TASE.2013.2266134 10.3390/en14123632 10.4249/scholarpedia.1482 10.1504/IJBIC.2018.093328 10.1007/s12559-021-09933-7 10.3390/en14123682 10.3390/en13215848 10.1007/978-1-4471-2309-5_9 10.1016/j.applthermaleng.2019.114766 10.1049/trit.2018.1006 10.1016/j.seta.2021.101070 10.1016/j.applthermaleng.2016.03.156 10.1109/MCI.2006.329691 10.1061/41031(341)105 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2022.3143541 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 24677 |
| ExternalDocumentID | oai_doaj_org_article_f87a564797d845ea86b3837185459ccc 10_1109_ACCESS_2022_3143541 9682734 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: IITP (Institute of Information & Communications Technology Planning & Evaluation) funderid: 10.13039/501100010418 – fundername: Korean government (MSIP) grantid: NRF-2021R1A2B5B03002118 – fundername: Ministry of Science and ICT (MSIT), Korea, under the ITRC (Information Technology Research Center) grantid: IITP-2021-0-01835 funderid: 10.13039/501100014188 – fundername: National Research Foundation of Korea (NRF) Grant funderid: 10.13039/501100003725 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-91f17ca1c5fcdae31c0d8f2fbbadf15d0685f7fc3f5e60a38e3194fe8bfb09153 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766544500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:42:50 EDT 2025 Sun Jun 29 15:22:16 EDT 2025 Sat Nov 29 06:31:51 EST 2025 Tue Nov 18 21:08:06 EST 2025 Wed Aug 27 02:49:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-91f17ca1c5fcdae31c0d8f2fbbadf15d0685f7fc3f5e60a38e3194fe8bfb09153 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8528-5778 0000-0001-9597-6206 0000-0001-6475-4491 0000-0001-8804-9172 0000-0003-1023-0144 0000-0001-9749-9140 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9682734 |
| PQID | 2637437957 |
| PQPubID | 4845423 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f87a564797d845ea86b3837185459ccc crossref_primary_10_1109_ACCESS_2022_3143541 ieee_primary_9682734 proquest_journals_2637437957 crossref_citationtrail_10_1109_ACCESS_2022_3143541 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 Storn (ref62) 1997; 11 ref9 ref4 ref3 ref6 ref5 ref81 ref40 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref76 ref2 Delgado (ref32) 2012 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 Reichert (ref1) 2019 ref63 ref22 ref66 ref21 ref65 Niemann (ref19) 2011; 91 ref28 ref27 ref29 ref60 ref61 |
| References_xml | – ident: ref41 doi: 10.3390/en14113281 – ident: ref45 doi: 10.3390/en14102922 – ident: ref10 doi: 10.3390/en14112985 – ident: ref13 doi: 10.1109/ACCESS.2021.3120717 – ident: ref36 doi: 10.2166/wp.2012.018 – ident: ref25 doi: 10.1016/j.applthermaleng.2017.04.120 – ident: ref55 doi: 10.1007/s00521-015-1923-y – volume: 11 start-page: 341 issue: 4 year: 1997 ident: ref62 article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – ident: ref4 doi: 10.1016/j.energy.2018.11.079 – ident: ref21 doi: 10.1115/GT2005-68937 – ident: ref48 doi: 10.1007/s00521-015-1914-z – ident: ref33 doi: 10.1016/j.apenergy.2020.114555 – ident: ref58 doi: 10.1007/s12293-016-0212-3 – ident: ref60 doi: 10.1016/j.future.2019.02.028 – ident: ref42 doi: 10.3390/en14113225 – ident: ref70 doi: 10.1016/j.apacoust.2016.11.012 – ident: ref28 doi: 10.2495/ESUS140601 – ident: ref35 doi: 10.1080/15567036.2020.1844348 – ident: ref71 doi: 10.1016/j.knosys.2021.107625 – ident: ref75 doi: 10.37965/jait.2020.0051 – ident: ref26 doi: 10.1016/j.tsep.2018.04.015 – volume: 91 start-page: 94 issue: 9 year: 2011 ident: ref19 article-title: Recent amendments to the VGB Guideline on the design and construction of cooling towers in power plants publication-title: VGB Powertech – ident: ref20 doi: 10.1016/j.energy.2018.07.080 – ident: ref22 doi: 10.1016/j.rser.2017.05.151 – ident: ref74 doi: 10.1049/trit.2019.0028 – ident: ref3 doi: 10.1016/j.rser.2010.12.008 – ident: ref51 doi: 10.1007/bf00113892 – ident: ref8 doi: 10.3390/en14010167 – ident: ref31 doi: 10.1016/j.jclepro.2020.122175 – ident: ref76 doi: 10.1049/trit.2019.0051 – year: 2019 ident: ref1 article-title: Simulation of power plants steam generators and cooling towers with artificial neural network – ident: ref61 doi: 10.1016/j.swevo.2011.02.002 – ident: ref73 doi: 10.37965/jait.2020.0037 – ident: ref57 doi: 10.1109/ISCBI.2015.8 – ident: ref63 doi: 10.1007/s11045-020-00739-8 – ident: ref81 doi: 10.1109/ACCESS.2021.3110849 – ident: ref16 doi: 10.1016/j.applthermaleng.2017.10.103 – ident: ref49 doi: 10.1016/j.ress.2020.107130 – ident: ref53 doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref9 doi: 10.3390/en13061305 – ident: ref24 doi: 10.1088/1748-9326/6/3/034015 – ident: ref34 doi: 10.3390/en12101951 – ident: ref14 doi: 10.1007/s42452-020-2520-y – ident: ref59 doi: 10.1016/j.future.2020.03.055 – ident: ref37 doi: 10.1109/PECON.2010.5697644 – ident: ref65 doi: 10.3390/math7111051 – ident: ref47 doi: 10.1016/j.scs.2021.103181 – ident: ref17 doi: 10.1016/j.icheatmasstransfer.2010.07.011 – ident: ref46 doi: 10.1115/1.4045639 – ident: ref18 doi: 10.17775/CSEEJPES.2016.00026 – ident: ref69 doi: 10.1109/ACCESS.2021.3130933 – ident: ref7 doi: 10.3390/en14051308 – ident: ref30 doi: 10.1016/j.energy.2018.11.111 – ident: ref80 doi: 10.1109/TSMCA.2012.2217320 – ident: ref44 doi: 10.3390/en14112978 – ident: ref39 doi: 10.1016/j.energy.2018.12.046 – ident: ref52 doi: 10.1109/MHS.1995.494215 – ident: ref77 doi: 10.37965/jait.2021.0017 – ident: ref27 doi: 10.1016/1359-4311(95)00068-2 – ident: ref66 doi: 10.1155/2021/8829829 – ident: ref68 doi: 10.1016/j.eswa.2020.113338 – ident: ref29 doi: 10.1109/JSYST.2012.2192065 – year: 2012 ident: ref32 article-title: Simple model to help understand water use at power plants – ident: ref64 doi: 10.1016/j.ins.2019.08.016 – ident: ref43 doi: 10.3390/en14113097 – ident: ref38 doi: 10.1109/SUPERGEN.2009.5347982 – ident: ref67 doi: 10.1007/s40010-018-0558-7 – ident: ref79 doi: 10.1109/TASE.2013.2266134 – ident: ref12 doi: 10.3390/en14123632 – ident: ref50 doi: 10.4249/scholarpedia.1482 – ident: ref56 doi: 10.1504/IJBIC.2018.093328 – ident: ref72 doi: 10.1007/s12559-021-09933-7 – ident: ref40 doi: 10.3390/en14123682 – ident: ref11 doi: 10.3390/en13215848 – ident: ref15 doi: 10.1007/978-1-4471-2309-5_9 – ident: ref2 doi: 10.1016/j.applthermaleng.2019.114766 – ident: ref78 doi: 10.1049/trit.2018.1006 – ident: ref6 doi: 10.1016/j.seta.2021.101070 – ident: ref5 doi: 10.1016/j.applthermaleng.2016.03.156 – ident: ref54 doi: 10.1109/MCI.2006.329691 – ident: ref23 doi: 10.1061/41031(341)105 |
| SSID | ssj0000816957 |
| Score | 2.462358 |
| Snippet | Metaheuristic algorithms are extensively utilized to find solutions and optimize complex industrial systems' performance. In this paper, metaheuristic... Metaheuristic algorithms are extensively utilized to find solutions and optimize complex industrial systems’ performance. In this paper, metaheuristic... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 24659 |
| SubjectTerms | Algorithms Availability Convergence Cooling cooling tower Cooling towers Critical components Difference equations Differential equations Failure analysis Failure rates genetic algorithm Genetic algorithms Heuristic methods Independent variables Markov modeling Markov processes Mathematical models Particle swarm optimization Poles and towers Power generation Power plants Power system reliability Random variables Reliability Repair Sensitivity analysis Steam electric power generation Steam turbines Stochastic models Subsystems Turbines |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDiAc9iD9x_iIHjxbTNj-PcygedAoqeAtJmrjBXMdWBf97kyYbE0EvXtv0R_JeX94L6ecLwFmpqBIYi8waUmTYZ7CZ5pRkWFmNqOAaRc7sLev3-cuLeFiS-gp7wiIeOA7cheNMEYqZYBXHxCpOdSiq_DSDiTDGhOiLmFgqptoYzHMqCEuYoRyJi26v53vkC8Ki8HWqTxJw_m0qaon9SWLlR1xuJ5vrLbCZskTYjW-3DVbseAdsLLEDd0Fz1cIf_JwBH5vaDFQALsMgbTaCPhGF9xM7TQt9sPuhhqMI5P70J5rhW_r7EtYO9uqg2_MKn4JeGmy3EMA726iBfY8UZ9gdvdbTYTN4m-2B5-urp95NliQUMoMRb3woczkzKjfEmUrZMjeo4q5wWqvK5aRClBPHnCkdsRSpkvsmAjvLtdM-kyDlPlgd12N7AKAjDAujkPOfLea04mWuNCUlRVUQHuUdUMxHU5rEFw8yFyPZ1hlIyGgCGUwgkwk64Hxx0STiNX5vfhnMtGga2NjtAe8xMnmM_MtjOmA3GHlxE0F5YPx0wPHc6DJ9xzNZ0JIFYiNhh__x6COwHroTl3COwWozfbcnYM18NMPZ9LR14S_Oz_J- priority: 102 providerName: Directory of Open Access Journals |
| Title | Efficient Stochastic Model for Operational Availability Optimization of Cooling Tower Using Metaheuristic Algorithms |
| URI | https://ieeexplore.ieee.org/document/9682734 https://www.proquest.com/docview/2637437957 https://doaj.org/article/f87a564797d845ea86b3837185459ccc |
| Volume | 10 |
| WOSCitedRecordID | wos000766544500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SkEN7aJumpdsmQYce40a29Txulw09NA9oArkJSZayC5t12PUGeulvryQrpiWh0IsxtmRkf3rMjDXfB_C51kxLQmThLK0KEizYwghGC6KdwUwKg3ue2e_8_Fzc3MjLLTgecmGcc2nzmfsST9O__Ka1mxgqO5FMRDaWbdjmnPW5WkM8JQpISMozsVCJ5cl4MgnvEFzAqgqeaTALSPnX4pM4-rOoypOZOC0vp6__r2Fv4FU2I9G4x30PttzyLbz8g1xwH7ppYocIFdGPrrUzHRmZUdQ-W6BgqaKLe7fKkUA0ftDzRc_Y_TPc6OZ3OT0TtR5N2ijsc4uuoqAaSnsM0Jnr9MxteppnNF7ctqt5N7tbv4Pr0-nV5FuRNRYKS7DowlznS251aam3jXZ1aXEjfOWN0Y0vaYOZoJ57W3vqGNa1CEUk8U4Yb4KpQev3sLNsl-4DIE85kVZjH8Y1EawRdakNozXDTVQmFSOoHj--spmAPOpgLFRyRLBUPWIqIqYyYiM4Hird9_wb_y7-NaI6FI3k2elCgEvlsai84JoywiVvBKFOC2ainx4sF0KltXYE-xHi4SEZ3REcPPYRlQf6WlWs5pHSkfKPz9f6BC9iA_uozQHsdKuNO4Rd-9DN16ujFAIIx7Nf06PUn38D3h_yjw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4aAwl44DYQhQF-4HFhTuLrY6k2DdEVJIq0N8t27LVS10xtOol_j-14EQiExFuUHEd2Pl_OObG_D-B9rZmWhMjCWVoVJHiwhRGMFkQ7g5kUBvc8s1M-m4mLC_l1D46GszDOubT5zH2Il-lfftPaXUyVHUsmIhvLHbhLCalwf1pryKhECQlJeaYWKrE8Hk8moRUhCKyqEJsGx4CUvy0_iaU_y6r8MRenBeb08f9V7Qk8yo4kGvfIP4U9t34GD3-hFzyA7iTxQ4SC6FvX2oWOnMwoqp-tUPBV0Zdrt8m5QDS-0ctVz9n9Izzollf5gCZqPZq0UdrnEs2jpBpKuwzQuev0wu16omc0Xl22m2W3uNo-h--nJ_PJWZFVFgpLsOjCbOdLbnVpqbeNdnVpcSN85Y3RjS9pg5mgnntbe-oY1rUIJpJ4J4w3wdmg9QvYX7dr9xKQp5xIq7EPI5sI1oi61IbRmuEmapOKEVS3H1_ZTEEelTBWKoUiWKoeMRURUxmxERwNha57Bo5_m3-MqA6mkT473QhwqTwalRdcU0a45I0g1GnBTIzUg-9CqLTWjuAgQjy8JKM7gsPbPqLyUN-qitU8kjpS_urvpd7B_bP5-VRNP80-v4YHsbJ9DucQ9rvNzr2Be_amW243b1N__gks_POw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Stochastic+Model+for+Operational+Availability+Optimization+of+Cooling+Tower+Using+Metaheuristic+Algorithms&rft.jtitle=IEEE+access&rft.au=Kumar%2C+Ashish&rft.au=Saini%2C+Monika&rft.au=Gupta%2C+Nivedita&rft.au=Sinwar%2C+Deepak&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=24659&rft.epage=24677&rft_id=info:doi/10.1109%2FACCESS.2022.3143541&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3143541 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |