Sclera-Net: Accurate Sclera Segmentation in Various Sensor Images Based on Residual Encoder and Decoder Network

Sclera segmentation is revealed to be of noteworthy importance for ocular biometrics. The paramount step for biometric recognition methods is the segmentation of the area of interest, i.e., the sclera in our case. The sclera segmentation process plays a pivotal part in retaining the accuracy of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 7; S. 98208 - 98227
Hauptverfasser: Naqvi, Rizwan Ali, Loh, Woong-Kee
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Sclera segmentation is revealed to be of noteworthy importance for ocular biometrics. The paramount step for biometric recognition methods is the segmentation of the area of interest, i.e., the sclera in our case. The sclera segmentation process plays a pivotal part in retaining the accuracy of the sclera-based recognition schemes by restraining the errors. However, accurate sclera segmentation in the images from various sensors in a real environment is quite challenging due to the saturated and/or defocused vessel patterns and the vessel structure, which has complex nonlinear deformations due to the multilayered sclera. With the development of deep learning algorithms, studies that are based on the sclera segmentation using convolutional neural networks (CNNs) have achieved promising results for sclera recognition. However, previous CNN-based methods are based on the repeated subsampling stages of convolution strides, or spatial pooling leads to losing much of the finer image structure that significantly decreases overall performance in tasks, such as semantic segmentation. In this paper, we present Sclera-Net , a residual encoder and decoder network that exploits identity and non-identity mapping residual skip connections to take benefit of the high-frequency information from the prior layers of both encoder and decoder networks to determine the accurate sclera region as well as other ocular regions. In this way, the finer image structure that was being lost due to repeated subsampling during convolution and pooling can be reutilized using residual skip connections to enhance overall performance. Furthermore, the proposed Sclera-Net does not enhance the performance on the cost of increasing depth, complexity, or the number of parameters. We performed comprehensive experiments and obtained optimum performance not only on sclera datasets but also on the iris datasets. In particular, we achieved an equal error rate and mean F1-score of 0.0093 and 96.2421, respectively, on the challenging SBVPI database, which is the best-reported result to date.
AbstractList Sclera segmentation is revealed to be of noteworthy importance for ocular biometrics. The paramount step for biometric recognition methods is the segmentation of the area of interest, i.e., the sclera in our case. The sclera segmentation process plays a pivotal part in retaining the accuracy of the sclera-based recognition schemes by restraining the errors. However, accurate sclera segmentation in the images from various sensors in a real environment is quite challenging due to the saturated and/or defocused vessel patterns and the vessel structure, which has complex nonlinear deformations due to the multilayered sclera. With the development of deep learning algorithms, studies that are based on the sclera segmentation using convolutional neural networks (CNNs) have achieved promising results for sclera recognition. However, previous CNN-based methods are based on the repeated subsampling stages of convolution strides, or spatial pooling leads to losing much of the finer image structure that significantly decreases overall performance in tasks, such as semantic segmentation. In this paper, we present Sclera-Net, a residual encoder and decoder network that exploits identity and non-identity mapping residual skip connections to take benefit of the high-frequency information from the prior layers of both encoder and decoder networks to determine the accurate sclera region as well as other ocular regions. In this way, the finer image structure that was being lost due to repeated subsampling during convolution and pooling can be reutilized using residual skip connections to enhance overall performance. Furthermore, the proposed Sclera-Net does not enhance the performance on the cost of increasing depth, complexity, or the number of parameters. We performed comprehensive experiments and obtained optimum performance not only on sclera datasets but also on the iris datasets. In particular, we achieved an equal error rate and mean F1-score of 0.0093 and 96.2421, respectively, on the challenging SBVPI database, which is the best-reported result to date.
Author Loh, Woong-Kee
Naqvi, Rizwan Ali
Author_xml – sequence: 1
  givenname: Rizwan Ali
  orcidid: 0000-0002-7473-8441
  surname: Naqvi
  fullname: Naqvi, Rizwan Ali
  organization: Department of Software, Gachon University, Seongnam, South Korea
– sequence: 2
  givenname: Woong-Kee
  surname: Loh
  fullname: Loh, Woong-Kee
  email: wkloh2@gachon.ac.kr
  organization: Department of Software, Gachon University, Seongnam, South Korea
BookMark eNp9UU1vEzEUtFCRKG1_QS-WOG-6Xtu7NrcQAkSqqESAq-U8P0cOiV3sXSH-fV22IMQBX_w0mpn3MS_JWUwRCblm7YKxVt8sV6v1drvoWqYXneat1PwZOe9YrxsueX_2V_2CXJVyaOtTFZLDOUlbOGK2zUccX9MlwJTtiHQG6Rb3J4yjHUOKNET61eaQplLxWFKmm5PdY6FvbEFHK-MTluAme6TrCMlhpjY6-hbnujb4kfK3S_Lc22PBq6f_gnx5t_68-tDc3r3frJa3DYhWjY1miiPXGqUQ2veyY9gqBV44QA0SmHdKCM_B9gjAONfKd04jt4zBznt-QTazr0v2YO5zONn80yQbzC8g5b2xeQx1T-MU20mpBs97JbgTmrtBiEFKkN2OAVSvV7PXfU7fJyyjOaQpxzq-6YSUUveyF5WlZxbkVEpGbyDMpxuzDUfDWvMYl5njMo9xmae4qpb_o_098f9V17MqIOIfhRp6rXvFHwBjmqKe
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3010011
crossref_primary_10_3390_app11072978
crossref_primary_10_32604_cmc_2020_013249
crossref_primary_10_1109_TBCAS_2024_3411713
crossref_primary_10_1109_TIFS_2022_3216468
crossref_primary_10_1051_itmconf_20246503014
crossref_primary_10_1007_s10462_021_10028_w
crossref_primary_10_3390_math8122192
crossref_primary_10_1007_s00521_023_08937_8
crossref_primary_10_1007_s10044_024_01301_z
crossref_primary_10_1007_s11760_023_02891_7
crossref_primary_10_1016_j_displa_2022_102257
crossref_primary_10_1109_TIM_2022_3232162
crossref_primary_10_1109_JSTARS_2023_3348572
Cites_doi 10.1109/ACCESS.2019.2918205
10.1109/TSMCA.2011.2170416
10.1109/ICCV.2015.436
10.1109/ISDA.2013.6920711
10.1038/42842
10.1115/1.802566.paper74
10.1109/LGRS.2018.2864342
10.1109/BTAS.2015.7358746
10.1007/s004170100365
10.1109/LGRS.2018.2867242
10.1109/CAC.2017.8243510
10.1109/CVPR.2016.90
10.1109/ACPR.2013.168
10.1109/TPAMI.2009.66
10.1109/TPAMI.2016.2644615
10.1109/BTAS.2015.7358796
10.1109/CVPR.2017.632
10.1001/archopht.1955.00930020231010
10.1109/ICSMC.2012.6377912
10.1109/BTAS.2017.8272764
10.1109/TIP.2013.2260165
10.1145/1143844.1143874
10.3390/sym9110263
10.1109/CVPR.2017.549
10.1109/IJCNN.2007.4371435
10.1109/CIBIM.2014.7015436
10.1109/ICARCV.2010.5707959
10.1016/j.patrec.2011.11.006
10.1109/BTAS.2018.8698597
10.1109/ICB.2012.6199815
10.1016/j.patcog.2008.01.012
10.1016/j.patrec.2015.02.012
10.1016/j.compmedimag.2018.03.001
10.1109/ICNGIS.2016.7854051
10.1109/IVS.2018.8500504
10.1109/ACCESS.2018.2868801
10.1016/j.procs.2016.09.365
10.1109/ICB.2016.7550069
10.1109/ICB2018.2018.00053
10.1016/j.ophtha.2015.11.020
10.1109/TPAMI.2016.2572683
10.1117/12.849706
10.1007/978-1-4757-4036-3_2
10.1109/ACCESS.2018.2794463
10.3390/s18051501
10.1109/ICCV.2015.304
10.1109/ICB.2016.7550055
10.1016/j.patrec.2015.02.009
10.1109/ACCESS.2019.2906344
10.1109/ICB.2016.7550049
10.1109/TIFS.2013.2291314
10.1007/978-3-642-01793-3_97
10.1007/978-3-642-01793-3_125
10.1117/12.849731
10.1109/IWOBI.2018.8464133
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2930593
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 98227
ExternalDocumentID oai_doaj_org_article_d81b5587f36843d493d744755c52b1cc
10_1109_ACCESS_2019_2930593
8769968
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 10.13039/501100003725
– fundername: National Research Foundation
  grantid: NRF-2018R1A2B6009188
  funderid: 10.13039/501100001321
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-9183e399e5449f6521e088cf4dce9c5c1fd844f3ca6ecc13398f2d9e3a11cbff3
IEDL.DBID DOA
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000480326700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:41:31 EDT 2025
Sun Nov 30 05:02:06 EST 2025
Tue Nov 18 21:48:02 EST 2025
Sat Nov 29 03:57:48 EST 2025
Wed Aug 27 02:54:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-9183e399e5449f6521e088cf4dce9c5c1fd844f3ca6ecc13398f2d9e3a11cbff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7473-8441
OpenAccessLink https://doaj.org/article/d81b5587f36843d493d744755c52b1cc
PQID 2455596564
PQPubID 4845423
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_d81b5587f36843d493d744755c52b1cc
proquest_journals_2455596564
crossref_primary_10_1109_ACCESS_2019_2930593
ieee_primary_8769968
crossref_citationtrail_10_1109_ACCESS_2019_2930593
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
ref58
ref14
(ref59) 2019
ref11
ref10
(ref29) 2019
nair (ref53) 2010
ref17
rot (ref24) 2018
ref16
ref19
ref18
he (ref51) 2016
ref50
(ref56) 2018
ref46
ref45
ref48
ref47
ref42
ioffe (ref52) 2015
ref41
(ref25) 2019
ref44
ref43
ref49
(ref28) 2019
ref8
ref7
arsalan (ref67) 2017; 9
ref9
ref4
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
(ref54) 2018
ref38
ref68
ref26
ref69
ref64
ref20
ref63
ref66
ref22
ref65
ref21
simonyan (ref15) 2015
(ref23) 2019
toh (ref3) 2006
ref27
ref60
ref62
ref61
glorot (ref55) 2011
References_xml – ident: ref62
  doi: 10.1109/ACCESS.2019.2918205
– ident: ref8
  doi: 10.1109/TSMCA.2011.2170416
– start-page: 448
  year: 2015
  ident: ref52
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc ICML
– ident: ref66
  doi: 10.1109/ICCV.2015.436
– ident: ref39
  doi: 10.1109/ISDA.2013.6920711
– ident: ref12
  doi: 10.1038/42842
– ident: ref7
  doi: 10.1115/1.802566.paper74
– ident: ref44
  doi: 10.1109/LGRS.2018.2864342
– year: 2019
  ident: ref59
  publication-title: Optimization Stochastic Gradient Descent
– ident: ref45
  doi: 10.1109/BTAS.2015.7358746
– ident: ref11
  doi: 10.1007/s004170100365
– ident: ref58
  doi: 10.1109/LGRS.2018.2867242
– ident: ref57
  doi: 10.1109/CAC.2017.8243510
– ident: ref16
  doi: 10.1109/CVPR.2016.90
– ident: ref9
  doi: 10.1109/ACPR.2013.168
– ident: ref27
  doi: 10.1109/TPAMI.2009.66
– ident: ref21
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref17
  doi: 10.1109/BTAS.2015.7358796
– ident: ref50
  doi: 10.1109/CVPR.2017.632
– ident: ref10
  doi: 10.1001/archopht.1955.00930020231010
– ident: ref36
  doi: 10.1109/ICSMC.2012.6377912
– ident: ref19
  doi: 10.1109/BTAS.2017.8272764
– year: 2019
  ident: ref29
  publication-title: Biometrics Ideal Test
– ident: ref69
  doi: 10.1109/TIP.2013.2260165
– ident: ref63
  doi: 10.1145/1143844.1143874
– year: 2019
  ident: ref25
  publication-title: SBVPI Dataset
– start-page: 1
  year: 2015
  ident: ref15
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc ICLR
– volume: 9
  start-page: 1
  year: 2017
  ident: ref67
  article-title: Deep learning-based iris segmentation for iris recognition in visible light environment
  publication-title: Symmetry
  doi: 10.3390/sym9110263
– ident: ref22
  doi: 10.1109/CVPR.2017.549
– start-page: 807
  year: 2010
  ident: ref53
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: Proc ICML
– ident: ref30
  doi: 10.1109/IJCNN.2007.4371435
– ident: ref40
  doi: 10.1109/CIBIM.2014.7015436
– start-page: 630
  year: 2016
  ident: ref51
  article-title: Identity mappings in deep residual networks
  publication-title: Proc ECCV
– ident: ref35
  doi: 10.1109/ICARCV.2010.5707959
– ident: ref38
  doi: 10.1016/j.patrec.2011.11.006
– ident: ref47
  doi: 10.1109/BTAS.2018.8698597
– start-page: 546
  year: 2006
  ident: ref3
  article-title: Identity verification through palm vein and crease texture
  publication-title: Proc IEEE ICB
– year: 2018
  ident: ref24
  article-title: Deep learning methods for biometric recognition based on eye information
– start-page: 315
  year: 2011
  ident: ref55
  article-title: Deep sparse rectifier neural networks
  publication-title: Proc AISTATS
– ident: ref33
  doi: 10.1109/ICB.2012.6199815
– ident: ref37
  doi: 10.1016/j.patcog.2008.01.012
– ident: ref65
  doi: 10.1016/j.patrec.2015.02.012
– ident: ref43
  doi: 10.1016/j.compmedimag.2018.03.001
– year: 2019
  ident: ref23
  publication-title: Sclera-Net CNN Model (Sclera-Net) With Algorithm
– ident: ref41
  doi: 10.1109/ICNGIS.2016.7854051
– ident: ref48
  doi: 10.1109/IVS.2018.8500504
– ident: ref61
  doi: 10.1109/ACCESS.2018.2868801
– ident: ref4
  doi: 10.1016/j.procs.2016.09.365
– ident: ref18
  doi: 10.1109/ICB.2016.7550069
– ident: ref20
  doi: 10.1109/ICB2018.2018.00053
– ident: ref14
  doi: 10.1016/j.ophtha.2015.11.020
– ident: ref49
  doi: 10.1109/TPAMI.2016.2572683
– ident: ref32
  doi: 10.1117/12.849706
– ident: ref1
  doi: 10.1007/978-1-4757-4036-3_2
– ident: ref5
  doi: 10.1109/ACCESS.2018.2794463
– ident: ref68
  doi: 10.3390/s18051501
– ident: ref60
  doi: 10.1109/ICCV.2015.304
– ident: ref64
  doi: 10.1109/ICB.2016.7550055
– ident: ref26
  doi: 10.1016/j.patrec.2015.02.009
– ident: ref6
  doi: 10.1109/ACCESS.2019.2906344
– year: 2018
  ident: ref54
  publication-title: Convolutional neural network
– ident: ref42
  doi: 10.1109/ICB.2016.7550049
– ident: ref34
  doi: 10.1109/TIFS.2013.2291314
– ident: ref2
  doi: 10.1007/978-3-642-01793-3_97
– year: 2019
  ident: ref28
  publication-title: NICE I-Noisy Iris Challenge Evaluation Part I
– ident: ref31
  doi: 10.1007/978-3-642-01793-3_125
– year: 2018
  ident: ref56
  publication-title: Matlab
– ident: ref13
  doi: 10.1117/12.849731
– ident: ref46
  doi: 10.1109/IWOBI.2018.8464133
SSID ssj0000816957
Score 2.291005
Snippet Sclera segmentation is revealed to be of noteworthy importance for ocular biometrics. The paramount step for biometric recognition methods is the segmentation...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 98208
SubjectTerms Algorithms
Artificial neural networks
Biomedical imaging
Biometrics
Coders
Complexity
Convolution
convolutional neural network
Datasets
Decoding
Deep learning
encoder-decoder network
Image segmentation
Iris
Iris recognition
Machine learning
Recognition
residual connections
Sclera recognition
sclera segmentation
semantic segmentation
Vessels
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc4lEdBLBTkA8emTWI7trltl1YgoRWiUPVmxS9UiSYo2e3vZ-y4EQiExM1ybMvJZ8_D8XwD8KZkzLemkYWh1MQUZrQw3JiiEaUwgdWOpzPdy49ivZZXV-rTDhzNsTDe-3T5zB_HYvqX73q7jUdlJ7hz0TyXu7ArRDPFas3nKTGBhOIiEwtVpTpZrlb4DvH2ljpGpRZz1_2mfBJHf06q8ockTurl_OH_TewR7Gczkiwn3B_Dju-ewINfyAUPoL_AJ0NbrP3mLVlau42kEGSqJBf-202OOurIdUcu0WXutyPWd2M_kA83KGZGcooqzhFs8dmPKWiLnHUxBn4gbefIOz-V19NN8qfw9fzsy-p9kdMrFJaVcoNiTlKP9onnjKnQoB73KHJsYM56ZbmtgpOMBWrbBnFGX1bJUDvlaVtV1oRAn8Fe13f-ORDRRpqXimNjjvgK5YKRZYujc2qlcQuo7767tpl7PKbA-K6TD1IqPYGlI1g6g7WAo7nTj4l649_NTyOgc9PIm50qECmdt6F2aKVzLkWgjWTUMUWdiJSH3PLaVNYu4CCiOw-SgV3A4d3y0HmPj7pmHN0xtIfZi7_3egn34wSnA5tD2NsMW_8K7tnbzfU4vE7L9ydTH-2S
  priority: 102
  providerName: IEEE
Title Sclera-Net: Accurate Sclera Segmentation in Various Sensor Images Based on Residual Encoder and Decoder Network
URI https://ieeexplore.ieee.org/document/8769968
https://www.proquest.com/docview/2455596564
https://doaj.org/article/d81b5587f36843d493d744755c52b1cc
Volume 7
WOSCitedRecordID wos000480326700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYq1EM5IFqoWEpXPvTYQBLbsd3b7nZRK7WrCijiZsUvhATZKlk49rd3_GC1VaVy4RJFzuThmck8LM83CH0oKXWtbkShCdGhhRkpNNO6aHjJtae1ZXFN9_IbXyzE1ZX8sdHqK-wJS_DAiXEnFuIqxgT3pBGUWCqJ5QGkjhlW68qYYH1LLjeSqWiDRdVIxjPMUFXKk8lsBjMKe7nkMbi40MnuL1cUEftzi5V_7HJ0Nqe7aCdHiXiSvu41euG6N2h7AztwDy3P4UrfFgu3-oQnxtwHzAecBvG5u77LRUUdvunwJWTEkOLDeDcse_z1DqzIgKfgwSwGijM3xJosPO9CiXuP287izy6dL9JG8X3083R-MftS5O4JhaGlWIEVE8RB-OEYpdI34KYdWBTjqTVOGmYqbwWlnpi2ATFCqiqFr610pK0qo70nb9FWt-zcAcK8DSguFQNiBuLj0notyhaezogR2o5Q_chIZTK0eOhwcatiilFKlbivAvdV5v4IfVzf9Csha_yffBoktCYNsNhxAJRFZWVRTynLCO0F-a4fAq4A8j0xQkeP8lb5Fx5UTRlkWxDu0sPnePU79CpMJ63eHKGtVX_v3qOX5mF1M_TjqL1w_P57Po41iH8A_HXxhw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQcyqMglhbwgWPTJrGd2Ny2S6tWLBGiperNil-oEk1QssvvZ5y4USsQErfIGVuOP3tm7Hi-AXifMuZqXYhEU6pDCjOaaK51UpRpqT3LLR_OdC-WZVWJy0v5ZQP2plgY59xw-czth8fhX75tzToclR3gykX3XNyD-5yxPB2jtaYTlZBCQvIyUgtlqTyYLxb4FeH-ltxHsxay190xPwNLf0yr8ocuHgzM8ZP_69pT2IqOJJmPyD-DDdc8h8e36AW3oT3DN12dVG71gcyNWQdaCDIWkjP3_TrGHTXkqiEXuGlu1z2WN33bkdNrVDQ9OUQjZwlKfHX9ELZFjpoQBd-RurHkoxufq_Eu-Qv4dnx0vjhJYoKFxLBUrFDRCerQQ3E4nNIXaMkdKh3jmTVOGm4ybwVjnpq6QKRxNyuFz610tM4yo72nL2GzaRv3CkhZB6KXjKMwR4RLab0WaY2tc2qEtjPIb8Zdmcg-HpJg_FDDLiSVagRLBbBUBGsGe1OlnyP5xr_FDwOgk2hgzh4KECkVF6Ky6KdzLkpPC8GoZZLaMpAecsNznRkzg-2A7tRIBHYGuzfTQ8VV3quccdyQoUfMXv-91jt4eHL-eamWp9WnHXgUOjse3-zC5qpbuzfwwPxaXfXd22Eq_wbQBvDZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sclera-Net%3A+Accurate+Sclera+Segmentation+in+Various+Sensor+Images+Based+on+Residual+Encoder+and+Decoder+Network&rft.jtitle=IEEE+access&rft.au=Naqvi%2C+Rizwan+Ali&rft.au=Loh%2C+Woong-Kee&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=98208&rft.epage=98227&rft_id=info:doi/10.1109%2FACCESS.2019.2930593&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2930593
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon