Hyperspectral Image Classification Based on Stacked Contractive Autoencoder Combined With Adaptive Spectral-Spatial Information

Hyperspectral image (HSI) contain abundant spectral and spatial information, enabling the accurate classification of ground objects. However, many existing machine learning methods have poor performance, and some existing CNN-based methods require high computational power, which considerably limits...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 9; s. 96404 - 96415
Hlavní autoři: Guo, Pengyue, Liu, Zhenbing, Lu, Haoxiang, Wang, Zimin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hyperspectral image (HSI) contain abundant spectral and spatial information, enabling the accurate classification of ground objects. However, many existing machine learning methods have poor performance, and some existing CNN-based methods require high computational power, which considerably limits their real-world applications. To address these issues, in this paper, we propose an alternative HSI classification method based on the stacked contractive autoencoder (SCAE) and adaptive spectral-spatial information to improve the accuracy of HSI classification. Specifically, the non-subsampled shearlet transform (NSST) with the guided filtering (NG) enhances spatial structure information. Subsequently, we present an adaptive spatial information extraction method to extract the spatial information of pixels. Furthermore, we propose an HSI classification network, called SCAE-LR, for feature extraction and classification. The SCAE is implemented to extract the adaptive spectral-spatial feature, and a logistic regression (LR) layer is employed for classification. Extensive experiments on the Indian Pines data set and the Pavia University data set demonstrate the superior performance of our method.
AbstractList Hyperspectral image (HSI) contain abundant spectral and spatial information, enabling the accurate classification of ground objects. However, many existing machine learning methods have poor performance, and some existing CNN-based methods require high computational power, which considerably limits their real-world applications. To address these issues, in this paper, we propose an alternative HSI classification method based on the stacked contractive autoencoder (SCAE) and adaptive spectral-spatial information to improve the accuracy of HSI classification. Specifically, the non-subsampled shearlet transform (NSST) with the guided filtering (NG) enhances spatial structure information. Subsequently, we present an adaptive spatial information extraction method to extract the spatial information of pixels. Furthermore, we propose an HSI classification network, called SCAE-LR, for feature extraction and classification. The SCAE is implemented to extract the adaptive spectral-spatial feature, and a logistic regression (LR) layer is employed for classification. Extensive experiments on the Indian Pines data set and the Pavia University data set demonstrate the superior performance of our method.
Author Guo, Pengyue
Wang, Zimin
Liu, Zhenbing
Lu, Haoxiang
Author_xml – sequence: 1
  givenname: Pengyue
  orcidid: 0000-0002-5528-4923
  surname: Guo
  fullname: Guo, Pengyue
  organization: School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, China
– sequence: 2
  givenname: Zhenbing
  surname: Liu
  fullname: Liu, Zhenbing
  email: zbliu2011@163.com
  organization: School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, China
– sequence: 3
  givenname: Haoxiang
  orcidid: 0000-0003-2284-5154
  surname: Lu
  fullname: Lu, Haoxiang
  organization: School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, China
– sequence: 4
  givenname: Zimin
  surname: Wang
  fullname: Wang, Zimin
  organization: School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, China
BookMark eNp9kU9v1DAQxS1UJErpJ-glEuds43-xfVyiQleq1ENAHC2vMy5esnGwvUg99avj3SwIccAXj0bv92bs9xZdTGEChG5ws8K4Ubfrrrvr-xVpCF7RRnHS8lfokuBW1ZTT9uKv-g26TmnXlCNLi4tL9HL_PENMM9gczVht9uYJqm40KXnnrck-TNUHk2CoStFnY7-XsgtTUdvsf0K1PuQAkw0DxNLfb_1UBF99_latBzOfJP3Zve7nYnicMrkQ9yfzd-i1M2OC6_N9hb58vPvc3dcPj5823fqhtqyRuVaYET4QJuXAKCmbO0XVoEACBgOUC-wwpkJQwbZUWouZExRLMTAgiogtvUKbxXcIZqfn6PcmPutgvD41QnzSJmZvR9ANtYqalthCFpxI3gpshHDbljmJZfF6v3jNMfw4QMp6Fw5xKutrwjmmLcctLSq1qGwMKUVw2vp8enP5Cz9q3OhjfHqJTx_j0-f4Ckv_YX9v_H_qZqE8APwhFBNcSUp_Ab2Gp9Y
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_infrared_2024_105220
crossref_primary_10_1016_j_procs_2025_03_286
Cites_doi 10.1109/TGRS.2018.2849981
10.1109/LGRS.2018.2869563
10.1109/LGRS.2014.2302034
10.1109/ICIP.2017.8297014
10.1109/TGRS.2016.2543748
10.1016/j.image.2020.116030
10.1109/TCYB.2019.2905793
10.1109/IGARSS.2018.8519547
10.1109/JSTARS.2015.2388577
10.1109/TGRS.2008.916090
10.1109/TGRS.2012.2201730
10.1109/TPAMI.2012.213
10.1109/JSTARS.2013.2264720
10.1109/TPAMI.2015.2389824
10.1109/TGRS.2004.842481
10.1109/TGRS.2018.2794326
10.3390/rs10030396
10.1109/ACCESS.2019.2959560
10.1016/j.neucom.2019.08.096
10.1109/TGRS.2017.2675902
10.1155/2015/258619
10.1109/TGRS.2004.831865
10.1109/JSTARS.2016.2598859
10.3390/rs9060541
10.1179/174313110X12771950995716
10.3390/rs11010026
10.1109/TGRS.2015.2514161
10.1109/JSTARS.2014.2329330
10.1109/JSTARS.2013.2272212
10.1109/ICIECS.2009.5363456
10.1016/j.patrec.2020.08.020
10.1016/j.compeleceng.2021.106981
10.1109/LGRS.2020.2988124
10.1109/TGRS.2011.2162649
10.1109/TGRS.2014.2358934
10.1016/j.neucom.2016.11.062
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3095265
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 96415
ExternalDocumentID oai_doaj_org_article_03c93a62c2924e2285671a77fb64f818
10_1109_ACCESS_2021_3095265
9475983
Genre orig-research
GrantInformation_xml – fundername: Guet Graduate Education
  grantid: 2017YJCX101
– fundername: Science and Technology Major Project of Guangxi
  grantid: AA17202024
  funderid: 10.13039/501100013091
– fundername: National Natural Science Foundation of China
  grantid: 61866009
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-91425d2488d432957f939d9e8e1eae3571f11377374b38cc14f73187d4e2927b3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673600300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:28:04 EDT 2025
Sun Jun 29 15:45:50 EDT 2025
Sat Nov 29 06:12:25 EST 2025
Tue Nov 18 22:11:50 EST 2025
Wed Aug 27 02:40:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-91425d2488d432957f939d9e8e1eae3571f11377374b38cc14f73187d4e2927b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2284-5154
0000-0002-5528-4923
OpenAccessLink https://ieeexplore.ieee.org/document/9475983
PQID 2551365163
PQPubID 4845423
PageCount 12
ParticipantIDs proquest_journals_2551365163
crossref_citationtrail_10_1109_ACCESS_2021_3095265
crossref_primary_10_1109_ACCESS_2021_3095265
doaj_primary_oai_doaj_org_article_03c93a62c2924e2285671a77fb64f818
ieee_primary_9475983
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
ref15
ref36
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref38
ref16
ref19
ref18
hassanzadeh (ref33) 2017; 10270
wang (ref12) 2018; 10
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
rifai (ref32) 2011
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref10
  doi: 10.1109/TGRS.2018.2849981
– ident: ref14
  doi: 10.1109/LGRS.2018.2869563
– start-page: 833
  year: 2011
  ident: ref32
  article-title: Contractive auto-encoders: Explicit invariance during feature extraction
  publication-title: Proc 28th Int Conf Int Conf Mach Learn
– ident: ref11
  doi: 10.1109/LGRS.2014.2302034
– ident: ref37
  doi: 10.1109/ICIP.2017.8297014
– ident: ref27
  doi: 10.1109/TGRS.2016.2543748
– ident: ref20
  doi: 10.1016/j.image.2020.116030
– ident: ref13
  doi: 10.1109/TCYB.2019.2905793
– ident: ref34
  doi: 10.1109/IGARSS.2018.8519547
– ident: ref31
  doi: 10.1109/JSTARS.2015.2388577
– ident: ref6
  doi: 10.1109/TGRS.2008.916090
– ident: ref16
  doi: 10.1109/TGRS.2012.2201730
– ident: ref36
  doi: 10.1109/TPAMI.2012.213
– ident: ref17
  doi: 10.1109/JSTARS.2013.2264720
– ident: ref23
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref7
  doi: 10.1109/TGRS.2004.842481
– ident: ref38
  doi: 10.1109/TGRS.2018.2794326
– ident: ref21
  doi: 10.3390/rs10030396
– ident: ref1
  doi: 10.1109/ACCESS.2019.2959560
– ident: ref24
  doi: 10.1016/j.neucom.2019.08.096
– volume: 10270
  start-page: 169
  year: 2017
  ident: ref33
  article-title: Unsupervised multi-manifold classification of hyperspectral remote sensing images with contractive autoencoder
  publication-title: Proc Scandin Conf Img Anal
– ident: ref22
  doi: 10.1109/TGRS.2017.2675902
– ident: ref26
  doi: 10.1155/2015/258619
– ident: ref8
  doi: 10.1109/TGRS.2004.831865
– ident: ref30
  doi: 10.1109/JSTARS.2016.2598859
– ident: ref19
  doi: 10.3390/rs9060541
– ident: ref2
  doi: 10.1179/174313110X12771950995716
– volume: 10
  start-page: 26
  year: 2018
  ident: ref12
  article-title: Classification of hyperspectral images by svm using a composite kernel by employing spectral, spatial and hierarchical structure information
  publication-title: Remote Sens
  doi: 10.3390/rs11010026
– ident: ref4
  doi: 10.1109/TGRS.2015.2514161
– ident: ref29
  doi: 10.1109/JSTARS.2014.2329330
– ident: ref3
  doi: 10.1109/JSTARS.2013.2272212
– ident: ref9
  doi: 10.1109/ICIECS.2009.5363456
– ident: ref28
  doi: 10.1016/j.patrec.2020.08.020
– ident: ref25
  doi: 10.1016/j.compeleceng.2021.106981
– ident: ref18
  doi: 10.1109/LGRS.2020.2988124
– ident: ref15
  doi: 10.1109/TGRS.2011.2162649
– ident: ref5
  doi: 10.1109/TGRS.2014.2358934
– ident: ref35
  doi: 10.1016/j.neucom.2016.11.062
SSID ssj0000816957
Score 2.2125907
Snippet Hyperspectral image (HSI) contain abundant spectral and spatial information, enabling the accurate classification of ground objects. However, many existing...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 96404
SubjectTerms adaptive spectral-spatial information
Adaptive systems
Classification
Data mining
Datasets
Feature extraction
Hyperspectral image
Hyperspectral imaging
Image classification
Image reconstruction
Information retrieval
logistic regression
Logistics
Machine learning
Spatial data
Spectra
Transforms
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LS_QwEA8iHvTw4RPXFz14tNokbR7HdVH0IoKK3kKaBy58rrJWr_7rzqRxWRD04q2EadLMZF4l8xtCDh0PWP7YlgzLf2uqXdkqEUsaaGxYcFYLl5pNyKsr9fCgr-dafeGdsB4euGfcScWd5lYwxyBTCIypRkhqpYytqCN4G7S-ldRzyVSywYoK3cgMM0QrfTIcjWBHkBAyeswhrmDoTuZcUULszy1Wvtnl5GzOV8m_HCUWw_7r1shCmKyTlTnswA3ycQEZZF8oOQXSyycwDEVqcYmXfxK_i1NwUb6ABwgpQVt9gVhUqSzqPRTDt-4ZUSx9mML4E2TIQHA_7h6LobcvieQmz15i4-IxrjKZFTtukrvzs9vRRZm7KZSurlQHVg3U0zNQWF9zBsyJmmuvgwo02MAbSSNF-EEu65Yr52gdJSi89MB1zWTLt8ji5HkStkmhFQtUeOu8ABtAWyt9W3MXIbTx3EY7IOyLscZlqHHsePHfpJSj0qaXhkFpmCyNATmavfTSI238TH6KEpuRIkx2GoDDY_LhMb8dngHZQHnPJtGIfqj4gOx9yd9klX41DFvhiAbi152_WHqXLON2-r85e2Sxm76FfbLk3rvx6_QgneZP5Tv03Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Hyperspectral Image Classification Based on Stacked Contractive Autoencoder Combined With Adaptive Spectral-Spatial Information
URI https://ieeexplore.ieee.org/document/9475983
https://www.proquest.com/docview/2551365163
https://doaj.org/article/03c93a62c2924e2285671a77fb64f818
Volume 9
WOSCitedRecordID wos000673600300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6qE99ItWbEtRDj0SWNuJHR-XFYgeiiq1VblZjj1RVyq7aMlyLH-dGcdESK0q9RJF0Tix8zLjGcfzBuBjUMjpj20pOf23EjaUbaO7UqDoaonBWx1SsQlzcdFcXtovW3A45sIgYtp8hkd8mv7lx1XY8FLZsWVyukZtw7YxesjVGtdTuICErU0mFhJTezybz2kMFAJKcaTIk5A8gTyafBJHfy6q8oclTtPL2Yv_69hLeJ7dyGI24P4KtnD5Gp49IhfchbtzCjGHTMo1iX66IstRpBqYvDsoAVKc0BwWCzohn5PUORZMVpXypm6xmG36FdNcRlzT9SsKoUngx6L_Wcyiv04iX_PdS65svOCnLMdsyDfw_ez02_y8zOUWylBNm57MHulvlKTRsVKS3mVnlY0WGxToUdVGdIL5CZWpWtWEIKrOkEUwsUJppWnVW9hZrpa4B4VtJAodfYiajIRovYltpUJHvk9UvvMTkA84uJC5yLkkxi-XYpKpdQN4jsFzGbwJHI6Nrgcqjn-LnzDAoyjzaKcLhJzLaummKljltQw0AhqGbGpthDema3XVkS8zgV1Ge7xJBnoC-w-fi8s6f-Mk18rRNTm47_7e6j085Q4OCzj7sNOvN_gBnoTbfnGzPkirAXT8_Pv0IH3a90EW9ZQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VggQc-CqoCwVy4Ni0azuJ4-N2RbUVZYVEEb1ZiT1WV6K71Tbba_86M44bVQIhcYusyYfzPOOxk3kP4JNTyOWPbS65_LcQxuVtXYVcoAilRNeYykWxCT2f1-fn5tsW7A-1MIgYfz7DAz6M3_L9ym14q-zQMDldrR7AQ1bOStVaw44KS0iYUidqITE2h5PplHpBi0ApDhTlEpKnkHvTT2TpT7Iqf8TiOMEcP_-_R3sBz1IimU165F_CFi5fwdN79II7cDujRWZfS7km05NLih1ZVMHk_4MiJNkRzWI-owPKOsmhfcZ0VbFy6gazyaZbMdGlxzW1X9Iimgx-LrqLbOKbq2jyPV09Z23jBd9lOdRDvoYfx5_PprM8CS7krhjXHQU-8mAvyad9oSS9y2CU8QZrFNigKrUIghkKlS5aVTsniqApJmhfoDRSt-oNbC9XS9yFzNQSReUb5ysKE6JttG8L5QJlP141oRmBvMPBusRGzqIYv2xclYyN7cGzDJ5N4I1gfzjpqifj-Lf5EQM8mDKTdmwg5GxyTDtWzqimko56QN2QdVlp0Wgd2qoIlM2MYIfRHi6SgB7B3t1wscnrr61ktZyqpBT37d_P-giPZ2dfT-3pyfzLO3jCD9tv5-zBdrfe4Ht45G66xfX6QxzavwGa_Pa3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Image+Classification+Based+on+Stacked+Contractive+Autoencoder+Combined+With+Adaptive+Spectral-Spatial+Information&rft.jtitle=IEEE+access&rft.au=Guo%2C+Pengyue&rft.au=Liu%2C+Zhenbing&rft.au=Lu%2C+Haoxiang&rft.au=Wang%2C+Zimin&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=96404&rft.epage=96415&rft_id=info:doi/10.1109%2FACCESS.2021.3095265&rft.externalDocID=9475983
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon