Benchmark Analysis of Semantic Segmentation Algorithms for Safe Planetary Landing Site Selection
This paper presents an in-depth analysis of state-of-the-art semantic segmentation algorithms applied to spacecraft safe planetary landing via hazard detection and avoidance. Several architectures are trained from binary safety maps and the rich dataset of the High-Resolution Imaging Science Experim...
Saved in:
| Published in: | IEEE access Vol. 10; pp. 41766 - 41775 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper presents an in-depth analysis of state-of-the-art semantic segmentation algorithms applied to spacecraft safe planetary landing via hazard detection and avoidance. Several architectures are trained from binary safety maps and the rich dataset of the High-Resolution Imaging Science Experiment (HiRISE) embedded on Mars Reconnaissance Orbiter for realistic purposes. The study incorporates several metrics comparisons such as recognition accuracy, computational complexity, model complexity, and inference time. The proposed performance indices and combinations are analyzed and discussed. The experiments were performed using a Raspberry Pi 4B, which is a relevant commercial-of-the-shelf microcontroller surrogate of NASA's High-Performance Spaceflight Computer (HPSC) that will thrive within the next decades in space exploration. This paper allows researchers to know what has been tested on the subject and serves as a catalog for users to pick the most relevant architecture for their own application. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2022.3167763 |