A Short-Term Load Forecasting Model Based on Self-Adaptive Momentum Factor and Wavelet Neural Network in Smart Grid
Short-term load forecasting plays an essential role in the efficient management of electrical systems. Building an optimization model that will enhance forecasting accuracy is a challenging task and a concern for electrical load prediction. Due to Artificial Neural Networks (ANNs), the final result...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 10; S. 77587 - 77602 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Short-term load forecasting plays an essential role in the efficient management of electrical systems. Building an optimization model that will enhance forecasting accuracy is a challenging task and a concern for electrical load prediction. Due to Artificial Neural Networks (ANNs), the final result depends on initial random weights and thresholds that affect the stability of the forecast. Although much devotion is being given to improving the forecast accuracy, convergence, complexity, and resilience need to be considered for stable predictive models. To overcome this limitation, this work has jointly considered the Wavelet Neural Network (WNN) and Self-Adaptive Momentum Factor (SAMF) to achieve fast convergence, stability, and high accuracy. The proposed hybrid model is developed by combining the Feature Engineering (FE) and SAMF with the WNN model. The FE removes the irrelevant data and shallow features to ensure high computational performance. In contrast, the SAMF combines the wavelet transform's time and frequency domain properties and adjusts the WNN model's corresponding parameters. This ensures the global optimum solution while returning accurate predictive results. Finally, the SAMF is used to tune the control parameters of WNN by initializing the random weights and thresholds to accelerate the convergence rate and improve the accuracy compared to the Back-Propagation (BP) method. The proposed hybrid model is tested on the real-time datasets taken from the Australian states of (New South Wales (NSW), and Victoria (VIC)). Experimental results show that the developed model outperforms other benchmark models such as WNN-IGA, BPNN, WNN-AMBA, and Enhanced WNN in terms of instability, rate of convergence, and accuracy. |
|---|---|
| AbstractList | Short-term load forecasting plays an essential role in the efficient management of electrical systems. Building an optimization model that will enhance forecasting accuracy is a challenging task and a concern for electrical load prediction. Due to Artificial Neural Networks (ANNs), the final result depends on initial random weights and thresholds that affect the stability of the forecast. Although much devotion is being given to improving the forecast accuracy, convergence, complexity, and resilience need to be considered for stable predictive models. To overcome this limitation, this work has jointly considered the Wavelet Neural Network (WNN) and Self-Adaptive Momentum Factor (SAMF) to achieve fast convergence, stability, and high accuracy. The proposed hybrid model is developed by combining the Feature Engineering (FE) and SAMF with the WNN model. The FE removes the irrelevant data and shallow features to ensure high computational performance. In contrast, the SAMF combines the wavelet transform’s time and frequency domain properties and adjusts the WNN model’s corresponding parameters. This ensures the global optimum solution while returning accurate predictive results. Finally, the SAMF is used to tune the control parameters of WNN by initializing the random weights and thresholds to accelerate the convergence rate and improve the accuracy compared to the Back-Propagation (BP) method. The proposed hybrid model is tested on the real-time datasets taken from the Australian states of (New South Wales (NSW), and Victoria (VIC)). Experimental results show that the developed model outperforms other benchmark models such as WNN-IGA, BPNN, WNN-AMBA, and Enhanced WNN in terms of instability, rate of convergence, and accuracy. |
| Author | ZulfiqAr, Muhammad Milyani, Ahmad H. Kamran, Muhammad Rasheed, Muhammad Babar Alquthami, Thamer |
| Author_xml | – sequence: 1 givenname: Muhammad orcidid: 0000-0002-1624-3045 surname: ZulfiqAr fullname: ZulfiqAr, Muhammad organization: Department of Telecommunication Systems, Bahauddin Zakariya University, Multan, Pakistan – sequence: 2 givenname: Muhammad surname: Kamran fullname: Kamran, Muhammad organization: Department of Electrical Engineering, University of Engineering and Technology, Lahore, Lahore, Pakistan – sequence: 3 givenname: Muhammad Babar orcidid: 0000-0002-9911-0693 surname: Rasheed fullname: Rasheed, Muhammad Babar email: muhammad.rasheed@uah.es organization: Escuela Politécnica Superior, Universidad de Alcalá, Alcalá de Henares, Spain – sequence: 4 givenname: Thamer orcidid: 0000-0002-3686-0817 surname: Alquthami fullname: Alquthami, Thamer email: tquthami@kau.edu.sa organization: Electrical and Computer Engineering Department, King Abdulaziz University, Jeddah, Saudi Arabia – sequence: 5 givenname: Ahmad H. orcidid: 0000-0002-1926-9486 surname: Milyani fullname: Milyani, Ahmad H. organization: Electrical and Computer Engineering Department, King Abdulaziz University, Jeddah, Saudi Arabia |
| BookMark | eNqFkU1vEzEQhi1UpJa2v6AXS5w3-Gt37WOImlIp0EOKerS89rg4bNbBdor497hsVSEu-DKj8TzvzOh9h06mOAFCV5QsKCXqw3K1ut5uF4wwtuBUMcH5G3TGaKca3vLu5K_8FF3mvCP1yVpq-zOUl3j7LabS3EPa4000Dq9jAmtyCdMj_hwdjPijyeBwnPAWRt8snTmU8AT1cw9TOe7x2tgSEzaTww_mCUYo-AsckxlrKD9j-o5DZfcmFXyTgrtAb70ZM1y-xHP0dX19v_rUbO5ublfLTWMFkaWR0Hlqua8HCUsFoyCsE2xQfSed4INyHamZBMItU5I5AObBedk6wgwn_Bzdzroump0-pFA3-KWjCfpPIaZHXVcKdgRNvOoY7a2ghIjeqIGollk5DMKLwbW0ar2ftQ4p_jhCLnoXj2mq62vWVVbyTvLaxecum2LOCfzrVEr0s1l6Nks_m6VfzKqU-oeyoZgS4lSSCeN_2KuZDQDwOk1JzqTs-W9z1KLE |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1155_2024_5452005 crossref_primary_10_3390_su16177805 crossref_primary_10_1109_TVT_2022_3229700 crossref_primary_10_3390_en17225524 crossref_primary_10_1109_ACCESS_2025_3558445 crossref_primary_10_32604_cmes_2024_058202 crossref_primary_10_3390_en16062919 crossref_primary_10_3390_app15094820 crossref_primary_10_3390_en17112539 crossref_primary_10_1109_ACCESS_2024_3358182 |
| Cites_doi | 10.1155/2016/9895639 10.1016/S0196-8904(02)00148-6 10.1016/j.rser.2016.01.114 10.1109/ICRCCS.2009.12 10.1109/TPAS.1971.293123 10.1109/ACCESS.2022.3171270 10.1016/j.apenergy.2010.04.006 10.1016/j.apenergy.2012.01.010 10.1016/j.buildenv.2019.03.035 10.1016/j.energy.2018.06.012 10.1007/s42452-019-1835-z 10.1109/IJCNN.2002.1007668 10.1016/j.energy.2010.11.005 10.1016/j.apenergy.2014.02.057 10.4028/www.scientific.net/AMR.181-182.439 10.1257/jel.46.1.3 10.1021/ac00020a022 10.1134/S105466180902014X 10.1016/j.apenergy.2018.02.070 10.1016/j.energy.2018.08.169 10.1016/B978-0-12-812959-3.00003-4 10.1016/S0893-6080(97)00111-1 10.1016/j.apenergy.2014.07.104 10.1049/el:19960229 10.4028/www.scientific.net/AMM.521.303 10.1109/59.192889 10.1109/TPWRS.2008.922251 10.1016/j.apenergy.2012.02.027 10.4028/www.scientific.net/AMM.44-47.3632 10.1016/j.enbuild.2016.05.028 10.1016/j.eswa.2014.03.053 10.1016/j.epsr.2017.01.035 10.1109/UPEC.2007.4469121 10.1016/j.jeconom.2006.03.010 10.1109/72.557660 10.1109/IAEAC50856.2021.9390726 10.1016/j.epsr.2005.01.006 10.1016/j.ijleo.2016.06.017 10.1109/TDEI.2002.1007709 10.1016/j.apenergy.2016.01.050 10.1016/j.ijepes.2014.04.014 10.1198/073500102753410444 10.1016/j.ijforecast.2017.09.006 10.1016/j.apenergy.2019.114243 10.3390/polym14081583 10.1016/j.aim.2012.03.032 10.1016/j.energy.2016.09.065 10.1016/j.apenergy.2016.07.113 10.1016/j.apenergy.2012.03.046 10.1016/j.apenergy.2014.05.023 10.1016/j.rser.2014.03.033 10.1007/978-3-540-79709-8_34 10.1201/9781315273679 10.1016/j.neucom.2011.07.001 10.1109/ICPADS.2015.75 10.1016/j.apenergy.2013.02.002 10.1016/j.apenergy.2014.03.045 10.1016/j.egypro.2012.01.229 10.1016/j.rser.2015.04.065 10.1016/0306-2619(78)90004-1 10.1016/S0031-3203(03)00175-4 10.1002/for.3980060103 10.1016/S0045-7949(03)00213-X |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2022.3192433 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 77602 |
| ExternalDocumentID | oai_doaj_org_article_0f96217c410047a9b0952c8bb4f4bd51 10_1109_ACCESS_2022_3192433 9832887 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: The Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia grantid: (RG-34-135-42) funderid: 10.13039/501100004054 – fundername: GOT ENERGY TALENT – fundername: European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grantid: 754382 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-8e6f1c3f2434c1421e4cd42b9768d43b9d6068d8e03c2982dee2fedf85d02a303 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000832940600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:42:49 EDT 2025 Mon Jun 30 04:21:15 EDT 2025 Tue Nov 18 21:15:17 EST 2025 Sat Nov 29 06:32:15 EST 2025 Wed Aug 27 02:25:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-8e6f1c3f2434c1421e4cd42b9768d43b9d6068d8e03c2982dee2fedf85d02a303 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1926-9486 0000-0002-1624-3045 0000-0002-9911-0693 0000-0002-3686-0817 |
| OpenAccessLink | https://doaj.org/article/0f96217c410047a9b0952c8bb4f4bd51 |
| PQID | 2696283683 |
| PQPubID | 4845423 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2022_3192433 crossref_primary_10_1109_ACCESS_2022_3192433 ieee_primary_9832887 proquest_journals_2696283683 doaj_primary_oai_doaj_org_article_0f96217c410047a9b0952c8bb4f4bd51 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 Beale (ref44) 2010 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 Misiti (ref43) 1996 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref67 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 Ashmead (ref51) 2010 ref29 Zhongmin (ref54) 2015; 43 ref60 ref62 ref61 |
| References_xml | – ident: ref64 doi: 10.1155/2016/9895639 – ident: ref20 doi: 10.1016/S0196-8904(02)00148-6 – ident: ref28 doi: 10.1016/j.rser.2016.01.114 – volume: 43 start-page: 83 issue: 20 year: 2015 ident: ref54 article-title: Short-term prediction of photovoltaic power generation output based on GA-BP and POS-BP neural network publication-title: Power Syst. Protection Control – ident: ref9 doi: 10.1109/ICRCCS.2009.12 – ident: ref11 doi: 10.1109/TPAS.1971.293123 – ident: ref18 doi: 10.1109/ACCESS.2022.3171270 – ident: ref13 doi: 10.1016/j.apenergy.2010.04.006 – ident: ref14 doi: 10.1016/j.apenergy.2012.01.010 – volume-title: Wavelet Toolbox User’s Guide year: 1996 ident: ref43 – ident: ref22 doi: 10.1016/j.buildenv.2019.03.035 – ident: ref61 doi: 10.1016/j.energy.2018.06.012 – ident: ref66 doi: 10.1007/s42452-019-1835-z – ident: ref48 doi: 10.1109/IJCNN.2002.1007668 – start-page: 77 volume-title: Neural Network Toolbox User’s Guide year: 2010 ident: ref44 – ident: ref27 doi: 10.1016/j.energy.2010.11.005 – ident: ref15 doi: 10.1016/j.apenergy.2014.02.057 – ident: ref47 doi: 10.4028/www.scientific.net/AMR.181-182.439 – ident: ref34 doi: 10.1257/jel.46.1.3 – ident: ref63 doi: 10.1021/ac00020a022 – ident: ref56 doi: 10.1134/S105466180902014X – ident: ref21 doi: 10.1016/j.apenergy.2018.02.070 – ident: ref24 doi: 10.1016/j.energy.2018.08.169 – ident: ref67 doi: 10.1016/B978-0-12-812959-3.00003-4 – ident: ref62 doi: 10.1016/S0893-6080(97)00111-1 – ident: ref31 doi: 10.1016/j.apenergy.2014.07.104 – ident: ref42 doi: 10.1049/el:19960229 – ident: ref46 doi: 10.4028/www.scientific.net/AMM.521.303 – ident: ref25 doi: 10.1109/59.192889 – ident: ref49 doi: 10.1109/TPWRS.2008.922251 – ident: ref2 doi: 10.1016/j.apenergy.2012.02.027 – ident: ref45 doi: 10.4028/www.scientific.net/AMM.44-47.3632 – ident: ref6 doi: 10.1016/j.enbuild.2016.05.028 – ident: ref40 doi: 10.1016/j.eswa.2014.03.053 – ident: ref10 doi: 10.1016/j.epsr.2017.01.035 – ident: ref8 doi: 10.1109/UPEC.2007.4469121 – ident: ref36 doi: 10.1016/j.jeconom.2006.03.010 – ident: ref41 doi: 10.1109/72.557660 – ident: ref7 doi: 10.1109/IAEAC50856.2021.9390726 – ident: ref37 doi: 10.1016/j.epsr.2005.01.006 – ident: ref52 doi: 10.1016/j.ijleo.2016.06.017 – ident: ref55 doi: 10.1109/TDEI.2002.1007709 – ident: ref4 doi: 10.1016/j.apenergy.2016.01.050 – ident: ref38 doi: 10.1016/j.ijepes.2014.04.014 – ident: ref59 doi: 10.1198/073500102753410444 – ident: ref23 doi: 10.1016/j.ijforecast.2017.09.006 – ident: ref60 doi: 10.1016/j.apenergy.2019.114243 – ident: ref58 doi: 10.3390/polym14081583 – ident: ref53 doi: 10.1016/j.aim.2012.03.032 – ident: ref39 doi: 10.1016/j.energy.2016.09.065 – year: 2010 ident: ref51 article-title: Morlet wavelets in quantum mechanics publication-title: arXiv:1001.0250 – ident: ref3 doi: 10.1016/j.apenergy.2016.07.113 – ident: ref17 doi: 10.1016/j.apenergy.2012.03.046 – ident: ref30 doi: 10.1016/j.apenergy.2014.05.023 – ident: ref32 doi: 10.1016/j.rser.2014.03.033 – ident: ref26 doi: 10.1007/978-3-540-79709-8_34 – ident: ref50 doi: 10.1201/9781315273679 – ident: ref5 doi: 10.1016/j.neucom.2011.07.001 – ident: ref65 doi: 10.1109/ICPADS.2015.75 – ident: ref16 doi: 10.1016/j.apenergy.2013.02.002 – ident: ref1 doi: 10.1016/j.apenergy.2014.03.045 – ident: ref12 doi: 10.1016/j.egypro.2012.01.229 – ident: ref33 doi: 10.1016/j.rser.2015.04.065 – ident: ref19 doi: 10.1016/0306-2619(78)90004-1 – ident: ref29 doi: 10.1016/S0031-3203(03)00175-4 – ident: ref35 doi: 10.1002/for.3980060103 – ident: ref57 doi: 10.1016/S0045-7949(03)00213-X |
| SSID | ssj0000816957 |
| Score | 2.3505142 |
| Snippet | Short-term load forecasting plays an essential role in the efficient management of electrical systems. Building an optimization model that will enhance... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 77587 |
| SubjectTerms | Accuracy Artificial neural networks Back propagation Back propagation networks Convergence convergence accuracy Electrical loads Feature extraction Forecasting Iron Load forecasting Load modeling Mathematical models Momentum Neural networks Optimization models Parameters Prediction models Predictive models self-adaptive momentum factor Smart grid Stability Thresholds wavelet neural networks wavelet transform Wavelet transforms |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B4kAPbSlUbEuRDz3ikjjZxD4uKxYOaIUEbblZjsdWV1qyaD_6-zt2TNQKVIlblNiO4ze2Zxz7PYCvjiKdosGcC2c8L31Z84YcUV5ltjJGKFFHSqEf1_V0Ku_v1c0WnPZnYZxzcfOZ-xYu4798XNhNWCo7U2R-1Cm2Ybuuq-6sVr-eEgQk1LBOxEJ5ps5G4zF9A4WAQlBkSnFGUfwz-USO_iSq8mwkjtPL5N3rKvYe3iY3ko063Pdhy7Uf4M1f5IIHsBqx21_kXPM7GnzZ9cIgCzqc1qzCTmcWRNDm7JwmMWSLlt26uecjNI9h-KOH4YWbBzaJcjzMtMh-mqBRsWaBzoNePe32j7MZ5X0g-2OXyxkewvfJxd34iieJBW7LTK65dJXPbeGpcUqblyJ3pcVSNOSkSCQQFVKAI1G6rLBCSYHOCe_QyyFmwtD09xF22kXrjoDl1ktTy6yxaMkHI79LWGnQD6U0tkAzAPHU9tom_vEggzHXMQ7JlO4A0wEwnQAbwGmf6bGj3_h_8vMAap80cGfHG4SWTl1RZ15VFIjZMpDl1UY15GVSVZuGLLXBYT6Ag4BwX0gCdwDHTyaiUz9faVFRWbKoZPHp5VyfYS9UsFu0OYad9XLjvsCu_b2erZYn0YT_AOtC7iE priority: 102 providerName: IEEE |
| Title | A Short-Term Load Forecasting Model Based on Self-Adaptive Momentum Factor and Wavelet Neural Network in Smart Grid |
| URI | https://ieeexplore.ieee.org/document/9832887 https://www.proquest.com/docview/2696283683 https://doaj.org/article/0f96217c410047a9b0952c8bb4f4bd51 |
| Volume | 10 |
| WOSCitedRecordID | wos000832940600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RTlJQ-MWDhOmthjqSgMUCHx3CzHZ4tKJa3awshv5-yEqggJFpYMie3E_i7n7yz7O0JOHEY6aQkJE854lvmsYCUSUZZzmxsjlCiipNDjddHvy-dndbuQ6ivsCavlgeuBO-Ne5UibbRakzQqjSuQEwsqyxHZLiIenBS_UQjAVfbBMctUuGpmhhKuzTreLPcKAUAiMUzHqSNNvU1FU7G9SrPzwy3Gy6W2Q9YYl0k79dZtkyVVbZG1BO3CbTDv07gW5M7tH30qvRwZoSLNpzTRsZKYhx9mQnuMcBXRU0Ts39KwDZhy8Gz4Ma4Jvr7QXs-1QUwF9MiEFxYwGtQ58db_eHk4HWPcVR4leTgawQx56F_fdK9ZkUGA243LGpMt9YlOPvc1skonEZRYyUSIHkYAYKcD4RYJ0PLVCSQHOCe_AyzZwYXB22yXL1ahye4Qm1ktTSF5asEixkFYhCgZ8W0pjUzAtIr4GU9tGXjxkuRjqGGZwpWsEdEBANwi0yOm80rhW1_i9-HlAaV40SGPHG2gwujEY_ZfBtMh2wHjeiEKfhp62RQ6_MNfNbzzVIse2ZJrLdP8_Xn1AVkN36hWcQ7I8m7y5I7Ji32eD6eQ4WjBebz4ujuM5xE_ucvJa |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VUgl64NUiFgr40GNNHcdJ7ON2xVLEsqrULfRmOX6IlbbZah_9_YydNAKBkLhFie04_sb2jGN_H8Cxx0gnr11GuTeBiiAqWqMjSktmS2O44lWiFPo2qaZTeX2tLnbgpD8L471Pm8_8h3iZ_uW7pd3GpbJTheaHneIBPCyE4Kw9rdWvqEQJCVVUHbVQxtTpcDTCr8AgkHOMTTHSyPPfpp_E0t_JqvwxFqcJZvz0_6r2DJ50jiQZtsg_hx3fvID9X-gFD2A9JJc_0L2mMxx-yWRpHIlKnNas415nEmXQFuQMpzFHlg259ItAh87cxgEQH8YXbm_IOAnyENM48t1ElYoNiYQe-Oppu4OczDHvDVog-bSau0O4Gn-cjc5pJ7JArWByQ6UvQ2bzgI0jbCZ45oV1gtfopkiHMCqHIY500rPcciW5854H74IsHOMGJ8CXsNssG_8KSGaDNJVktXUWvTD0vLiVxoVCSmNzZwbA79te246BPAphLHSKRJjSLWA6AqY7wAZw0me6bQk4_p38LILaJ43s2ekGoqW7zqhZUCWGYlZEurzKqBr9TKxqXaOt1q7IBnAQEe4L6cAdwNG9ieiup681L7EsmZcyf_33XO_h0fns60RPPk-_vIHHsbLtEs4R7G5WW_8W9uzdZr5evUvm_BNwovFo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Short-Term+Load+Forecasting+Model+Based+on+Self-Adaptive+Momentum+Factor+and+Wavelet+Neural+Network+in+Smart+Grid&rft.jtitle=IEEE+access&rft.au=ZulfiqAr%2C+Muhammad&rft.au=Kamran%2C+Muhammad&rft.au=Rasheed%2C+Muhammad+Babar&rft.au=Alquthami%2C+Thamer&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=77587&rft.epage=77602&rft_id=info:doi/10.1109%2FACCESS.2022.3192433&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3192433 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |