A Short-Term Load Forecasting Model Based on Self-Adaptive Momentum Factor and Wavelet Neural Network in Smart Grid

Short-term load forecasting plays an essential role in the efficient management of electrical systems. Building an optimization model that will enhance forecasting accuracy is a challenging task and a concern for electrical load prediction. Due to Artificial Neural Networks (ANNs), the final result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 10; S. 77587 - 77602
Hauptverfasser: ZulfiqAr, Muhammad, Kamran, Muhammad, Rasheed, Muhammad Babar, Alquthami, Thamer, Milyani, Ahmad H.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Short-term load forecasting plays an essential role in the efficient management of electrical systems. Building an optimization model that will enhance forecasting accuracy is a challenging task and a concern for electrical load prediction. Due to Artificial Neural Networks (ANNs), the final result depends on initial random weights and thresholds that affect the stability of the forecast. Although much devotion is being given to improving the forecast accuracy, convergence, complexity, and resilience need to be considered for stable predictive models. To overcome this limitation, this work has jointly considered the Wavelet Neural Network (WNN) and Self-Adaptive Momentum Factor (SAMF) to achieve fast convergence, stability, and high accuracy. The proposed hybrid model is developed by combining the Feature Engineering (FE) and SAMF with the WNN model. The FE removes the irrelevant data and shallow features to ensure high computational performance. In contrast, the SAMF combines the wavelet transform's time and frequency domain properties and adjusts the WNN model's corresponding parameters. This ensures the global optimum solution while returning accurate predictive results. Finally, the SAMF is used to tune the control parameters of WNN by initializing the random weights and thresholds to accelerate the convergence rate and improve the accuracy compared to the Back-Propagation (BP) method. The proposed hybrid model is tested on the real-time datasets taken from the Australian states of (New South Wales (NSW), and Victoria (VIC)). Experimental results show that the developed model outperforms other benchmark models such as WNN-IGA, BPNN, WNN-AMBA, and Enhanced WNN in terms of instability, rate of convergence, and accuracy.
AbstractList Short-term load forecasting plays an essential role in the efficient management of electrical systems. Building an optimization model that will enhance forecasting accuracy is a challenging task and a concern for electrical load prediction. Due to Artificial Neural Networks (ANNs), the final result depends on initial random weights and thresholds that affect the stability of the forecast. Although much devotion is being given to improving the forecast accuracy, convergence, complexity, and resilience need to be considered for stable predictive models. To overcome this limitation, this work has jointly considered the Wavelet Neural Network (WNN) and Self-Adaptive Momentum Factor (SAMF) to achieve fast convergence, stability, and high accuracy. The proposed hybrid model is developed by combining the Feature Engineering (FE) and SAMF with the WNN model. The FE removes the irrelevant data and shallow features to ensure high computational performance. In contrast, the SAMF combines the wavelet transform’s time and frequency domain properties and adjusts the WNN model’s corresponding parameters. This ensures the global optimum solution while returning accurate predictive results. Finally, the SAMF is used to tune the control parameters of WNN by initializing the random weights and thresholds to accelerate the convergence rate and improve the accuracy compared to the Back-Propagation (BP) method. The proposed hybrid model is tested on the real-time datasets taken from the Australian states of (New South Wales (NSW), and Victoria (VIC)). Experimental results show that the developed model outperforms other benchmark models such as WNN-IGA, BPNN, WNN-AMBA, and Enhanced WNN in terms of instability, rate of convergence, and accuracy.
Author ZulfiqAr, Muhammad
Milyani, Ahmad H.
Kamran, Muhammad
Rasheed, Muhammad Babar
Alquthami, Thamer
Author_xml – sequence: 1
  givenname: Muhammad
  orcidid: 0000-0002-1624-3045
  surname: ZulfiqAr
  fullname: ZulfiqAr, Muhammad
  organization: Department of Telecommunication Systems, Bahauddin Zakariya University, Multan, Pakistan
– sequence: 2
  givenname: Muhammad
  surname: Kamran
  fullname: Kamran, Muhammad
  organization: Department of Electrical Engineering, University of Engineering and Technology, Lahore, Lahore, Pakistan
– sequence: 3
  givenname: Muhammad Babar
  orcidid: 0000-0002-9911-0693
  surname: Rasheed
  fullname: Rasheed, Muhammad Babar
  email: muhammad.rasheed@uah.es
  organization: Escuela Politécnica Superior, Universidad de Alcalá, Alcalá de Henares, Spain
– sequence: 4
  givenname: Thamer
  orcidid: 0000-0002-3686-0817
  surname: Alquthami
  fullname: Alquthami, Thamer
  email: tquthami@kau.edu.sa
  organization: Electrical and Computer Engineering Department, King Abdulaziz University, Jeddah, Saudi Arabia
– sequence: 5
  givenname: Ahmad H.
  orcidid: 0000-0002-1926-9486
  surname: Milyani
  fullname: Milyani, Ahmad H.
  organization: Electrical and Computer Engineering Department, King Abdulaziz University, Jeddah, Saudi Arabia
BookMark eNqFkU1vEzEQhi1UpJa2v6AXS5w3-Gt37WOImlIp0EOKerS89rg4bNbBdor497hsVSEu-DKj8TzvzOh9h06mOAFCV5QsKCXqw3K1ut5uF4wwtuBUMcH5G3TGaKca3vLu5K_8FF3mvCP1yVpq-zOUl3j7LabS3EPa4000Dq9jAmtyCdMj_hwdjPijyeBwnPAWRt8snTmU8AT1cw9TOe7x2tgSEzaTww_mCUYo-AsckxlrKD9j-o5DZfcmFXyTgrtAb70ZM1y-xHP0dX19v_rUbO5ublfLTWMFkaWR0Hlqua8HCUsFoyCsE2xQfSed4INyHamZBMItU5I5AObBedk6wgwn_Bzdzroump0-pFA3-KWjCfpPIaZHXVcKdgRNvOoY7a2ghIjeqIGollk5DMKLwbW0ar2ftQ4p_jhCLnoXj2mq62vWVVbyTvLaxecum2LOCfzrVEr0s1l6Nks_m6VfzKqU-oeyoZgS4lSSCeN_2KuZDQDwOk1JzqTs-W9z1KLE
CODEN IAECCG
CitedBy_id crossref_primary_10_1155_2024_5452005
crossref_primary_10_3390_su16177805
crossref_primary_10_1109_TVT_2022_3229700
crossref_primary_10_3390_en17225524
crossref_primary_10_1109_ACCESS_2025_3558445
crossref_primary_10_32604_cmes_2024_058202
crossref_primary_10_3390_en16062919
crossref_primary_10_3390_app15094820
crossref_primary_10_3390_en17112539
crossref_primary_10_1109_ACCESS_2024_3358182
Cites_doi 10.1155/2016/9895639
10.1016/S0196-8904(02)00148-6
10.1016/j.rser.2016.01.114
10.1109/ICRCCS.2009.12
10.1109/TPAS.1971.293123
10.1109/ACCESS.2022.3171270
10.1016/j.apenergy.2010.04.006
10.1016/j.apenergy.2012.01.010
10.1016/j.buildenv.2019.03.035
10.1016/j.energy.2018.06.012
10.1007/s42452-019-1835-z
10.1109/IJCNN.2002.1007668
10.1016/j.energy.2010.11.005
10.1016/j.apenergy.2014.02.057
10.4028/www.scientific.net/AMR.181-182.439
10.1257/jel.46.1.3
10.1021/ac00020a022
10.1134/S105466180902014X
10.1016/j.apenergy.2018.02.070
10.1016/j.energy.2018.08.169
10.1016/B978-0-12-812959-3.00003-4
10.1016/S0893-6080(97)00111-1
10.1016/j.apenergy.2014.07.104
10.1049/el:19960229
10.4028/www.scientific.net/AMM.521.303
10.1109/59.192889
10.1109/TPWRS.2008.922251
10.1016/j.apenergy.2012.02.027
10.4028/www.scientific.net/AMM.44-47.3632
10.1016/j.enbuild.2016.05.028
10.1016/j.eswa.2014.03.053
10.1016/j.epsr.2017.01.035
10.1109/UPEC.2007.4469121
10.1016/j.jeconom.2006.03.010
10.1109/72.557660
10.1109/IAEAC50856.2021.9390726
10.1016/j.epsr.2005.01.006
10.1016/j.ijleo.2016.06.017
10.1109/TDEI.2002.1007709
10.1016/j.apenergy.2016.01.050
10.1016/j.ijepes.2014.04.014
10.1198/073500102753410444
10.1016/j.ijforecast.2017.09.006
10.1016/j.apenergy.2019.114243
10.3390/polym14081583
10.1016/j.aim.2012.03.032
10.1016/j.energy.2016.09.065
10.1016/j.apenergy.2016.07.113
10.1016/j.apenergy.2012.03.046
10.1016/j.apenergy.2014.05.023
10.1016/j.rser.2014.03.033
10.1007/978-3-540-79709-8_34
10.1201/9781315273679
10.1016/j.neucom.2011.07.001
10.1109/ICPADS.2015.75
10.1016/j.apenergy.2013.02.002
10.1016/j.apenergy.2014.03.045
10.1016/j.egypro.2012.01.229
10.1016/j.rser.2015.04.065
10.1016/0306-2619(78)90004-1
10.1016/S0031-3203(03)00175-4
10.1002/for.3980060103
10.1016/S0045-7949(03)00213-X
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3192433
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 77602
ExternalDocumentID oai_doaj_org_article_0f96217c410047a9b0952c8bb4f4bd51
10_1109_ACCESS_2022_3192433
9832887
Genre orig-research
GrantInformation_xml – fundername: The Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia
  grantid: (RG-34-135-42)
  funderid: 10.13039/501100004054
– fundername: GOT ENERGY TALENT
– fundername: European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie
  grantid: 754382
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-8e6f1c3f2434c1421e4cd42b9768d43b9d6068d8e03c2982dee2fedf85d02a303
IEDL.DBID DOA
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000832940600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:42:49 EDT 2025
Mon Jun 30 04:21:15 EDT 2025
Tue Nov 18 21:15:17 EST 2025
Sat Nov 29 06:32:15 EST 2025
Wed Aug 27 02:25:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-8e6f1c3f2434c1421e4cd42b9768d43b9d6068d8e03c2982dee2fedf85d02a303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1926-9486
0000-0002-1624-3045
0000-0002-9911-0693
0000-0002-3686-0817
OpenAccessLink https://doaj.org/article/0f96217c410047a9b0952c8bb4f4bd51
PQID 2696283683
PQPubID 4845423
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2022_3192433
crossref_primary_10_1109_ACCESS_2022_3192433
ieee_primary_9832887
proquest_journals_2696283683
doaj_primary_oai_doaj_org_article_0f96217c410047a9b0952c8bb4f4bd51
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
Beale (ref44) 2010
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
Misiti (ref43) 1996
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref67
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
Ashmead (ref51) 2010
ref29
Zhongmin (ref54) 2015; 43
ref60
ref62
ref61
References_xml – ident: ref64
  doi: 10.1155/2016/9895639
– ident: ref20
  doi: 10.1016/S0196-8904(02)00148-6
– ident: ref28
  doi: 10.1016/j.rser.2016.01.114
– volume: 43
  start-page: 83
  issue: 20
  year: 2015
  ident: ref54
  article-title: Short-term prediction of photovoltaic power generation output based on GA-BP and POS-BP neural network
  publication-title: Power Syst. Protection Control
– ident: ref9
  doi: 10.1109/ICRCCS.2009.12
– ident: ref11
  doi: 10.1109/TPAS.1971.293123
– ident: ref18
  doi: 10.1109/ACCESS.2022.3171270
– ident: ref13
  doi: 10.1016/j.apenergy.2010.04.006
– ident: ref14
  doi: 10.1016/j.apenergy.2012.01.010
– volume-title: Wavelet Toolbox User’s Guide
  year: 1996
  ident: ref43
– ident: ref22
  doi: 10.1016/j.buildenv.2019.03.035
– ident: ref61
  doi: 10.1016/j.energy.2018.06.012
– ident: ref66
  doi: 10.1007/s42452-019-1835-z
– ident: ref48
  doi: 10.1109/IJCNN.2002.1007668
– start-page: 77
  volume-title: Neural Network Toolbox User’s Guide
  year: 2010
  ident: ref44
– ident: ref27
  doi: 10.1016/j.energy.2010.11.005
– ident: ref15
  doi: 10.1016/j.apenergy.2014.02.057
– ident: ref47
  doi: 10.4028/www.scientific.net/AMR.181-182.439
– ident: ref34
  doi: 10.1257/jel.46.1.3
– ident: ref63
  doi: 10.1021/ac00020a022
– ident: ref56
  doi: 10.1134/S105466180902014X
– ident: ref21
  doi: 10.1016/j.apenergy.2018.02.070
– ident: ref24
  doi: 10.1016/j.energy.2018.08.169
– ident: ref67
  doi: 10.1016/B978-0-12-812959-3.00003-4
– ident: ref62
  doi: 10.1016/S0893-6080(97)00111-1
– ident: ref31
  doi: 10.1016/j.apenergy.2014.07.104
– ident: ref42
  doi: 10.1049/el:19960229
– ident: ref46
  doi: 10.4028/www.scientific.net/AMM.521.303
– ident: ref25
  doi: 10.1109/59.192889
– ident: ref49
  doi: 10.1109/TPWRS.2008.922251
– ident: ref2
  doi: 10.1016/j.apenergy.2012.02.027
– ident: ref45
  doi: 10.4028/www.scientific.net/AMM.44-47.3632
– ident: ref6
  doi: 10.1016/j.enbuild.2016.05.028
– ident: ref40
  doi: 10.1016/j.eswa.2014.03.053
– ident: ref10
  doi: 10.1016/j.epsr.2017.01.035
– ident: ref8
  doi: 10.1109/UPEC.2007.4469121
– ident: ref36
  doi: 10.1016/j.jeconom.2006.03.010
– ident: ref41
  doi: 10.1109/72.557660
– ident: ref7
  doi: 10.1109/IAEAC50856.2021.9390726
– ident: ref37
  doi: 10.1016/j.epsr.2005.01.006
– ident: ref52
  doi: 10.1016/j.ijleo.2016.06.017
– ident: ref55
  doi: 10.1109/TDEI.2002.1007709
– ident: ref4
  doi: 10.1016/j.apenergy.2016.01.050
– ident: ref38
  doi: 10.1016/j.ijepes.2014.04.014
– ident: ref59
  doi: 10.1198/073500102753410444
– ident: ref23
  doi: 10.1016/j.ijforecast.2017.09.006
– ident: ref60
  doi: 10.1016/j.apenergy.2019.114243
– ident: ref58
  doi: 10.3390/polym14081583
– ident: ref53
  doi: 10.1016/j.aim.2012.03.032
– ident: ref39
  doi: 10.1016/j.energy.2016.09.065
– year: 2010
  ident: ref51
  article-title: Morlet wavelets in quantum mechanics
  publication-title: arXiv:1001.0250
– ident: ref3
  doi: 10.1016/j.apenergy.2016.07.113
– ident: ref17
  doi: 10.1016/j.apenergy.2012.03.046
– ident: ref30
  doi: 10.1016/j.apenergy.2014.05.023
– ident: ref32
  doi: 10.1016/j.rser.2014.03.033
– ident: ref26
  doi: 10.1007/978-3-540-79709-8_34
– ident: ref50
  doi: 10.1201/9781315273679
– ident: ref5
  doi: 10.1016/j.neucom.2011.07.001
– ident: ref65
  doi: 10.1109/ICPADS.2015.75
– ident: ref16
  doi: 10.1016/j.apenergy.2013.02.002
– ident: ref1
  doi: 10.1016/j.apenergy.2014.03.045
– ident: ref12
  doi: 10.1016/j.egypro.2012.01.229
– ident: ref33
  doi: 10.1016/j.rser.2015.04.065
– ident: ref19
  doi: 10.1016/0306-2619(78)90004-1
– ident: ref29
  doi: 10.1016/S0031-3203(03)00175-4
– ident: ref35
  doi: 10.1002/for.3980060103
– ident: ref57
  doi: 10.1016/S0045-7949(03)00213-X
SSID ssj0000816957
Score 2.3505142
Snippet Short-term load forecasting plays an essential role in the efficient management of electrical systems. Building an optimization model that will enhance...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 77587
SubjectTerms Accuracy
Artificial neural networks
Back propagation
Back propagation networks
Convergence
convergence accuracy
Electrical loads
Feature extraction
Forecasting
Iron
Load forecasting
Load modeling
Mathematical models
Momentum
Neural networks
Optimization models
Parameters
Prediction models
Predictive models
self-adaptive momentum factor
Smart grid
Stability
Thresholds
wavelet neural networks
wavelet transform
Wavelet transforms
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B4kAPbSlUbEuRDz3ikjjZxD4uKxYOaIUEbblZjsdWV1qyaD_6-zt2TNQKVIlblNiO4ze2Zxz7PYCvjiKdosGcC2c8L31Z84YcUV5ltjJGKFFHSqEf1_V0Ku_v1c0WnPZnYZxzcfOZ-xYu4798XNhNWCo7U2R-1Cm2Ybuuq-6sVr-eEgQk1LBOxEJ5ps5G4zF9A4WAQlBkSnFGUfwz-USO_iSq8mwkjtPL5N3rKvYe3iY3ko063Pdhy7Uf4M1f5IIHsBqx21_kXPM7GnzZ9cIgCzqc1qzCTmcWRNDm7JwmMWSLlt26uecjNI9h-KOH4YWbBzaJcjzMtMh-mqBRsWaBzoNePe32j7MZ5X0g-2OXyxkewvfJxd34iieJBW7LTK65dJXPbeGpcUqblyJ3pcVSNOSkSCQQFVKAI1G6rLBCSYHOCe_QyyFmwtD09xF22kXrjoDl1ktTy6yxaMkHI79LWGnQD6U0tkAzAPHU9tom_vEggzHXMQ7JlO4A0wEwnQAbwGmf6bGj3_h_8vMAap80cGfHG4SWTl1RZ15VFIjZMpDl1UY15GVSVZuGLLXBYT6Ag4BwX0gCdwDHTyaiUz9faVFRWbKoZPHp5VyfYS9UsFu0OYad9XLjvsCu_b2erZYn0YT_AOtC7iE
  priority: 102
  providerName: IEEE
Title A Short-Term Load Forecasting Model Based on Self-Adaptive Momentum Factor and Wavelet Neural Network in Smart Grid
URI https://ieeexplore.ieee.org/document/9832887
https://www.proquest.com/docview/2696283683
https://doaj.org/article/0f96217c410047a9b0952c8bb4f4bd51
Volume 10
WOSCitedRecordID wos000832940600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RTlJQ-MWDhOmthjqSgMUCHx3CzHZ4tKJa3awshv5-yEqggJFpYMie3E_i7n7yz7O0JOHEY6aQkJE854lvmsYCUSUZZzmxsjlCiipNDjddHvy-dndbuQ6ivsCavlgeuBO-Ne5UibbRakzQqjSuQEwsqyxHZLiIenBS_UQjAVfbBMctUuGpmhhKuzTreLPcKAUAiMUzHqSNNvU1FU7G9SrPzwy3Gy6W2Q9YYl0k79dZtkyVVbZG1BO3CbTDv07gW5M7tH30qvRwZoSLNpzTRsZKYhx9mQnuMcBXRU0Ts39KwDZhy8Gz4Ma4Jvr7QXs-1QUwF9MiEFxYwGtQ58db_eHk4HWPcVR4leTgawQx56F_fdK9ZkUGA243LGpMt9YlOPvc1skonEZRYyUSIHkYAYKcD4RYJ0PLVCSQHOCe_AyzZwYXB22yXL1ahye4Qm1ktTSF5asEixkFYhCgZ8W0pjUzAtIr4GU9tGXjxkuRjqGGZwpWsEdEBANwi0yOm80rhW1_i9-HlAaV40SGPHG2gwujEY_ZfBtMh2wHjeiEKfhp62RQ6_MNfNbzzVIse2ZJrLdP8_Xn1AVkN36hWcQ7I8m7y5I7Ji32eD6eQ4WjBebz4ujuM5xE_ucvJa
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VUgl64NUiFgr40GNNHcdJ7ON2xVLEsqrULfRmOX6IlbbZah_9_YydNAKBkLhFie04_sb2jGN_H8Cxx0gnr11GuTeBiiAqWqMjSktmS2O44lWiFPo2qaZTeX2tLnbgpD8L471Pm8_8h3iZ_uW7pd3GpbJTheaHneIBPCyE4Kw9rdWvqEQJCVVUHbVQxtTpcDTCr8AgkHOMTTHSyPPfpp_E0t_JqvwxFqcJZvz0_6r2DJ50jiQZtsg_hx3fvID9X-gFD2A9JJc_0L2mMxx-yWRpHIlKnNas415nEmXQFuQMpzFHlg259ItAh87cxgEQH8YXbm_IOAnyENM48t1ElYoNiYQe-Oppu4OczDHvDVog-bSau0O4Gn-cjc5pJ7JArWByQ6UvQ2bzgI0jbCZ45oV1gtfopkiHMCqHIY500rPcciW5854H74IsHOMGJ8CXsNssG_8KSGaDNJVktXUWvTD0vLiVxoVCSmNzZwbA79te246BPAphLHSKRJjSLWA6AqY7wAZw0me6bQk4_p38LILaJ43s2ekGoqW7zqhZUCWGYlZEurzKqBr9TKxqXaOt1q7IBnAQEe4L6cAdwNG9ieiup681L7EsmZcyf_33XO_h0fns60RPPk-_vIHHsbLtEs4R7G5WW_8W9uzdZr5evUvm_BNwovFo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Short-Term+Load+Forecasting+Model+Based+on+Self-Adaptive+Momentum+Factor+and+Wavelet+Neural+Network+in+Smart+Grid&rft.jtitle=IEEE+access&rft.au=ZulfiqAr%2C+Muhammad&rft.au=Kamran%2C+Muhammad&rft.au=Rasheed%2C+Muhammad+Babar&rft.au=Alquthami%2C+Thamer&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=77587&rft.epage=77602&rft_id=info:doi/10.1109%2FACCESS.2022.3192433&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3192433
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon