Online sequential, outlier robust, and parallel layer perceptron extreme learning machine models for sediment transport in sewer pipes

Sediment transport is a noteworthy task in the design and operation of sewer pipes. Decreasing sewer pipe hydraulic capacity and transport of pollution are the main consequences of continuous sedimentation. Among different design approaches, the non-deposition with deposited bed (NDB) method can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international Jg. 30; H. 14; S. 39637 - 39652
Hauptverfasser: Kouzehkalani Sales, Ali, Gul, Enes, Safari, Mir Jafar Sadegh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2023
Springer Nature B.V
Schlagworte:
ISSN:1614-7499, 0944-1344, 1614-7499
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Sediment transport is a noteworthy task in the design and operation of sewer pipes. Decreasing sewer pipe hydraulic capacity and transport of pollution are the main consequences of continuous sedimentation. Among different design approaches, the non-deposition with deposited bed (NDB) method can be used for the design of large sewer pipes; however, existing models are established on limited data ranges and mostly applied conventional regression methods. The current study improves the NDB sediment transport modeling by utilizing wide data ranges, and furthermore, applying robust machine learning techniques. In the present study, the conventional extreme learning machine (ELM) technique and its advanced versions, namely the online sequential-extreme learning machine (OS-ELM), outlier robust-extreme learning machine (OR-ELM), and parallel layer perceptron-extreme learning machine (PLP-ELM) are used for the modeling. In the studies conducted in the literature, sediment deposited bed thickness ( t s ) or deposited bed width ( W b ) was used in the model structure as a deposited sediment variable, and therefore, different parameters in terms of t s and W b can be incorporated into the model structure. However, an uncertainty arises in the selection of the appropriate parameter among W b / Y , t s / Y , W b / D , and t s / D ( Y is flow depth and D circular pipe diameter). In order to define the most appropriate parameter to best describe the impact of deposited sediment at the channel bottom in the modeling procedure, four various scenarios using four different parameters that incorporate deposited sediment variables at their structures as W b /Y , t s /Y , W/D , and t s /D are considered for model development. It is found that models that incorporate sediment bed thickness ( t s ) provide better results than those which use deposited bed width ( W b ) in their structures. Among four different scenarios, models that utilized t s /D dimensionless parameter, give superior results in contrast to their alternatives. Based on the outcomes, the OR-ELM approach outperformed ELM, OS-ELM, and PLP-ELM techniques. The results obtained from applied methods are compared to their corresponding models in the literature, indicating the superiority of the OR-ELM model. It is figured out that the thickness of the deposited bed is an effective variable in modeling NDB sediment transport in sewer pipes.
AbstractList Sediment transport is a noteworthy task in the design and operation of sewer pipes. Decreasing sewer pipe hydraulic capacity and transport of pollution are the main consequences of continuous sedimentation. Among different design approaches, the non-deposition with deposited bed (NDB) method can be used for the design of large sewer pipes; however, existing models are established on limited data ranges and mostly applied conventional regression methods. The current study improves the NDB sediment transport modeling by utilizing wide data ranges, and furthermore, applying robust machine learning techniques. In the present study, the conventional extreme learning machine (ELM) technique and its advanced versions, namely the online sequential-extreme learning machine (OS-ELM), outlier robust-extreme learning machine (OR-ELM), and parallel layer perceptron-extreme learning machine (PLP-ELM) are used for the modeling. In the studies conducted in the literature, sediment deposited bed thickness (t ) or deposited bed width (W ) was used in the model structure as a deposited sediment variable, and therefore, different parameters in terms of t and W can be incorporated into the model structure. However, an uncertainty arises in the selection of the appropriate parameter among W /Y, t /Y, W /D, and t /D (Y is flow depth and D circular pipe diameter). In order to define the most appropriate parameter to best describe the impact of deposited sediment at the channel bottom in the modeling procedure, four various scenarios using four different parameters that incorporate deposited sediment variables at their structures as W /Y, t /Y, W/D, and t /D are considered for model development. It is found that models that incorporate sediment bed thickness (t ) provide better results than those which use deposited bed width (W ) in their structures. Among four different scenarios, models that utilized t /D dimensionless parameter, give superior results in contrast to their alternatives. Based on the outcomes, the OR-ELM approach outperformed ELM, OS-ELM, and PLP-ELM techniques. The results obtained from applied methods are compared to their corresponding models in the literature, indicating the superiority of the OR-ELM model. It is figured out that the thickness of the deposited bed is an effective variable in modeling NDB sediment transport in sewer pipes.
Sediment transport is a noteworthy task in the design and operation of sewer pipes. Decreasing sewer pipe hydraulic capacity and transport of pollution are the main consequences of continuous sedimentation. Among different design approaches, the non-deposition with deposited bed (NDB) method can be used for the design of large sewer pipes; however, existing models are established on limited data ranges and mostly applied conventional regression methods. The current study improves the NDB sediment transport modeling by utilizing wide data ranges, and furthermore, applying robust machine learning techniques. In the present study, the conventional extreme learning machine (ELM) technique and its advanced versions, namely the online sequential-extreme learning machine (OS-ELM), outlier robust-extreme learning machine (OR-ELM), and parallel layer perceptron-extreme learning machine (PLP-ELM) are used for the modeling. In the studies conducted in the literature, sediment deposited bed thickness (tₛ) or deposited bed width (Wb) was used in the model structure as a deposited sediment variable, and therefore, different parameters in terms of tₛ and Wb can be incorporated into the model structure. However, an uncertainty arises in the selection of the appropriate parameter among Wb/Y, tₛ/Y, Wb/D, and tₛ/D (Y is flow depth and D circular pipe diameter). In order to define the most appropriate parameter to best describe the impact of deposited sediment at the channel bottom in the modeling procedure, four various scenarios using four different parameters that incorporate deposited sediment variables at their structures as Wb/Y, tₛ/Y, W/D, and tₛ/D are considered for model development. It is found that models that incorporate sediment bed thickness (tₛ) provide better results than those which use deposited bed width (Wb) in their structures. Among four different scenarios, models that utilized tₛ/D dimensionless parameter, give superior results in contrast to their alternatives. Based on the outcomes, the OR-ELM approach outperformed ELM, OS-ELM, and PLP-ELM techniques. The results obtained from applied methods are compared to their corresponding models in the literature, indicating the superiority of the OR-ELM model. It is figured out that the thickness of the deposited bed is an effective variable in modeling NDB sediment transport in sewer pipes.
Sediment transport is a noteworthy task in the design and operation of sewer pipes. Decreasing sewer pipe hydraulic capacity and transport of pollution are the main consequences of continuous sedimentation. Among different design approaches, the non-deposition with deposited bed (NDB) method can be used for the design of large sewer pipes; however, existing models are established on limited data ranges and mostly applied conventional regression methods. The current study improves the NDB sediment transport modeling by utilizing wide data ranges, and furthermore, applying robust machine learning techniques. In the present study, the conventional extreme learning machine (ELM) technique and its advanced versions, namely the online sequential-extreme learning machine (OS-ELM), outlier robust-extreme learning machine (OR-ELM), and parallel layer perceptron-extreme learning machine (PLP-ELM) are used for the modeling. In the studies conducted in the literature, sediment deposited bed thickness ( t s ) or deposited bed width ( W b ) was used in the model structure as a deposited sediment variable, and therefore, different parameters in terms of t s and W b can be incorporated into the model structure. However, an uncertainty arises in the selection of the appropriate parameter among W b / Y , t s / Y , W b / D , and t s / D ( Y is flow depth and D circular pipe diameter). In order to define the most appropriate parameter to best describe the impact of deposited sediment at the channel bottom in the modeling procedure, four various scenarios using four different parameters that incorporate deposited sediment variables at their structures as W b /Y , t s /Y , W/D , and t s /D are considered for model development. It is found that models that incorporate sediment bed thickness ( t s ) provide better results than those which use deposited bed width ( W b ) in their structures. Among four different scenarios, models that utilized t s /D dimensionless parameter, give superior results in contrast to their alternatives. Based on the outcomes, the OR-ELM approach outperformed ELM, OS-ELM, and PLP-ELM techniques. The results obtained from applied methods are compared to their corresponding models in the literature, indicating the superiority of the OR-ELM model. It is figured out that the thickness of the deposited bed is an effective variable in modeling NDB sediment transport in sewer pipes.
Sediment transport is a noteworthy task in the design and operation of sewer pipes. Decreasing sewer pipe hydraulic capacity and transport of pollution are the main consequences of continuous sedimentation. Among different design approaches, the non-deposition with deposited bed (NDB) method can be used for the design of large sewer pipes; however, existing models are established on limited data ranges and mostly applied conventional regression methods. The current study improves the NDB sediment transport modeling by utilizing wide data ranges, and furthermore, applying robust machine learning techniques. In the present study, the conventional extreme learning machine (ELM) technique and its advanced versions, namely the online sequential-extreme learning machine (OS-ELM), outlier robust-extreme learning machine (OR-ELM), and parallel layer perceptron-extreme learning machine (PLP-ELM) are used for the modeling. In the studies conducted in the literature, sediment deposited bed thickness (ts) or deposited bed width (Wb) was used in the model structure as a deposited sediment variable, and therefore, different parameters in terms of ts and Wb can be incorporated into the model structure. However, an uncertainty arises in the selection of the appropriate parameter among Wb/Y, ts/Y, Wb/D, and ts/D (Y is flow depth and D circular pipe diameter). In order to define the most appropriate parameter to best describe the impact of deposited sediment at the channel bottom in the modeling procedure, four various scenarios using four different parameters that incorporate deposited sediment variables at their structures as Wb/Y, ts/Y, W/D, and ts/D are considered for model development. It is found that models that incorporate sediment bed thickness (ts) provide better results than those which use deposited bed width (Wb) in their structures. Among four different scenarios, models that utilized ts/D dimensionless parameter, give superior results in contrast to their alternatives. Based on the outcomes, the OR-ELM approach outperformed ELM, OS-ELM, and PLP-ELM techniques. The results obtained from applied methods are compared to their corresponding models in the literature, indicating the superiority of the OR-ELM model. It is figured out that the thickness of the deposited bed is an effective variable in modeling NDB sediment transport in sewer pipes.Sediment transport is a noteworthy task in the design and operation of sewer pipes. Decreasing sewer pipe hydraulic capacity and transport of pollution are the main consequences of continuous sedimentation. Among different design approaches, the non-deposition with deposited bed (NDB) method can be used for the design of large sewer pipes; however, existing models are established on limited data ranges and mostly applied conventional regression methods. The current study improves the NDB sediment transport modeling by utilizing wide data ranges, and furthermore, applying robust machine learning techniques. In the present study, the conventional extreme learning machine (ELM) technique and its advanced versions, namely the online sequential-extreme learning machine (OS-ELM), outlier robust-extreme learning machine (OR-ELM), and parallel layer perceptron-extreme learning machine (PLP-ELM) are used for the modeling. In the studies conducted in the literature, sediment deposited bed thickness (ts) or deposited bed width (Wb) was used in the model structure as a deposited sediment variable, and therefore, different parameters in terms of ts and Wb can be incorporated into the model structure. However, an uncertainty arises in the selection of the appropriate parameter among Wb/Y, ts/Y, Wb/D, and ts/D (Y is flow depth and D circular pipe diameter). In order to define the most appropriate parameter to best describe the impact of deposited sediment at the channel bottom in the modeling procedure, four various scenarios using four different parameters that incorporate deposited sediment variables at their structures as Wb/Y, ts/Y, W/D, and ts/D are considered for model development. It is found that models that incorporate sediment bed thickness (ts) provide better results than those which use deposited bed width (Wb) in their structures. Among four different scenarios, models that utilized ts/D dimensionless parameter, give superior results in contrast to their alternatives. Based on the outcomes, the OR-ELM approach outperformed ELM, OS-ELM, and PLP-ELM techniques. The results obtained from applied methods are compared to their corresponding models in the literature, indicating the superiority of the OR-ELM model. It is figured out that the thickness of the deposited bed is an effective variable in modeling NDB sediment transport in sewer pipes.
Sediment transport is a noteworthy task in the design and operation of sewer pipes. Decreasing sewer pipe hydraulic capacity and transport of pollution are the main consequences of continuous sedimentation. Among different design approaches, the non-deposition with deposited bed (NDB) method can be used for the design of large sewer pipes; however, existing models are established on limited data ranges and mostly applied conventional regression methods. The current study improves the NDB sediment transport modeling by utilizing wide data ranges, and furthermore, applying robust machine learning techniques. In the present study, the conventional extreme learning machine (ELM) technique and its advanced versions, namely the online sequential-extreme learning machine (OS-ELM), outlier robust-extreme learning machine (OR-ELM), and parallel layer perceptron-extreme learning machine (PLP-ELM) are used for the modeling. In the studies conducted in the literature, sediment deposited bed thickness (ts) or deposited bed width (Wb) was used in the model structure as a deposited sediment variable, and therefore, different parameters in terms of ts and Wb can be incorporated into the model structure. However, an uncertainty arises in the selection of the appropriate parameter among Wb/Y, ts/Y, Wb/D, and ts/D (Y is flow depth and D circular pipe diameter). In order to define the most appropriate parameter to best describe the impact of deposited sediment at the channel bottom in the modeling procedure, four various scenarios using four different parameters that incorporate deposited sediment variables at their structures as Wb/Y, ts/Y, W/D, and ts/D are considered for model development. It is found that models that incorporate sediment bed thickness (ts) provide better results than those which use deposited bed width (Wb) in their structures. Among four different scenarios, models that utilized ts/D dimensionless parameter, give superior results in contrast to their alternatives. Based on the outcomes, the OR-ELM approach outperformed ELM, OS-ELM, and PLP-ELM techniques. The results obtained from applied methods are compared to their corresponding models in the literature, indicating the superiority of the OR-ELM model. It is figured out that the thickness of the deposited bed is an effective variable in modeling NDB sediment transport in sewer pipes.
Author Safari, Mir Jafar Sadegh
Kouzehkalani Sales, Ali
Gul, Enes
Author_xml – sequence: 1
  givenname: Ali
  surname: Kouzehkalani Sales
  fullname: Kouzehkalani Sales, Ali
  organization: Department of Civil Engineering, Elm-O-Fan University College of Science and Technology
– sequence: 2
  givenname: Enes
  surname: Gul
  fullname: Gul, Enes
  organization: Department of Civil Engineering, Inonu University
– sequence: 3
  givenname: Mir Jafar Sadegh
  orcidid: 0000-0003-0559-5261
  surname: Safari
  fullname: Safari, Mir Jafar Sadegh
  email: jafar.safari@yasar.edu.tr
  organization: Department of Civil Engineering, Yaşar University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36596972$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uFiEUhompsT96Ay4MiRsXHYUzP8DSNNqaNOlG14RhzlQaBkZgYnsDXrd8fm00XdQNEHjeJ8B7TA5CDEjIa87ec8bEh8x52w8NA2igU1I17Bk54gPvGtEpdfDP-pAc53zDGDAF4gU5bIdeDUrAEfl1FbwLSDP-2DAUZ_wpjVvxDhNNcdxyOaUmTHQ1yXiPnnpzV49WTBbXkmKgeFsSLkg9mhRcuKaLsd93yiVO6DOdY6r2yS1VT0syIa8xFepC3f25U7kV80vyfDY-46v7-YR8-_zp69lFc3l1_uXs42VjOyZLI-0sOJ8M9P0kxaRgBm44SNEKMCN2bQ9yGKGVnNnWzAPaXlXWshHEZGXfnpB3e--aYn1wLnpx2aL3JmDcsgbVAWe86-T_UTEwyevQVvTtI_QmbinUh2iQTFQndKxSb-6pbVxw0mtyi0l3-qGMCsg9YFPMOeGsrSumuBjqtzmvOdO73vW-d11713961zs3PIo-2J8MtftQrnC4xvT32k-kfgODEsBc
CitedBy_id crossref_primary_10_1007_s10462_023_10673_3
crossref_primary_10_1016_j_ijsrc_2023_07_003
crossref_primary_10_1016_j_jmapro_2023_11_007
crossref_primary_10_1038_s41598_024_66676_9
crossref_primary_10_1007_s40710_024_00716_4
Cites_doi 10.1016/j.ijsrc.2017.05.007
10.1016/j.ijsrc.2019.08.005
10.1016/S0925-2312(03)00440-5
10.1016/j.neucom.2005.12.126
10.1016/j.measurement.2016.06.042
10.2166/wst.1996.0210
10.1016/j.neucom.2016.11.040
10.1002/wer.1037
10.1016/j.neucom.2015.04.018
10.1109/TII.2018.2854549
10.1109/TNN.2006.880583
10.1016/j.ijsrc.2018.04.007
10.1016/j.enconman.2018.10.089
10.1016/j.catena.2021.105791
10.1109/COMST.2018.2812301
10.1061/(ASCE)0733-9429(2003)129:4(291)
10.2166/wst.2019.106
10.1007/s13042-011-0019-y
10.1061/(ASCE)PS.1949-1204.0000449
10.1007/s11269-014-0774-0
10.1016/j.neucom.2014.09.022
10.2307/2532051
10.2166/wst.2020.154
10.1007/s10652-017-9550-z
10.1109/JSYST.2016.2550530
10.2166/wst.2017.429
10.2166/wst.2017.267
10.1109/TNNLS.2015.2424995
10.1061/(ASCE)0733-9429(2003)129:4(276)
10.2166/wst.1994.0658
10.1080/00221686.2020.1780501
10.2166/wst.1997.0654
10.1061/(ASCE)PS.1949-1204.0000335
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-022-24989-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM global
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA

MEDLINE - Academic
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 39652
ExternalDocumentID 36596972
10_1007_s11356_022_24989_0
Genre Journal Article
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
ADHKG
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c408t-8cf711da255d87d92f21a1287372abe435286b23810c3af6ec59255c0b27dc853
IEDL.DBID 7X7
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000907103500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1614-7499
0944-1344
IngestDate Fri Sep 05 08:50:39 EDT 2025
Wed Oct 01 13:17:12 EDT 2025
Tue Dec 02 15:54:45 EST 2025
Thu Apr 03 07:12:30 EDT 2025
Sat Nov 29 03:49:58 EST 2025
Tue Nov 18 21:19:07 EST 2025
Fri Feb 21 02:43:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Online sequential
Parallel layer perceptron
Extreme learning machine
Outlier robust
Deposited bed
Sediment transport
Language English
License 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-8cf711da255d87d92f21a1287372abe435286b23810c3af6ec59255c0b27dc853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0559-5261
PMID 36596972
PQID 2807942240
PQPubID 54208
PageCount 16
ParticipantIDs proquest_miscellaneous_2942101448
proquest_miscellaneous_2760817603
proquest_journals_2807942240
pubmed_primary_36596972
crossref_citationtrail_10_1007_s11356_022_24989_0
crossref_primary_10_1007_s11356_022_24989_0
springer_journals_10_1007_s11356_022_24989_0
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References SafariMJSShirzadAMohammadiMSediment transport modeling in deposited bed sewers: unified form of May’s equations using the Particles warm optimization algorithmWater Sci Technol20177649921000
WuJGuoSLiJZengDBig data meet green challenges: big data toward green applicationsIEEE Syst J2016103888900
EbtehajIBonakdariHPerformance evaluation of adaptive neural fuzzy inference system for sediment transport in sewersWater Resour Manag2014281347654779
MayRWPSediment transport in pipes and sewers with deposited beds (technical report)1993WallingfordHydraulic Research Ltd
LiuZ-FLiL-LTsengM-LLimMKPrediction short-term photovoltaic power using improved chicken swarm optimizer-extreme learning machine modelJ Clean Prod2020248
PerrusquiaGSSediment transport in 486 pipe channels (Report B: 55)1992SwedenChalmers University of Technology
HenríquezPARuzGAExtreme learning machine with a deterministic assignment of hidden weights in two parallel layersNeurocomputing2017226109116
SafariMJSDanandehMehrAMultigene genetic programming for sediment transport modeling in sewers for conditions of non-deposition with a bed depositInt J Sediment Res2018333262270
Craven JP (1953) “The transportation of sand in pipes—Full pipe flow.” In Proc., 5th Hydraulics Conf. Ames, IA: Iowa State Univ
Ambrose HH (1953) “The transportation of sand in pipes free surface flow.” In Proc., 5th Hydraulic Conf., Bulletin 34, State University of Iowa Studies in Engineering. Ames, IA: Iowa State Univ
SafariMJSMohammadiMAb GhaniAExperimental studies of self-cleansing drainage system design: a reviewJ Pipeline Syst Eng20189404018017
WuJGuoSHuangHLiuWXiangYInformation and communications technologies for sustainable development goals: state-of-the-art, needs and perspectivesIEEE Communications Surveys & Tutorials201820323892406
NalluriCEl-ZaemeyAKChanHLSediment transport over fixed deposited beds in sewers-an appraisal of existing modelsWater Sci Technol1997368123128
Lawrence I, Lin K (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 255–268
OtaJJNalluriCUrban storm sewer design: approach in consideration of sedimentsJ Hydraul Eng20031294291297
EbtehajIBonakdariHSafariMJSGharabaghiBZajiAHMadavarHRKhozaniZSEs-haghiMSShishegaranAMehrADCombination of sensitivity and uncertainty analyses for sediment transport modeling in sewer pipesInt J Sedim Res2020352157170
YadavBChSMathurSAdamowskiJDischarge forecasting using an online sequential extreme learning machine (OS-ELM) model: a case study in Neckar River, GermanyMeasurement201692433445
ZhangKLuoMOutlier-robust extreme learning machine for regression problemsNeurocomputing201515115191527
HuangG-BZhuQ-YSiewC-KExtreme learning machine: theory and applicationsNeurocomputing2006701–3489501
Perrusquia GS (1991) “Bed load transport in storm sewers: steam traction in pipe channels.” Ph.D. thesis, Dept. of Civil Engineering, Chalmers Univ. of Technology
ButlerDMayRAckersJSelf-cleansing 442 sewer design based on sediment transport principlesJ Hydraul Eng20031294276282
SafariMJSDecision tree (DT), generalized regression neural network (GR) and multivariate adaptive regression splines (MARS) models for sediment transport in sewer pipesWater Sci Technol201979611131122
ZhaoDWangJZhaoXTriantafilisJClay content mapping and uncertainty estimation using weighted model averagingCATENA2022209
Safari MJS (2016) Self-cleansing drainage system design by incipient motion and incipient deposition-based models (Doctoral dissertation, PhD Thesis, Istanbul Technical University, Turkey)
LiL-LLiuZ-FTsengM-LJantarakolicaKLimMKUsing enhanced crow search algorithm optimization-extreme learning machine model to forecast short-term wind powerExpert Syst Appl2021184
Danandeh MehrASafariMJSApplication of soft computing techniques for particle Froude number estimation in sewer pipesJ Pipeline Syst Eng202011204020002
ZhangDPengXPanKLiuYA novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machineEnergy Convers Manage2019180338357
LuoXSunJWangLWangWZhaoWWuJWangJHZhangZShort-term wind speed forecasting via stacked extreme learning machine with generalized correntropyIEEE Trans Industr Inf2018141149634971
SafariMJSShirzadASelf- cleansing design of sewers: definition of the optimum deposited bed thicknessWater Environ Res20199154074161:CAS:528:DC%2BC1MXns1OqtLw%3D
El-ZaemeyAKSSediment transport over deposited beds in sewers (doctoral dissertation)1991U.K.University of Newcastle upon Tyne
SafariMJSAksoyHExperimental analysis for self-cleansing open channel designJ Hydraul Res2021593500511
Ackers P (1991) Sediment aspects of drainage and outfall design. In Proc., Int. Symp. on Environmental Hydraulics, Rotterdam, Netherlands: A.A. Balkema
SafariMJSAksoyHUnalNEMohammadiMExperimental analysis of sediment incipient motion in rigid boundary open channelsEnviron Fluid Mech2017176128112981:CAS:528:DC%2BC2sXhslWrsbvE
TangJDengCHuangG-BExtreme learning machine for multilayer perceptronIEEE Transactions on Neural Networks and Learning Systems2015274809821
TavaresLDSaldanhaRRVieiraDAGExtreme learning machine with parallel layer perceptronsNeurocomputing2015166164171
PerrusquiaGSAn experimental study from flume to stream traction in pipe channels (ReportB57)1993SwedenChalmers University of Technology
LiangN-YHuangG-BSaratchandranPSundararajanNA fast and accurate online sequential learning algorithm for feedforward networksIEEE Trans Neural Networks200617614111423
CaminhasWMVieiraDAGVasconcelosJAParallel layer perceptronNeurocomputing2003553–4771778
MontesCVanegasSKapelanZBerardiLSaldarriagaJNon-deposition self-cleansing models for large sewer pipesWater Sci Technol2020813606621
Ab GhaniASediment transport in sewers (doctoral dissertation)1993U.K.University of Newcastle upon Tyne
Ackers JC, Butler D, May RWP (1996) Design of sewers to control sediment problems. Construction Industry Research and Information Association (CIRIA), London, pp. 1e181. Rep.No.141, London
AlvarezEMThe influence cohesion on sediment movement in channels of circular cross-section (doctoral dissertation)1990U.K.University of Newcastle upon Tyne
NalluriCAb GhaniAEl-ZaemeyAKSSediment transport over deposited beds in sewersWater Sci Technol1994291e2125133
MayRWPAckersJCButlerDJohnSDevelopment of design methodology for self-cleansing sewersWater Sci Technol1996339195205
May RWP, Brown PM, Hare GR, Jones KD (1989) Self-cleansing conditions for sewers carrying sediment. Rep. No. SR 221. Wallingford, Oxfordshire: Hydraulics Research Ltd.
HuangG-BWangDHLanYExtreme learning machines: a surveyInt J Mach Learn Cybern201122107122
SafariMJSMohammadiBKargarKInvasive weed optimization-based adaptive neuro-fuzzy inference system hybrid model for sediment transport with a bed depositJ Clean Prod2020276
RoushangarKGhasempourREstimation of bedload discharge in sewer pipes with different boundary conditions using an evolutionary algorithmInt J Sediment Res2017324564574
Ackers P (1984) Sediment transport in sewers and the design implications. In Proc., Int. Conf. on Planning, Construction, Maintenance, and Operation of Sewerage Systems, 215–230. Reading, UK: BHRA/WRc
AksoyHSafariMJSUnalNEMohammadiMVelocity-based analysis of sediment incipient deposition in rigid boundary open channelsWater Sci Technol201776925352543
MJS Safari (24989_CR35) 2021; 59
N-Y Liang (24989_CR20) 2006; 17
JJ Ota (24989_CR29) 2003; 129
24989_CR25
Z-F Liu (24989_CR21) 2020; 248
MJS Safari (24989_CR41) 2020; 276
A Danandeh Mehr (24989_CR11) 2020; 11
MJS Safari (24989_CR40) 2018; 9
LD Tavares (24989_CR44) 2015; 166
K Roushangar (24989_CR33) 2017; 32
D Zhao (24989_CR50) 2022; 209
WM Caminhas (24989_CR9) 2003; 55
I Ebtehaj (24989_CR12) 2014; 28
MJS Safari (24989_CR39) 2017; 76
J Wu (24989_CR45) 2016; 10
B Yadav (24989_CR47) 2016; 92
EM Alvarez (24989_CR6) 1990
MJS Safari (24989_CR38) 2017; 17
24989_CR32
D Butler (24989_CR8) 2003; 129
PA Henríquez (24989_CR15) 2017; 226
MJS Safari (24989_CR37) 2019; 91
H Aksoy (24989_CR5) 2017; 76
AKS El-Zaemey (24989_CR14) 1991
RWP May (24989_CR24) 1996; 33
MJS Safari (24989_CR36) 2018; 33
X Luo (24989_CR22) 2018; 14
G-B Huang (24989_CR17) 2011; 2
A Ab Ghani (24989_CR1) 1993
24989_CR42
C Nalluri (24989_CR27) 1994; 29
J Tang (24989_CR43) 2015; 27
GS Perrusquia (24989_CR31) 1993
K Zhang (24989_CR48) 2015; 151
24989_CR7
C Montes (24989_CR26) 2020; 81
24989_CR2
24989_CR18
24989_CR3
24989_CR4
G-B Huang (24989_CR16) 2006; 70
D Zhang (24989_CR49) 2019; 180
RWP May (24989_CR23) 1993
24989_CR10
L-L Li (24989_CR19) 2021; 184
GS Perrusquia (24989_CR30) 1992
MJS Safari (24989_CR34) 2019; 79
C Nalluri (24989_CR28) 1997; 36
J Wu (24989_CR46) 2018; 20
I Ebtehaj (24989_CR13) 2020; 35
References_xml – reference: LiL-LLiuZ-FTsengM-LJantarakolicaKLimMKUsing enhanced crow search algorithm optimization-extreme learning machine model to forecast short-term wind powerExpert Syst Appl2021184
– reference: SafariMJSAksoyHExperimental analysis for self-cleansing open channel designJ Hydraul Res2021593500511
– reference: Ambrose HH (1953) “The transportation of sand in pipes free surface flow.” In Proc., 5th Hydraulic Conf., Bulletin 34, State University of Iowa Studies in Engineering. Ames, IA: Iowa State Univ
– reference: ZhaoDWangJZhaoXTriantafilisJClay content mapping and uncertainty estimation using weighted model averagingCATENA2022209
– reference: MayRWPAckersJCButlerDJohnSDevelopment of design methodology for self-cleansing sewersWater Sci Technol1996339195205
– reference: PerrusquiaGSAn experimental study from flume to stream traction in pipe channels (ReportB57)1993SwedenChalmers University of Technology
– reference: AksoyHSafariMJSUnalNEMohammadiMVelocity-based analysis of sediment incipient deposition in rigid boundary open channelsWater Sci Technol201776925352543
– reference: LuoXSunJWangLWangWZhaoWWuJWangJHZhangZShort-term wind speed forecasting via stacked extreme learning machine with generalized correntropyIEEE Trans Industr Inf2018141149634971
– reference: YadavBChSMathurSAdamowskiJDischarge forecasting using an online sequential extreme learning machine (OS-ELM) model: a case study in Neckar River, GermanyMeasurement201692433445
– reference: AlvarezEMThe influence cohesion on sediment movement in channels of circular cross-section (doctoral dissertation)1990U.K.University of Newcastle upon Tyne
– reference: ZhangDPengXPanKLiuYA novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machineEnergy Convers Manage2019180338357
– reference: WuJGuoSHuangHLiuWXiangYInformation and communications technologies for sustainable development goals: state-of-the-art, needs and perspectivesIEEE Communications Surveys & Tutorials201820323892406
– reference: Safari MJS (2016) Self-cleansing drainage system design by incipient motion and incipient deposition-based models (Doctoral dissertation, PhD Thesis, Istanbul Technical University, Turkey)
– reference: HenríquezPARuzGAExtreme learning machine with a deterministic assignment of hidden weights in two parallel layersNeurocomputing2017226109116
– reference: NalluriCAb GhaniAEl-ZaemeyAKSSediment transport over deposited beds in sewersWater Sci Technol1994291e2125133
– reference: Perrusquia GS (1991) “Bed load transport in storm sewers: steam traction in pipe channels.” Ph.D. thesis, Dept. of Civil Engineering, Chalmers Univ. of Technology
– reference: SafariMJSAksoyHUnalNEMohammadiMExperimental analysis of sediment incipient motion in rigid boundary open channelsEnviron Fluid Mech2017176128112981:CAS:528:DC%2BC2sXhslWrsbvE
– reference: WuJGuoSLiJZengDBig data meet green challenges: big data toward green applicationsIEEE Syst J2016103888900
– reference: Ab GhaniASediment transport in sewers (doctoral dissertation)1993U.K.University of Newcastle upon Tyne
– reference: SafariMJSMohammadiMAb GhaniAExperimental studies of self-cleansing drainage system design: a reviewJ Pipeline Syst Eng20189404018017
– reference: OtaJJNalluriCUrban storm sewer design: approach in consideration of sedimentsJ Hydraul Eng20031294291297
– reference: ButlerDMayRAckersJSelf-cleansing 442 sewer design based on sediment transport principlesJ Hydraul Eng20031294276282
– reference: El-ZaemeyAKSSediment transport over deposited beds in sewers (doctoral dissertation)1991U.K.University of Newcastle upon Tyne
– reference: NalluriCEl-ZaemeyAKChanHLSediment transport over fixed deposited beds in sewers-an appraisal of existing modelsWater Sci Technol1997368123128
– reference: Ackers P (1991) Sediment aspects of drainage and outfall design. In Proc., Int. Symp. on Environmental Hydraulics, Rotterdam, Netherlands: A.A. Balkema
– reference: ZhangKLuoMOutlier-robust extreme learning machine for regression problemsNeurocomputing201515115191527
– reference: Craven JP (1953) “The transportation of sand in pipes—Full pipe flow.” In Proc., 5th Hydraulics Conf. Ames, IA: Iowa State Univ
– reference: MayRWPSediment transport in pipes and sewers with deposited beds (technical report)1993WallingfordHydraulic Research Ltd
– reference: SafariMJSShirzadAMohammadiMSediment transport modeling in deposited bed sewers: unified form of May’s equations using the Particles warm optimization algorithmWater Sci Technol20177649921000
– reference: EbtehajIBonakdariHPerformance evaluation of adaptive neural fuzzy inference system for sediment transport in sewersWater Resour Manag2014281347654779
– reference: HuangG-BZhuQ-YSiewC-KExtreme learning machine: theory and applicationsNeurocomputing2006701–3489501
– reference: Lawrence I, Lin K (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 255–268
– reference: SafariMJSDanandehMehrAMultigene genetic programming for sediment transport modeling in sewers for conditions of non-deposition with a bed depositInt J Sediment Res2018333262270
– reference: LiuZ-FLiL-LTsengM-LLimMKPrediction short-term photovoltaic power using improved chicken swarm optimizer-extreme learning machine modelJ Clean Prod2020248
– reference: SafariMJSShirzadASelf- cleansing design of sewers: definition of the optimum deposited bed thicknessWater Environ Res20199154074161:CAS:528:DC%2BC1MXns1OqtLw%3D
– reference: Danandeh MehrASafariMJSApplication of soft computing techniques for particle Froude number estimation in sewer pipesJ Pipeline Syst Eng202011204020002
– reference: EbtehajIBonakdariHSafariMJSGharabaghiBZajiAHMadavarHRKhozaniZSEs-haghiMSShishegaranAMehrADCombination of sensitivity and uncertainty analyses for sediment transport modeling in sewer pipesInt J Sedim Res2020352157170
– reference: SafariMJSMohammadiBKargarKInvasive weed optimization-based adaptive neuro-fuzzy inference system hybrid model for sediment transport with a bed depositJ Clean Prod2020276
– reference: SafariMJSDecision tree (DT), generalized regression neural network (GR) and multivariate adaptive regression splines (MARS) models for sediment transport in sewer pipesWater Sci Technol201979611131122
– reference: MontesCVanegasSKapelanZBerardiLSaldarriagaJNon-deposition self-cleansing models for large sewer pipesWater Sci Technol2020813606621
– reference: RoushangarKGhasempourREstimation of bedload discharge in sewer pipes with different boundary conditions using an evolutionary algorithmInt J Sediment Res2017324564574
– reference: CaminhasWMVieiraDAGVasconcelosJAParallel layer perceptronNeurocomputing2003553–4771778
– reference: May RWP, Brown PM, Hare GR, Jones KD (1989) Self-cleansing conditions for sewers carrying sediment. Rep. No. SR 221. Wallingford, Oxfordshire: Hydraulics Research Ltd.
– reference: PerrusquiaGSSediment transport in 486 pipe channels (Report B: 55)1992SwedenChalmers University of Technology
– reference: LiangN-YHuangG-BSaratchandranPSundararajanNA fast and accurate online sequential learning algorithm for feedforward networksIEEE Trans Neural Networks200617614111423
– reference: HuangG-BWangDHLanYExtreme learning machines: a surveyInt J Mach Learn Cybern201122107122
– reference: Ackers JC, Butler D, May RWP (1996) Design of sewers to control sediment problems. Construction Industry Research and Information Association (CIRIA), London, pp. 1e181. Rep.No.141, London
– reference: TangJDengCHuangG-BExtreme learning machine for multilayer perceptronIEEE Transactions on Neural Networks and Learning Systems2015274809821
– reference: TavaresLDSaldanhaRRVieiraDAGExtreme learning machine with parallel layer perceptronsNeurocomputing2015166164171
– reference: Ackers P (1984) Sediment transport in sewers and the design implications. In Proc., Int. Conf. on Planning, Construction, Maintenance, and Operation of Sewerage Systems, 215–230. Reading, UK: BHRA/WRc
– volume: 32
  start-page: 564
  issue: 4
  year: 2017
  ident: 24989_CR33
  publication-title: Int J Sediment Res
  doi: 10.1016/j.ijsrc.2017.05.007
– volume-title: Sediment transport in sewers (doctoral dissertation)
  year: 1993
  ident: 24989_CR1
– volume: 35
  start-page: 157
  issue: 2
  year: 2020
  ident: 24989_CR13
  publication-title: Int J Sedim Res
  doi: 10.1016/j.ijsrc.2019.08.005
– volume: 55
  start-page: 771
  issue: 3–4
  year: 2003
  ident: 24989_CR9
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(03)00440-5
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 24989_CR16
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 92
  start-page: 433
  year: 2016
  ident: 24989_CR47
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.06.042
– volume: 33
  start-page: 195
  issue: 9
  year: 1996
  ident: 24989_CR24
  publication-title: Water Sci Technol
  doi: 10.2166/wst.1996.0210
– ident: 24989_CR2
– volume: 226
  start-page: 109
  year: 2017
  ident: 24989_CR15
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.11.040
– volume: 91
  start-page: 407
  issue: 5
  year: 2019
  ident: 24989_CR37
  publication-title: Water Environ Res
  doi: 10.1002/wer.1037
– volume: 248
  year: 2020
  ident: 24989_CR21
  publication-title: J Clean Prod
– volume: 184
  year: 2021
  ident: 24989_CR19
  publication-title: Expert Syst Appl
– ident: 24989_CR25
– ident: 24989_CR42
– ident: 24989_CR32
– volume: 166
  start-page: 164
  year: 2015
  ident: 24989_CR44
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.018
– volume-title: The influence cohesion on sediment movement in channels of circular cross-section (doctoral dissertation)
  year: 1990
  ident: 24989_CR6
– volume: 14
  start-page: 4963
  issue: 11
  year: 2018
  ident: 24989_CR22
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2018.2854549
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  ident: 24989_CR20
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/TNN.2006.880583
– volume: 33
  start-page: 262
  issue: 3
  year: 2018
  ident: 24989_CR36
  publication-title: Int J Sediment Res
  doi: 10.1016/j.ijsrc.2018.04.007
– volume-title: Sediment transport over deposited beds in sewers (doctoral dissertation)
  year: 1991
  ident: 24989_CR14
– volume: 180
  start-page: 338
  year: 2019
  ident: 24989_CR49
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.10.089
– volume: 209
  year: 2022
  ident: 24989_CR50
  publication-title: CATENA
  doi: 10.1016/j.catena.2021.105791
– volume: 20
  start-page: 2389
  issue: 3
  year: 2018
  ident: 24989_CR46
  publication-title: IEEE Communications Surveys & Tutorials
  doi: 10.1109/COMST.2018.2812301
– volume: 129
  start-page: 291
  issue: 4
  year: 2003
  ident: 24989_CR29
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(2003)129:4(291)
– volume: 79
  start-page: 1113
  issue: 6
  year: 2019
  ident: 24989_CR34
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2019.106
– ident: 24989_CR10
– volume: 2
  start-page: 107
  issue: 2
  year: 2011
  ident: 24989_CR17
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-011-0019-y
– volume: 11
  start-page: 04020002
  issue: 2
  year: 2020
  ident: 24989_CR11
  publication-title: J Pipeline Syst Eng
  doi: 10.1061/(ASCE)PS.1949-1204.0000449
– volume: 28
  start-page: 4765
  issue: 13
  year: 2014
  ident: 24989_CR12
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0774-0
– ident: 24989_CR4
– volume: 151
  start-page: 1519
  year: 2015
  ident: 24989_CR48
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.022
– volume-title: Sediment transport in 486 pipe channels (Report B: 55)
  year: 1992
  ident: 24989_CR30
– ident: 24989_CR18
  doi: 10.2307/2532051
– volume: 276
  year: 2020
  ident: 24989_CR41
  publication-title: J Clean Prod
– volume: 81
  start-page: 606
  issue: 3
  year: 2020
  ident: 24989_CR26
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2020.154
– volume: 17
  start-page: 1281
  issue: 6
  year: 2017
  ident: 24989_CR38
  publication-title: Environ Fluid Mech
  doi: 10.1007/s10652-017-9550-z
– volume: 10
  start-page: 888
  issue: 3
  year: 2016
  ident: 24989_CR45
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2016.2550530
– volume: 76
  start-page: 2535
  issue: 9
  year: 2017
  ident: 24989_CR5
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2017.429
– volume: 76
  start-page: 992
  issue: 4
  year: 2017
  ident: 24989_CR39
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2017.267
– volume: 27
  start-page: 809
  issue: 4
  year: 2015
  ident: 24989_CR43
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2424995
– volume: 129
  start-page: 276
  issue: 4
  year: 2003
  ident: 24989_CR8
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(2003)129:4(276)
– volume: 29
  start-page: 125
  issue: 1e2
  year: 1994
  ident: 24989_CR27
  publication-title: Water Sci Technol
  doi: 10.2166/wst.1994.0658
– ident: 24989_CR7
– volume-title: An experimental study from flume to stream traction in pipe channels (ReportB57)
  year: 1993
  ident: 24989_CR31
– ident: 24989_CR3
– volume: 59
  start-page: 500
  issue: 3
  year: 2021
  ident: 24989_CR35
  publication-title: J Hydraul Res
  doi: 10.1080/00221686.2020.1780501
– volume-title: Sediment transport in pipes and sewers with deposited beds (technical report)
  year: 1993
  ident: 24989_CR23
– volume: 36
  start-page: 123
  issue: 8
  year: 1997
  ident: 24989_CR28
  publication-title: Water Sci Technol
  doi: 10.2166/wst.1997.0654
– volume: 9
  start-page: 04018017
  issue: 4
  year: 2018
  ident: 24989_CR40
  publication-title: J Pipeline Syst Eng
  doi: 10.1061/(ASCE)PS.1949-1204.0000335
SSID ssj0020927
Score 2.3785489
Snippet Sediment transport is a noteworthy task in the design and operation of sewer pipes. Decreasing sewer pipe hydraulic capacity and transport of pollution are the...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 39637
SubjectTerms Aquatic Pollution
Artificial neural networks
Atmospheric Protection/Air Quality Control/Air Pollution
Design
Diameters
Earth and Environmental Science
Ecotoxicology
Education, Distance
Environment
Environmental Chemistry
Environmental Health
Environmental Pollution
Environmental science
Learning algorithms
Machine Learning
Modelling
Neural Networks, Computer
Outliers (statistics)
Parameters
Pipes
pollution
Pollution dispersion
Pollution transport
Research Article
Robustness
sediment deposition
Sediment transport
sediments
Sewer pipes
Sewer systems
Thickness
uncertainty
Waste Water Technology
Water Management
Water Pollution Control
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x3T3sBdhHIbxkpL3RSE7qxPERoVacEBLsilvk2M6qUjatmhT-Ab-bmTxaIdhKu5cckvHIsj2ez_HMNwA_BOVXGxv5gdPcF86EfpY7hxYvCeCjV9G2KTYhb26Shwd12yWFVX20e38l2ezUm2S3YBxRwGzo45GBAn0-wMeI2GbojH73a33M4iqUXXrM--1eu6A3uPLNnWjjaqZ7_9fJfdjtoCW7bNfCF9hx5VcYTjaZbPixM-XqGzy3JKOsjaVGOy9GjKKD0E2y5TxbVfWI6dIy4gYvClewQiM6Z4s2EAY1MtzW6eci6wpP_GZ_msBMx5rqOhVDOIzabVM-gNU9iTqblfj2iVTNFq76Dj-nk_ura78ryuAbwZPaT0wug8BqPIrYRFoV5jid6OSo3I3OnCC2mDgjIMDNWOexM5FCWcOzUFqD4GAIg3JeukNgUlieGG54rBG1xVJLoZzNjRBK6zixHgT9PKWmYyynwhlFuuFapuFOcbjTZrhT7sHFus2i5evYKn3ST3_a2W6VEj-QEgR1PDhff0aro6sUXbr5CmVkjFgKH-MtMqiEKiGLxIODdmmtuzSOIxUrGXow6tfRpgN_7-_Rv4kfw-cQMVkbMncCg3q5cqfwyTzWs2p51ljNC-bZE_Q
  priority: 102
  providerName: Springer Nature
Title Online sequential, outlier robust, and parallel layer perceptron extreme learning machine models for sediment transport in sewer pipes
URI https://link.springer.com/article/10.1007/s11356-022-24989-0
https://www.ncbi.nlm.nih.gov/pubmed/36596972
https://www.proquest.com/docview/2807942240
https://www.proquest.com/docview/2760817603
https://www.proquest.com/docview/2942101448
Volume 30
WOSCitedRecordID wos000907103500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 7WY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection (ProQuest)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: M0C
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: PATMY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 7X7
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database (ProQuest)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: M2P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BLgcuvBcCS2UkbjTCSdw4PiGouuJCVS2vcopc21lVCmlpUvgH_G5mEqcRWtELl5GSONZI4_F8tsfzAbwUdL_a2EkYOc1D4Uwcrgrn0OMlAXyMKtq2ZBNyPs-WS7XwG261T6vs58R2orYbQ3vkr6lqixIUgN5sf4TEGkWnq55C4yacEm02jXO5HBZcXHWUrUqIMEqE8JdmuqtzUTKh9Ns4xAUIpQ39HZiuoc1rJ6VtALq4-7-q34M7Hnqyt91YuQ83XPUAzmbDTTf86F29fgi_uyKkrMu1xnmgHDPKHsIwynab1b5uxkxXllHt8LJ0JSs1one27RJlsEeG0z5tPjJPTHHFvreJm4617Ds1Q7iMvduWXoA1fZF1tq7w7S_qar119SP4fDH7NH0fetKG0AieNWFmChlFVuNSxWbSqrhAc2MQJDocvXKCqsmkKwIK3CS6SJ2ZKGxr-CqW1iB4OIOTalO5J8CksDwz3PBUI6pLpZZCOVsYIZTWaWYDiHqL5cZXNCdijTIfajGTlXO0ct5aOecBvDr8s-3qeRxtfd5bNPe-XeeDOQN4cfiMXklHLbpymz22kSliLRTJkTbYCTEliyyAx90gO6iUpBOVKhkHMO5H3aDAv_V9elzfZ3A7RozWpdCdw0mz27vncMv8bNb1boS-8_XbqPWgVmYos2k0gtN3s_niEp8-8CnJeIHy8uOXPx1vJt0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBQku5bM0UMBIcGIjEscbxweEUGnVqmXFoUi9Bcd20Eohu2yyVPwBfg6_kZk42RWq2FsPXHJIvNYo-zwzjt_MA3gpqL7a2HEYOx2FwhkeFqVzuOIlJfgYVbTtxCbkZJJdXKhPW_B7qIUhWuXgEztHbWeGvpG_oa4tSlAAejf_HpJqFJ2uDhIaHhan7uclbtmatycf8P99xfnR4fnBcdirCoRGRFkbZqaUcWw15tI2k1bxEu1BL016LbpwgtqdpAVFssgkukydGSsca6KCS2syUolAl39DJDyhVZQdrCglPFJeIlYJEcaJEH2Rji_Vi5Mx0X15iBseoin9HQivZLdXTma7gHd05397VXdhp0-t2Xu_Fu7Blqvvw-7hupIPH_aurHkAv3yTVea55OjnqhEjdhSmCWwxK5ZNO2K6tox6o1eVq1ilcXfC5p4IhDMyDGv0cZX1whtf2beOmOpYpy7UMNwO4Oy2k09g7dBEnk1rvHtJU03nrnkIn6_lnezCdj2r3R4wKWyUmchEqcasNZVaCuVsaYRQWqeZDSAeEJKbvmM7CYdU-brXNKEqR1TlHaryKIDXq9_Mfb-SjaP3BwTlve9q8jV8Anixeoxeh46SdO1mSxwjU8wl8ZJsGIOTkBK0yAJ45EG9MilJxypVkgcwGlC-NuDf9j7ebO9zuHV8_vEsPzuZnD6B2xzzUU8X3IftdrF0T-Gm-dFOm8Wzbt0y-HLd6P8DdeN6QA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tughx4b1LYAEjwYlGm4cbxweEgG3FalFVIZD2FhzbQZVCWpqUFX-AH8WvYyZOWqEVve2BSw6JY02Sz_OIZ-YDeM6pvlqbkR9aFfjc6sjPC2txxQty8NGqKNOSTYjpND0_l7M9-N3XwlBaZa8TW0VtFpr-kR9T1xbJyQAdF11axOxk8nr53ScGKdpp7ek0HETO7M8LDN_qV6cn-K1fRNFk_Onde79jGPA1D9LGT3UhwtAo9KtNKoyMCpQNNTZxt6jccmp9kuRk1QIdqyKxeiRxrA7ySBidEmMEqv99EWPQM4D9t-Pp7OMm3AukI4yVnPthzHlXsuMK98J4RMm_kY_hDyUt_W0WL_m6l_ZpW_M3ufU_v7jbcLNzutkbt0ruwJ6t7sLBeFvjhxc7JVffg1-u_SpzWeaoAcsho7wpdCDYapGv62bIVGUYdU0vS1uyUmHcwpYuRQhnZPjw9NuVdZQcX9m3NmXVspZ3qGYYKODspiVWYE3fXp7NKzx7QVPNl7a-D5-v5J0cwKBaVPYBMMFNkOpAB4lCfzYRSnBpTaE5l0olqfEg7NGS6a6XO1GKlNm2CzUhLEOEZS3CssCDl5t7lq6Tyc7RRz2ask6r1dkWSh4821xGfUSbTKqyizWOEQl6mXiId4zBSYgjmqceHDqAb0SKk5FMpIg8GPaI3wrwb3kf7pb3KVxH0GcfTqdnj-BGhI6qyyM8gkGzWtvHcE3_aOb16km3iBl8uWr4_wEL0YSe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+sequential%2C+outlier+robust%2C+and+parallel+layer+perceptron+extreme+learning+machine+models+for+sediment+transport+in+sewer+pipes&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Kouzehkalani+Sales%2C+Ali&rft.au=Gul%2C+Enes&rft.au=Safari%2C+Mir+Jafar+Sadegh&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=30&rft.issue=14&rft.spage=39637&rft.epage=39652&rft_id=info:doi/10.1007%2Fs11356-022-24989-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon