A CNN-Transformer Network With Multiscale Context Aggregation for Fine-Grained Cropland Change Detection

Nonagriculturalization incidents are serious threats to local agricultural ecosystem and global food security. Remote sensing change detection (CD) can provide an effective approach for in-time detection and prevention of such incidents. However, existing CD methods are difficult to deal with the la...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing Vol. 15; pp. 4297 - 4306
Main Authors: Liu, Mengxi, Chai, Zhuoqun, Deng, Haojun, Liu, Rong
Format: Journal Article
Language:English
Published: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1939-1404, 2151-1535
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Nonagriculturalization incidents are serious threats to local agricultural ecosystem and global food security. Remote sensing change detection (CD) can provide an effective approach for in-time detection and prevention of such incidents. However, existing CD methods are difficult to deal with the large intraclass differences of cropland changes in high-resolution images. In addition, traditional CNN based models are plagued by the loss of long-range context information, and the high computational complexity brought by deep layers. Therefore, in this article, we propose a CNN-transformer network with multiscale context aggregation (MSCANet), which combines the merits of CNN and transformer to fulfill efficient and effective cropland CD. In the MSCANet, a CNN-based feature extractor is first utilized to capture hierarchical features, then a transformer-based MSCA is designed to encode and aggregate context information. Finally, a multibranch prediction head with three CNN classifiers is applied to obtain change maps, to enhance the supervision for deep layers. Besides, for the lack of CD dataset with fine-grained cropland change of interest, we also provide a new cropland change detection dataset, which contains 600 pairs of 512 × 512 bi-temporal images with the spatial resolution of 0.5-2m. Comparative experiments with several CD models prove the effectiveness of the MSCANet, with the highest F1 of 64.67% on the high-resolution semantic CD dataset, and of 71.29% on CLCD.
AbstractList Nonagriculturalization incidents are serious threats to local agricultural ecosystem and global food security. Remote sensing change detection (CD) can provide an effective approach for in-time detection and prevention of such incidents. However, existing CD methods are difficult to deal with the large intraclass differences of cropland changes in high-resolution images. In addition, traditional CNN based models are plagued by the loss of long-range context information, and the high computational complexity brought by deep layers. Therefore, in this article, we propose a CNN-transformer network with multiscale context aggregation (MSCANet), which combines the merits of CNN and transformer to fulfill efficient and effective cropland CD. In the MSCANet, a CNN-based feature extractor is first utilized to capture hierarchical features, then a transformer-based MSCA is designed to encode and aggregate context information. Finally, a multibranch prediction head with three CNN classifiers is applied to obtain change maps, to enhance the supervision for deep layers. Besides, for the lack of CD dataset with fine-grained cropland change of interest, we also provide a new cropland change detection dataset, which contains 600 pairs of 512 × 512 bi-temporal images with the spatial resolution of 0.5-2m. Comparative experiments with several CD models prove the effectiveness of the MSCANet, with the highest F1 of 64.67% on the high-resolution semantic CD dataset, and of 71.29% on CLCD.
Author Liu, Mengxi
Chai, Zhuoqun
Liu, Rong
Deng, Haojun
Author_xml – sequence: 1
  givenname: Mengxi
  orcidid: 0000-0001-5237-4758
  surname: Liu
  fullname: Liu, Mengxi
  email: liumx23@mail2.sysu.edu.cn
  organization: Guangdong Provincial Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Zhuoqun
  surname: Chai
  fullname: Chai, Zhuoqun
  email: chaizhq@mail2.sysu.edu.cn
  organization: Guangdong Provincial Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Haojun
  orcidid: 0000-0002-7013-2450
  surname: Deng
  fullname: Deng, Haojun
  email: denghj5@mail2.sysu.edu.cn
  organization: Guangdong Provincial Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
– sequence: 4
  givenname: Rong
  orcidid: 0000-0002-4642-9086
  surname: Liu
  fullname: Liu, Rong
  email: liurong25@mail.sysu.edu.cn
  organization: Guangdong Provincial Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
BookMark eNqFkc1OGzEUha0KpAbKE7Cx1PWk_h3Hy2haKBVNJQjq0nLs68mkwzj1OGp5exwGseimq2tZ5zvn6p4zdDLEARC6pGROKdGfvt2vl3f3c0YYm3OqFOPyHZoxKmlFJZcnaEY11xUVRLxHZ-O4I6RmSvMZ2i5xs1pV62SHMcT0CAmvIP-J6Rf-2eUt_n7oczc62wNu4pDhb8bLtk3Q2tzFARcEX3UDVNfJluFxk-K-t0N5bO3QAv4MGdxR-gGdBtuPcPE6z9HD1Zd187W6_XF90yxvKyfIIlcLJ-uaCMqCYorIoLh3dZncqg13XqtAnVa1lM5tmPdKeEGsJ0Wx8No6z8_RzeTro92ZfeoebXoy0Xbm5SOm1tiUO9eDsTUBQaQLlDMRSrylnGyUCFIqCxaK18fJa5_i7wOM2eziIQ1lfcNqVQDKOCsqPqlciuOYILylUmKO9ZipHnOsx7zWUyj9D-W6_HLUXE7Z_4e9nNgOAN7StFoQWgv-DCiqn9A
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1109_TCSVT_2023_3349007
crossref_primary_10_1109_JSTARS_2025_3576127
crossref_primary_10_1080_10095020_2025_2514824
crossref_primary_10_1109_JSTARS_2024_3379565
crossref_primary_10_1109_TGRS_2024_3362895
crossref_primary_10_1016_j_compag_2024_109370
crossref_primary_10_1109_JSTARS_2024_3401581
crossref_primary_10_1109_TGRS_2024_3400215
crossref_primary_10_1007_s10846_023_02009_8
crossref_primary_10_3390_electronics13040774
crossref_primary_10_1007_s40808_024_02068_2
crossref_primary_10_1049_ipr2_13037
crossref_primary_10_1109_JSTARS_2024_3358298
crossref_primary_10_1109_JSTARS_2024_3415171
crossref_primary_10_1109_TGRS_2023_3305554
crossref_primary_10_1109_JSTARS_2023_3337999
crossref_primary_10_1016_j_compag_2023_107809
crossref_primary_10_1117_1_JRS_18_044508
crossref_primary_10_1109_JSTARS_2023_3260006
crossref_primary_10_1016_j_neucom_2025_130607
crossref_primary_10_1109_JSTARS_2025_3595585
crossref_primary_10_1109_TGRS_2025_3535496
crossref_primary_10_3390_rs15153766
crossref_primary_10_1038_s41598_025_94544_7
crossref_primary_10_1109_JSTARS_2025_3526208
crossref_primary_10_1109_TGRS_2023_3327139
crossref_primary_10_1080_10095020_2024_2448232
crossref_primary_10_1016_j_knosys_2025_113428
crossref_primary_10_1109_TGRS_2023_3272694
crossref_primary_10_1109_TGRS_2024_3425540
crossref_primary_10_1016_j_asoc_2025_113372
crossref_primary_10_1109_TGRS_2025_3544402
crossref_primary_10_1109_TGRS_2024_3357524
crossref_primary_10_1109_TGRS_2023_3347661
crossref_primary_10_1109_TGRS_2024_3439390
crossref_primary_10_1007_s11442_024_2292_1
crossref_primary_10_1109_TGRS_2024_3471075
crossref_primary_10_1109_TGRS_2023_3344948
crossref_primary_10_1109_TGRS_2025_3584073
crossref_primary_10_1109_JSEN_2025_3583301
crossref_primary_10_1109_TGRS_2024_3365825
crossref_primary_10_3390_rs14184527
crossref_primary_10_1080_01431161_2023_2221797
crossref_primary_10_1109_JSTARS_2025_3526795
crossref_primary_10_3390_rs17040698
crossref_primary_10_1109_JSTARS_2025_3556723
crossref_primary_10_1016_j_isprsjprs_2025_04_030
crossref_primary_10_3390_sym17040590
crossref_primary_10_1109_JSTARS_2023_3326958
crossref_primary_10_1109_TGRS_2024_3440001
crossref_primary_10_1111_mice_12981
crossref_primary_10_1109_TGRS_2024_3438290
crossref_primary_10_1109_JSTARS_2024_3476131
crossref_primary_10_1109_JSTARS_2025_3585308
crossref_primary_10_3390_rs15081958
crossref_primary_10_1109_TGRS_2024_3379431
crossref_primary_10_1109_TGRS_2023_3281711
crossref_primary_10_1109_LGRS_2023_3323367
crossref_primary_10_1109_JSTARS_2023_3298097
crossref_primary_10_1145_3721135
crossref_primary_10_1109_JSTARS_2025_3553206
crossref_primary_10_1109_TGRS_2025_3539630
crossref_primary_10_1016_j_engappai_2025_110386
crossref_primary_10_1109_JSTARS_2023_3327340
crossref_primary_10_1117_1_JRS_17_016515
crossref_primary_10_1016_j_compag_2025_109973
crossref_primary_10_3390_rs16203852
crossref_primary_10_1016_j_jag_2025_104409
crossref_primary_10_1109_TGRS_2025_3592731
crossref_primary_10_3390_rs16061061
crossref_primary_10_3390_rs16050844
crossref_primary_10_1109_JSTARS_2024_3493945
crossref_primary_10_1109_TGRS_2023_3344284
crossref_primary_10_3390_su15043343
crossref_primary_10_1016_j_rse_2023_113653
crossref_primary_10_1016_j_isprsjprs_2023_07_001
crossref_primary_10_1109_TGRS_2025_3551504
crossref_primary_10_3390_rs16061077
crossref_primary_10_1016_j_iswa_2025_200505
crossref_primary_10_1016_j_ecoinf_2025_103321
crossref_primary_10_1109_JSTARS_2024_3350044
crossref_primary_10_1109_JSTARS_2025_3589266
crossref_primary_10_3390_app15041904
crossref_primary_10_1109_JSTARS_2023_3338454
crossref_primary_10_1109_TGRS_2024_3421654
crossref_primary_10_3390_rs16214068
crossref_primary_10_1109_TGRS_2024_3424929
crossref_primary_10_3390_rs16173278
crossref_primary_10_1109_JSTARS_2024_3403863
crossref_primary_10_1109_TGRS_2024_3399215
crossref_primary_10_1109_JSTARS_2024_3400458
crossref_primary_10_1016_j_jag_2023_103294
crossref_primary_10_1016_j_isprsjprs_2024_05_018
crossref_primary_10_1109_TGRS_2025_3525811
crossref_primary_10_1109_JSTARS_2024_3435425
crossref_primary_10_1109_JSTARS_2025_3584145
crossref_primary_10_1109_TGRS_2022_3209972
crossref_primary_10_1016_j_isprsjprs_2024_05_011
crossref_primary_10_1109_JSTARS_2024_3522329
crossref_primary_10_1109_JSTARS_2022_3231915
crossref_primary_10_1109_TGRS_2025_3569280
crossref_primary_10_1109_TGRS_2024_3491715
crossref_primary_10_1109_TGRS_2024_3352050
crossref_primary_10_1109_JSTARS_2023_3299703
crossref_primary_10_1109_TGRS_2024_3502768
crossref_primary_10_1016_j_isprsjprs_2025_05_029
crossref_primary_10_1007_s11042_024_18766_z
crossref_primary_10_1016_j_epsr_2025_112194
crossref_primary_10_1109_TGRS_2025_3598766
crossref_primary_10_1109_JSTARS_2024_3513694
crossref_primary_10_1109_TGRS_2023_3330479
crossref_primary_10_1109_JSEN_2023_3271391
crossref_primary_10_1117_1_JRS_18_034523
crossref_primary_10_1109_JSTARS_2024_3360431
crossref_primary_10_3390_rs16050804
crossref_primary_10_7780_kjrs_2024_40_6_3_6
crossref_primary_10_3390_rs16162881
crossref_primary_10_3390_app15168794
crossref_primary_10_1109_JSTARS_2025_3534583
crossref_primary_10_1109_JSTARS_2023_3304411
crossref_primary_10_1080_17538947_2024_2398051
crossref_primary_10_1109_TGRS_2024_3392696
crossref_primary_10_3390_s25175581
crossref_primary_10_1080_15481603_2024_2380126
crossref_primary_10_1109_JSTARS_2023_3289293
crossref_primary_10_1109_JSTARS_2024_3418632
crossref_primary_10_3390_rs16224186
crossref_primary_10_1016_j_jag_2024_104077
crossref_primary_10_1016_j_isprsjprs_2025_08_023
crossref_primary_10_1109_TGRS_2024_3356711
crossref_primary_10_3390_s24031006
crossref_primary_10_1109_JSTARS_2023_3280589
crossref_primary_10_1109_JSTARS_2024_3373039
crossref_primary_10_1109_JSTARS_2024_3481424
crossref_primary_10_3390_rs15163972
crossref_primary_10_3390_rs17050787
crossref_primary_10_1109_TGRS_2025_3604400
crossref_primary_10_1109_LGRS_2025_3562480
crossref_primary_10_1371_journal_pone_0326893
crossref_primary_10_1109_JSTARS_2024_3354310
crossref_primary_10_1109_TGRS_2024_3376673
crossref_primary_10_3390_s25185832
crossref_primary_10_1049_hve2_12287
crossref_primary_10_1109_JSTARS_2024_3361507
crossref_primary_10_3390_rs16183533
crossref_primary_10_1007_s12145_024_01315_5
crossref_primary_10_1007_s41651_024_00202_3
crossref_primary_10_1109_TGRS_2023_3238327
crossref_primary_10_1109_TGRS_2023_3348459
crossref_primary_10_1109_TGRS_2024_3428551
crossref_primary_10_1016_j_isprsjprs_2025_04_023
crossref_primary_10_1088_1361_6579_ad2c15
crossref_primary_10_1109_LGRS_2025_3602854
crossref_primary_10_1109_TGRS_2024_3432819
crossref_primary_10_1109_TGRS_2025_3527009
crossref_primary_10_1016_j_jag_2024_103961
crossref_primary_10_3390_rs16183489
crossref_primary_10_1109_JSTARS_2024_3508692
crossref_primary_10_1109_TGRS_2024_3505201
crossref_primary_10_1007_s11220_025_00632_3
crossref_primary_10_1109_JSTARS_2025_3591834
crossref_primary_10_1109_LGRS_2025_3574068
crossref_primary_10_1111_phor_70021
crossref_primary_10_3390_rs15112889
crossref_primary_10_1109_TGRS_2024_3349638
crossref_primary_10_1109_TGRS_2025_3545906
crossref_primary_10_1080_10095020_2025_2480816
crossref_primary_10_1109_JSTARS_2023_3317488
crossref_primary_10_1109_TGRS_2024_3486787
crossref_primary_10_1016_j_inffus_2025_103110
crossref_primary_10_1016_j_engappai_2023_107270
crossref_primary_10_1109_JSTARS_2024_3405971
crossref_primary_10_1109_LGRS_2023_3319695
crossref_primary_10_1109_TGRS_2025_3569581
crossref_primary_10_1109_TGRS_2023_3345645
crossref_primary_10_1109_TIM_2024_3387494
crossref_primary_10_1109_LGRS_2022_3216627
crossref_primary_10_3390_rs17010135
crossref_primary_10_1080_17538947_2024_2316109
crossref_primary_10_1109_JSTARS_2023_3255541
crossref_primary_10_3390_su17030996
crossref_primary_10_1016_j_dsp_2025_105594
crossref_primary_10_1109_JSTARS_2023_3280029
crossref_primary_10_1109_JSTARS_2024_3522066
crossref_primary_10_1007_s00371_024_03755_y
crossref_primary_10_1109_LGRS_2025_3581725
crossref_primary_10_1109_LGRS_2023_3234645
crossref_primary_10_1016_j_eswa_2025_127110
crossref_primary_10_3390_app15063061
crossref_primary_10_1109_JSTARS_2025_3574173
crossref_primary_10_1109_TGRS_2024_3433014
crossref_primary_10_3390_rs15225268
crossref_primary_10_1109_TGRS_2025_3585342
crossref_primary_10_1109_TGRS_2023_3272006
crossref_primary_10_1109_TGRS_2025_3600105
crossref_primary_10_1109_JSTARS_2025_3553930
crossref_primary_10_1109_TIM_2024_3373089
crossref_primary_10_1109_JSTARS_2023_3285389
crossref_primary_10_3390_rs16071269
crossref_primary_10_3390_rs15215106
crossref_primary_10_1016_j_jag_2024_103991
crossref_primary_10_1080_17538947_2024_2392845
crossref_primary_10_1109_JSTARS_2023_3283524
crossref_primary_10_1109_JSTARS_2025_3556096
crossref_primary_10_3390_rs16132355
crossref_primary_10_1016_j_jag_2024_104282
crossref_primary_10_1109_TGRS_2025_3545012
crossref_primary_10_1117_1_JRS_19_016504
crossref_primary_10_1109_JSTARS_2025_3531499
crossref_primary_10_1109_TGRS_2024_3434451
crossref_primary_10_1109_JSTARS_2023_3251962
crossref_primary_10_1109_JSTARS_2023_3335907
Cites_doi 10.1109/CVPR42600.2020.01059
10.1109/LGRS.2009.2020306
10.1016/j.rse.2016.11.004
10.1016/S0034-4257(97)00162-4
10.1109/TGRS.2021.3085870
10.1007/s11063-019-10174-x
10.1038/nature14539
10.1016/j.rse.2015.08.020
10.1109/TGRS.2018.2858817
10.1016/j.isprsjprs.2020.06.003
10.3390/rs8110888
10.1080/014311698216062
10.3390/rs13030516
10.1016/j.jag.2011.07.002
10.1109/JSTARS.2016.2541678
10.3390/rs13153053
10.1126/science.1185383
10.1109/LGRS.2020.2988032
10.3390/rs12101688
10.3390/rs11111382
10.1109/IGARSS.2011.6050150
10.1002/fes3.261
10.1007/s11220-019-0252-0
10.1109/TGRS.2021.3091758
10.3390/rs12101662
10.1109/TGRS.2019.2956756
10.1016/j.cviu.2019.07.003
10.1109/IGARSS.2019.8900330
10.1016/j.gfs.2014.10.004
10.1109/TIP.2021.3135477
10.1109/CVPR.2016.90
10.3390/rs11070830
10.1016/j.rse.2014.10.014
10.1016/j.jag.2021.102582
10.1109/JSTARS.2021.3066508
10.1109/JSTARS.2021.3113831
10.1126/science.1234485
10.1109/CVPR46437.2021.01207
10.1016/j.isprsjprs.2012.12.002
10.1109/MGRS.2021.3088865
10.1109/TGRS.2018.2863224
10.1109/TGRS.2021.3095166
10.1109/IGARSS.2018.8518015
10.1016/0034-4257(80)90021-8
10.1109/ICPR48806.2021.9411990
10.1109/TGRS.2021.3113912
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2022.3177235
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)【Remote access available】
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 4306
ExternalDocumentID oai_doaj_org_article_a60e405cf1324f408a130b74f557aeae
10_1109_JSTARS_2022_3177235
9780164
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61976234
  funderid: 10.13039/501100001809
– fundername: Sun Yat-sen University
  grantid: 22qntd2001
  funderid: 10.13039/501100002402
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c408t-8c5660412f72705f73dc605f3a7b3cd97f1c97655ccb2dd74d40ad005f8d9acd3
IEDL.DBID RIE
ISICitedReferencesCount 262
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808062300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:27:19 EDT 2025
Mon Jul 28 14:11:20 EDT 2025
Sat Nov 29 04:51:12 EST 2025
Tue Nov 18 22:41:19 EST 2025
Wed Aug 27 02:24:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-8c5660412f72705f73dc605f3a7b3cd97f1c97655ccb2dd74d40ad005f8d9acd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7013-2450
0000-0001-5237-4758
0000-0002-4642-9086
OpenAccessLink https://ieeexplore.ieee.org/document/9780164
PQID 2674081232
PQPubID 75722
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_JSTARS_2022_3177235
ieee_primary_9780164
proquest_journals_2674081232
doaj_primary_oai_doaj_org_article_a60e405cf1324f408a130b74f557aeae
crossref_primary_10_1109_JSTARS_2022_3177235
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
Vaswani (ref35) 2017
ref11
ref10
ref17
ref16
ref19
Glorot (ref49)
ref18
ref51
ref46
ref45
ref47
ref42
ref41
ref44
ref43
Hendrycks (ref50) 2016
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Ioffe (ref48)
References_xml – ident: ref39
  doi: 10.1109/CVPR42600.2020.01059
– start-page: 448
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref48
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– ident: ref14
  doi: 10.1109/LGRS.2009.2020306
– ident: ref18
  doi: 10.1016/j.rse.2016.11.004
– ident: ref12
  doi: 10.1016/S0034-4257(97)00162-4
– ident: ref44
  doi: 10.1109/TGRS.2021.3085870
– ident: ref24
  doi: 10.1007/s11063-019-10174-x
– ident: ref21
  doi: 10.1038/nature14539
– ident: ref16
  doi: 10.1016/j.rse.2015.08.020
– ident: ref46
  doi: 10.1109/TGRS.2018.2858817
– ident: ref28
  doi: 10.1016/j.isprsjprs.2020.06.003
– ident: ref15
  doi: 10.3390/rs8110888
– start-page: 5998
  volume-title: Proc. Adv. Neural Inf. Process. Syst., Annu. Conf. Neural Inf. Process. Syst.
  year: 2017
  ident: ref35
  article-title: Attention is all you need
– ident: ref10
  doi: 10.1080/014311698216062
– ident: ref40
  doi: 10.3390/rs13030516
– ident: ref13
  doi: 10.1016/j.jag.2011.07.002
– ident: ref20
  doi: 10.1109/JSTARS.2016.2541678
– ident: ref29
  doi: 10.3390/rs13153053
– ident: ref1
  doi: 10.1126/science.1185383
– ident: ref51
  doi: 10.1109/LGRS.2020.2988032
– ident: ref6
  doi: 10.3390/rs12101688
– ident: ref22
  doi: 10.3390/rs11111382
– ident: ref45
  doi: 10.1109/IGARSS.2011.6050150
– ident: ref2
  doi: 10.1002/fes3.261
– ident: ref27
  doi: 10.1007/s11220-019-0252-0
– year: 2016
  ident: ref50
  article-title: Gaussian error linear units (GELUs)
– ident: ref30
  doi: 10.1109/TGRS.2021.3091758
– ident: ref31
  doi: 10.3390/rs12101662
– ident: ref34
  doi: 10.1109/TGRS.2019.2956756
– ident: ref42
  doi: 10.1016/j.cviu.2019.07.003
– ident: ref32
  doi: 10.1109/IGARSS.2019.8900330
– ident: ref3
  doi: 10.1016/j.gfs.2014.10.004
– ident: ref36
  doi: 10.1109/TIP.2021.3135477
– ident: ref47
  doi: 10.1109/CVPR.2016.90
– ident: ref8
  doi: 10.3390/rs11070830
– ident: ref5
  doi: 10.1016/j.rse.2014.10.014
– ident: ref25
  doi: 10.1016/j.jag.2021.102582
– ident: ref9
  doi: 10.1109/JSTARS.2021.3066508
– ident: ref26
  doi: 10.1109/JSTARS.2021.3113831
– ident: ref4
  doi: 10.1126/science.1234485
– start-page: 315
  volume-title: Proc. JMLR Workshop Conf.
  ident: ref49
  article-title: Deep sparse rectifier neural networks
– ident: ref38
  doi: 10.1109/CVPR46437.2021.01207
– ident: ref7
  doi: 10.1016/j.isprsjprs.2012.12.002
– ident: ref19
  doi: 10.1109/MGRS.2021.3088865
– ident: ref33
  doi: 10.1109/TGRS.2018.2863224
– ident: ref41
  doi: 10.1109/TGRS.2021.3095166
– ident: ref23
  doi: 10.1109/IGARSS.2018.8518015
– ident: ref11
  doi: 10.1016/0034-4257(80)90021-8
– ident: ref17
  doi: 10.1016/j.rse.2015.08.020
– ident: ref37
  doi: 10.1109/ICPR48806.2021.9411990
– ident: ref43
  doi: 10.1109/TGRS.2021.3113912
SSID ssj0062793
Score 2.6645334
Snippet Nonagriculturalization incidents are serious threats to local agricultural ecosystem and global food security. Remote sensing change detection (CD) can provide...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4297
SubjectTerms Agglomeration
Aggregation
Agricultural ecosystems
Agricultural land
Biological system modeling
Change detection
Change detection (CD)
Computer applications
Context
cropland
Data mining
Datasets
Decoding
Deep layer
deep learning (DL)
Detection
Feature extraction
Food security
Head
High resolution
Image resolution
Remote sensing
Resolution
Spatial discrimination
Spatial resolution
Task analysis
transformer
Transformers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS8MwFA0iCr6Inzi_yIOPlrVJurSPc7r5VEQn7i3kcxNkk1lF_703STcFQV98LWna3nuTnFOScxA6oxl1SnuPMEVJwoDqJEoSmVinMsUcVZzqYDbBq6oYjcqbb1Zffk9YlAeOgWvLTmoBVGgHtIk5lhYSZl3FmctzLq20fvYF1LMgU3EO7hAou0ZjKEvLNhR59_YO2CAhQFIBUAZ3t691KMj1N_4qPyblsNL0t9BmAxFxN77aNlqx0x20PggWvB-7aNLFvapKhgvEaee4inu58cNjPcHhSO0LhN7iID31XuPuGFj1OOQAwy24D9AyGXhzCGtwbz579tsbcTxogC9tHbZnTffQff9q2LtOGr-ERENc6qTQgM28fpYDUJLmjlOjga04Krmi2pTcZRrQR55rrYgxnBmWSgPD0BWmlNrQfbQ6nU3tAcJOO6MZSX0HjBmIprS8yCiQHWMAVLYQWURP6EZM3HtaPIlAKtJSxJALH3LRhLyFzpc3PUctjd-bX_i0LJt6IexwAcpDNOUh_iqPFtr1SV124gWXgCG20PEiyaIZtC-CdDh04DHm4X88-ght-M-J_2uO0Wo9f7UnaE2_QRHMT0O9fgLiB-w9
  priority: 102
  providerName: Directory of Open Access Journals
Title A CNN-Transformer Network With Multiscale Context Aggregation for Fine-Grained Cropland Change Detection
URI https://ieeexplore.ieee.org/document/9780164
https://www.proquest.com/docview/2674081232
https://doaj.org/article/a60e405cf1324f408a130b74f557aeae
Volume 15
WOSCitedRecordID wos000808062300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)【Remote access available】
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FUhcoFAQW0rlA8caEttZJ8dlYcspQlBEb5Y_20pot9qmCP59ZxzvcgAh9RZFsWX5-eM9Z_wG4I2sZXKecoQ5KbhCqcOdFZbH5GqnknRa-pxsQvd9e37efd6Bk-1dmBhjDj6Lb-kx_8sPK39LR2XkBkuOULuwq7Ue72ptVt2p0NlgF_lIx8kypjgM1VX3Dof47MtX1IJCoERFOplzu_3ZhbJZf8mu8teSnPeZxZP7tXAfHhc-yWbjAHgKO3H5DB6e5ny9vw_gcsbmfc_PNvQ0rlk_Bn6z71fDJcv3b28Qp8iyT9Wvgc0uUIJfZMAYFmEL5KH8lDJJxMDm69U1xUKy8VYC-xCHHMu1fA7fFh_P5p94Sa7AvaragbceiRyZbSVkMFWTtAwepU2SVjvpQ6dT7ZGqNI33ToSgVVCVDThnUxs664N8AXvL1TK-BJZ8Cl6JiipQKiAQNuq2lqiMQkAGOgGx6Wzji_M4JcD4YbICqTozImQIIVMQmsDJttD1aLzx_8_fE4rbT8k1O79AeEyZhMZOq4gE1SeU4CphN1jcwZ1WqWm0jTZO4IAg3VZS0JzA0WZMmDLDb4yYaqyACOnhv0u9gkfUwPG45gj2hvVtfA0P_E-EdX2ctf9xHsJ3EIbsQQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VFgSXtlAQC_3wgWMNie2sk-OyZVtEiRAsojfLny0S2q22aQX_nrHj3R5AlXqLotiy_Mb2G2fmDcAbXvJgbKwRZjijAl0dajTT1AdTGhG4kdymYhOybeuzs-bLGhyucmG89yn4zL-Nj-lfvpvb63hVFtVgoyLUA9iohGBln6213HeHTCaJXWQkDY2iMVljqCyad2jko6_f0BtkDJ1UJJSputvtOZTk-nN9lX825XTSTLbuN8Zt2MyMkox6E3gKa372DB4dp4q9f3bgYkTGbUunS4LqF6TtQ7_Jj5_dBUkZuFeIlCdJqep3R0bn6ISfJ8gINiETZKL0ONaS8I6MF_PLGA1J-rwEcuS7FM01ew7fJx-m4xOayytQK4q6o7VFKhfltgJymKIKkjuLzk3gWhpuXSNDaZGsVJW1hjknhROFdrhqQ-0abR1_Aeuz-cy_BBJscFawInYghEMgtJd1ydE3cg456ADYcrKVzdrjsQTGL5V8kKJRPUIqIqQyQgM4XDW67KU37v78fURx9WnUzU4vEB6Vl6HSw8IjRbUBnXARcBo0nuFGilBVUnvtB7ATIV11ktEcwO7SJlRe41eKDSV2ECnpq_-3OoDHJ9PPp-r0Y_vpNTyJg-0vb3ZhvVtc-z14aG8Q4sV-MuS_7DDukw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CNN-Transformer+Network+With+Multiscale+Context+Aggregation+for+Fine-Grained+Cropland+Change+Detection&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Liu%2C+Mengxi&rft.au=Chai%2C+Zhuoqun&rft.au=Deng%2C+Haojun&rft.au=Liu%2C+Rong&rft.date=2022&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=15&rft.spage=4297&rft.epage=4306&rft_id=info:doi/10.1109%2FJSTARS.2022.3177235&rft.externalDocID=9780164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon