A CNN-Transformer Network With Multiscale Context Aggregation for Fine-Grained Cropland Change Detection
Nonagriculturalization incidents are serious threats to local agricultural ecosystem and global food security. Remote sensing change detection (CD) can provide an effective approach for in-time detection and prevention of such incidents. However, existing CD methods are difficult to deal with the la...
Saved in:
| Published in: | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 15; pp. 4297 - 4306 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1939-1404, 2151-1535 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Nonagriculturalization incidents are serious threats to local agricultural ecosystem and global food security. Remote sensing change detection (CD) can provide an effective approach for in-time detection and prevention of such incidents. However, existing CD methods are difficult to deal with the large intraclass differences of cropland changes in high-resolution images. In addition, traditional CNN based models are plagued by the loss of long-range context information, and the high computational complexity brought by deep layers. Therefore, in this article, we propose a CNN-transformer network with multiscale context aggregation (MSCANet), which combines the merits of CNN and transformer to fulfill efficient and effective cropland CD. In the MSCANet, a CNN-based feature extractor is first utilized to capture hierarchical features, then a transformer-based MSCA is designed to encode and aggregate context information. Finally, a multibranch prediction head with three CNN classifiers is applied to obtain change maps, to enhance the supervision for deep layers. Besides, for the lack of CD dataset with fine-grained cropland change of interest, we also provide a new cropland change detection dataset, which contains 600 pairs of 512 × 512 bi-temporal images with the spatial resolution of 0.5-2m. Comparative experiments with several CD models prove the effectiveness of the MSCANet, with the highest F1 of 64.67% on the high-resolution semantic CD dataset, and of 71.29% on CLCD. |
|---|---|
| AbstractList | Nonagriculturalization incidents are serious threats to local agricultural ecosystem and global food security. Remote sensing change detection (CD) can provide an effective approach for in-time detection and prevention of such incidents. However, existing CD methods are difficult to deal with the large intraclass differences of cropland changes in high-resolution images. In addition, traditional CNN based models are plagued by the loss of long-range context information, and the high computational complexity brought by deep layers. Therefore, in this article, we propose a CNN-transformer network with multiscale context aggregation (MSCANet), which combines the merits of CNN and transformer to fulfill efficient and effective cropland CD. In the MSCANet, a CNN-based feature extractor is first utilized to capture hierarchical features, then a transformer-based MSCA is designed to encode and aggregate context information. Finally, a multibranch prediction head with three CNN classifiers is applied to obtain change maps, to enhance the supervision for deep layers. Besides, for the lack of CD dataset with fine-grained cropland change of interest, we also provide a new cropland change detection dataset, which contains 600 pairs of 512 × 512 bi-temporal images with the spatial resolution of 0.5-2m. Comparative experiments with several CD models prove the effectiveness of the MSCANet, with the highest F1 of 64.67% on the high-resolution semantic CD dataset, and of 71.29% on CLCD. |
| Author | Liu, Mengxi Chai, Zhuoqun Liu, Rong Deng, Haojun |
| Author_xml | – sequence: 1 givenname: Mengxi orcidid: 0000-0001-5237-4758 surname: Liu fullname: Liu, Mengxi email: liumx23@mail2.sysu.edu.cn organization: Guangdong Provincial Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, China – sequence: 2 givenname: Zhuoqun surname: Chai fullname: Chai, Zhuoqun email: chaizhq@mail2.sysu.edu.cn organization: Guangdong Provincial Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, China – sequence: 3 givenname: Haojun orcidid: 0000-0002-7013-2450 surname: Deng fullname: Deng, Haojun email: denghj5@mail2.sysu.edu.cn organization: Guangdong Provincial Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, China – sequence: 4 givenname: Rong orcidid: 0000-0002-4642-9086 surname: Liu fullname: Liu, Rong email: liurong25@mail.sysu.edu.cn organization: Guangdong Provincial Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, China |
| BookMark | eNqFkc1OGzEUha0KpAbKE7Cx1PWk_h3Hy2haKBVNJQjq0nLs68mkwzj1OGp5exwGseimq2tZ5zvn6p4zdDLEARC6pGROKdGfvt2vl3f3c0YYm3OqFOPyHZoxKmlFJZcnaEY11xUVRLxHZ-O4I6RmSvMZ2i5xs1pV62SHMcT0CAmvIP-J6Rf-2eUt_n7oczc62wNu4pDhb8bLtk3Q2tzFARcEX3UDVNfJluFxk-K-t0N5bO3QAv4MGdxR-gGdBtuPcPE6z9HD1Zd187W6_XF90yxvKyfIIlcLJ-uaCMqCYorIoLh3dZncqg13XqtAnVa1lM5tmPdKeEGsJ0Wx8No6z8_RzeTro92ZfeoebXoy0Xbm5SOm1tiUO9eDsTUBQaQLlDMRSrylnGyUCFIqCxaK18fJa5_i7wOM2eziIQ1lfcNqVQDKOCsqPqlciuOYILylUmKO9ZipHnOsx7zWUyj9D-W6_HLUXE7Z_4e9nNgOAN7StFoQWgv-DCiqn9A |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_1109_TCSVT_2023_3349007 crossref_primary_10_1109_JSTARS_2025_3576127 crossref_primary_10_1080_10095020_2025_2514824 crossref_primary_10_1109_JSTARS_2024_3379565 crossref_primary_10_1109_TGRS_2024_3362895 crossref_primary_10_1016_j_compag_2024_109370 crossref_primary_10_1109_JSTARS_2024_3401581 crossref_primary_10_1109_TGRS_2024_3400215 crossref_primary_10_1007_s10846_023_02009_8 crossref_primary_10_3390_electronics13040774 crossref_primary_10_1007_s40808_024_02068_2 crossref_primary_10_1049_ipr2_13037 crossref_primary_10_1109_JSTARS_2024_3358298 crossref_primary_10_1109_JSTARS_2024_3415171 crossref_primary_10_1109_TGRS_2023_3305554 crossref_primary_10_1109_JSTARS_2023_3337999 crossref_primary_10_1016_j_compag_2023_107809 crossref_primary_10_1117_1_JRS_18_044508 crossref_primary_10_1109_JSTARS_2023_3260006 crossref_primary_10_1016_j_neucom_2025_130607 crossref_primary_10_1109_JSTARS_2025_3595585 crossref_primary_10_1109_TGRS_2025_3535496 crossref_primary_10_3390_rs15153766 crossref_primary_10_1038_s41598_025_94544_7 crossref_primary_10_1109_JSTARS_2025_3526208 crossref_primary_10_1109_TGRS_2023_3327139 crossref_primary_10_1080_10095020_2024_2448232 crossref_primary_10_1016_j_knosys_2025_113428 crossref_primary_10_1109_TGRS_2023_3272694 crossref_primary_10_1109_TGRS_2024_3425540 crossref_primary_10_1016_j_asoc_2025_113372 crossref_primary_10_1109_TGRS_2025_3544402 crossref_primary_10_1109_TGRS_2024_3357524 crossref_primary_10_1109_TGRS_2023_3347661 crossref_primary_10_1109_TGRS_2024_3439390 crossref_primary_10_1007_s11442_024_2292_1 crossref_primary_10_1109_TGRS_2024_3471075 crossref_primary_10_1109_TGRS_2023_3344948 crossref_primary_10_1109_TGRS_2025_3584073 crossref_primary_10_1109_JSEN_2025_3583301 crossref_primary_10_1109_TGRS_2024_3365825 crossref_primary_10_3390_rs14184527 crossref_primary_10_1080_01431161_2023_2221797 crossref_primary_10_1109_JSTARS_2025_3526795 crossref_primary_10_3390_rs17040698 crossref_primary_10_1109_JSTARS_2025_3556723 crossref_primary_10_1016_j_isprsjprs_2025_04_030 crossref_primary_10_3390_sym17040590 crossref_primary_10_1109_JSTARS_2023_3326958 crossref_primary_10_1109_TGRS_2024_3440001 crossref_primary_10_1111_mice_12981 crossref_primary_10_1109_TGRS_2024_3438290 crossref_primary_10_1109_JSTARS_2024_3476131 crossref_primary_10_1109_JSTARS_2025_3585308 crossref_primary_10_3390_rs15081958 crossref_primary_10_1109_TGRS_2024_3379431 crossref_primary_10_1109_TGRS_2023_3281711 crossref_primary_10_1109_LGRS_2023_3323367 crossref_primary_10_1109_JSTARS_2023_3298097 crossref_primary_10_1145_3721135 crossref_primary_10_1109_JSTARS_2025_3553206 crossref_primary_10_1109_TGRS_2025_3539630 crossref_primary_10_1016_j_engappai_2025_110386 crossref_primary_10_1109_JSTARS_2023_3327340 crossref_primary_10_1117_1_JRS_17_016515 crossref_primary_10_1016_j_compag_2025_109973 crossref_primary_10_3390_rs16203852 crossref_primary_10_1016_j_jag_2025_104409 crossref_primary_10_1109_TGRS_2025_3592731 crossref_primary_10_3390_rs16061061 crossref_primary_10_3390_rs16050844 crossref_primary_10_1109_JSTARS_2024_3493945 crossref_primary_10_1109_TGRS_2023_3344284 crossref_primary_10_3390_su15043343 crossref_primary_10_1016_j_rse_2023_113653 crossref_primary_10_1016_j_isprsjprs_2023_07_001 crossref_primary_10_1109_TGRS_2025_3551504 crossref_primary_10_3390_rs16061077 crossref_primary_10_1016_j_iswa_2025_200505 crossref_primary_10_1016_j_ecoinf_2025_103321 crossref_primary_10_1109_JSTARS_2024_3350044 crossref_primary_10_1109_JSTARS_2025_3589266 crossref_primary_10_3390_app15041904 crossref_primary_10_1109_JSTARS_2023_3338454 crossref_primary_10_1109_TGRS_2024_3421654 crossref_primary_10_3390_rs16214068 crossref_primary_10_1109_TGRS_2024_3424929 crossref_primary_10_3390_rs16173278 crossref_primary_10_1109_JSTARS_2024_3403863 crossref_primary_10_1109_TGRS_2024_3399215 crossref_primary_10_1109_JSTARS_2024_3400458 crossref_primary_10_1016_j_jag_2023_103294 crossref_primary_10_1016_j_isprsjprs_2024_05_018 crossref_primary_10_1109_TGRS_2025_3525811 crossref_primary_10_1109_JSTARS_2024_3435425 crossref_primary_10_1109_JSTARS_2025_3584145 crossref_primary_10_1109_TGRS_2022_3209972 crossref_primary_10_1016_j_isprsjprs_2024_05_011 crossref_primary_10_1109_JSTARS_2024_3522329 crossref_primary_10_1109_JSTARS_2022_3231915 crossref_primary_10_1109_TGRS_2025_3569280 crossref_primary_10_1109_TGRS_2024_3491715 crossref_primary_10_1109_TGRS_2024_3352050 crossref_primary_10_1109_JSTARS_2023_3299703 crossref_primary_10_1109_TGRS_2024_3502768 crossref_primary_10_1016_j_isprsjprs_2025_05_029 crossref_primary_10_1007_s11042_024_18766_z crossref_primary_10_1016_j_epsr_2025_112194 crossref_primary_10_1109_TGRS_2025_3598766 crossref_primary_10_1109_JSTARS_2024_3513694 crossref_primary_10_1109_TGRS_2023_3330479 crossref_primary_10_1109_JSEN_2023_3271391 crossref_primary_10_1117_1_JRS_18_034523 crossref_primary_10_1109_JSTARS_2024_3360431 crossref_primary_10_3390_rs16050804 crossref_primary_10_7780_kjrs_2024_40_6_3_6 crossref_primary_10_3390_rs16162881 crossref_primary_10_3390_app15168794 crossref_primary_10_1109_JSTARS_2025_3534583 crossref_primary_10_1109_JSTARS_2023_3304411 crossref_primary_10_1080_17538947_2024_2398051 crossref_primary_10_1109_TGRS_2024_3392696 crossref_primary_10_3390_s25175581 crossref_primary_10_1080_15481603_2024_2380126 crossref_primary_10_1109_JSTARS_2023_3289293 crossref_primary_10_1109_JSTARS_2024_3418632 crossref_primary_10_3390_rs16224186 crossref_primary_10_1016_j_jag_2024_104077 crossref_primary_10_1016_j_isprsjprs_2025_08_023 crossref_primary_10_1109_TGRS_2024_3356711 crossref_primary_10_3390_s24031006 crossref_primary_10_1109_JSTARS_2023_3280589 crossref_primary_10_1109_JSTARS_2024_3373039 crossref_primary_10_1109_JSTARS_2024_3481424 crossref_primary_10_3390_rs15163972 crossref_primary_10_3390_rs17050787 crossref_primary_10_1109_TGRS_2025_3604400 crossref_primary_10_1109_LGRS_2025_3562480 crossref_primary_10_1371_journal_pone_0326893 crossref_primary_10_1109_JSTARS_2024_3354310 crossref_primary_10_1109_TGRS_2024_3376673 crossref_primary_10_3390_s25185832 crossref_primary_10_1049_hve2_12287 crossref_primary_10_1109_JSTARS_2024_3361507 crossref_primary_10_3390_rs16183533 crossref_primary_10_1007_s12145_024_01315_5 crossref_primary_10_1007_s41651_024_00202_3 crossref_primary_10_1109_TGRS_2023_3238327 crossref_primary_10_1109_TGRS_2023_3348459 crossref_primary_10_1109_TGRS_2024_3428551 crossref_primary_10_1016_j_isprsjprs_2025_04_023 crossref_primary_10_1088_1361_6579_ad2c15 crossref_primary_10_1109_LGRS_2025_3602854 crossref_primary_10_1109_TGRS_2024_3432819 crossref_primary_10_1109_TGRS_2025_3527009 crossref_primary_10_1016_j_jag_2024_103961 crossref_primary_10_3390_rs16183489 crossref_primary_10_1109_JSTARS_2024_3508692 crossref_primary_10_1109_TGRS_2024_3505201 crossref_primary_10_1007_s11220_025_00632_3 crossref_primary_10_1109_JSTARS_2025_3591834 crossref_primary_10_1109_LGRS_2025_3574068 crossref_primary_10_1111_phor_70021 crossref_primary_10_3390_rs15112889 crossref_primary_10_1109_TGRS_2024_3349638 crossref_primary_10_1109_TGRS_2025_3545906 crossref_primary_10_1080_10095020_2025_2480816 crossref_primary_10_1109_JSTARS_2023_3317488 crossref_primary_10_1109_TGRS_2024_3486787 crossref_primary_10_1016_j_inffus_2025_103110 crossref_primary_10_1016_j_engappai_2023_107270 crossref_primary_10_1109_JSTARS_2024_3405971 crossref_primary_10_1109_LGRS_2023_3319695 crossref_primary_10_1109_TGRS_2025_3569581 crossref_primary_10_1109_TGRS_2023_3345645 crossref_primary_10_1109_TIM_2024_3387494 crossref_primary_10_1109_LGRS_2022_3216627 crossref_primary_10_3390_rs17010135 crossref_primary_10_1080_17538947_2024_2316109 crossref_primary_10_1109_JSTARS_2023_3255541 crossref_primary_10_3390_su17030996 crossref_primary_10_1016_j_dsp_2025_105594 crossref_primary_10_1109_JSTARS_2023_3280029 crossref_primary_10_1109_JSTARS_2024_3522066 crossref_primary_10_1007_s00371_024_03755_y crossref_primary_10_1109_LGRS_2025_3581725 crossref_primary_10_1109_LGRS_2023_3234645 crossref_primary_10_1016_j_eswa_2025_127110 crossref_primary_10_3390_app15063061 crossref_primary_10_1109_JSTARS_2025_3574173 crossref_primary_10_1109_TGRS_2024_3433014 crossref_primary_10_3390_rs15225268 crossref_primary_10_1109_TGRS_2025_3585342 crossref_primary_10_1109_TGRS_2023_3272006 crossref_primary_10_1109_TGRS_2025_3600105 crossref_primary_10_1109_JSTARS_2025_3553930 crossref_primary_10_1109_TIM_2024_3373089 crossref_primary_10_1109_JSTARS_2023_3285389 crossref_primary_10_3390_rs16071269 crossref_primary_10_3390_rs15215106 crossref_primary_10_1016_j_jag_2024_103991 crossref_primary_10_1080_17538947_2024_2392845 crossref_primary_10_1109_JSTARS_2023_3283524 crossref_primary_10_1109_JSTARS_2025_3556096 crossref_primary_10_3390_rs16132355 crossref_primary_10_1016_j_jag_2024_104282 crossref_primary_10_1109_TGRS_2025_3545012 crossref_primary_10_1117_1_JRS_19_016504 crossref_primary_10_1109_JSTARS_2025_3531499 crossref_primary_10_1109_TGRS_2024_3434451 crossref_primary_10_1109_JSTARS_2023_3251962 crossref_primary_10_1109_JSTARS_2023_3335907 |
| Cites_doi | 10.1109/CVPR42600.2020.01059 10.1109/LGRS.2009.2020306 10.1016/j.rse.2016.11.004 10.1016/S0034-4257(97)00162-4 10.1109/TGRS.2021.3085870 10.1007/s11063-019-10174-x 10.1038/nature14539 10.1016/j.rse.2015.08.020 10.1109/TGRS.2018.2858817 10.1016/j.isprsjprs.2020.06.003 10.3390/rs8110888 10.1080/014311698216062 10.3390/rs13030516 10.1016/j.jag.2011.07.002 10.1109/JSTARS.2016.2541678 10.3390/rs13153053 10.1126/science.1185383 10.1109/LGRS.2020.2988032 10.3390/rs12101688 10.3390/rs11111382 10.1109/IGARSS.2011.6050150 10.1002/fes3.261 10.1007/s11220-019-0252-0 10.1109/TGRS.2021.3091758 10.3390/rs12101662 10.1109/TGRS.2019.2956756 10.1016/j.cviu.2019.07.003 10.1109/IGARSS.2019.8900330 10.1016/j.gfs.2014.10.004 10.1109/TIP.2021.3135477 10.1109/CVPR.2016.90 10.3390/rs11070830 10.1016/j.rse.2014.10.014 10.1016/j.jag.2021.102582 10.1109/JSTARS.2021.3066508 10.1109/JSTARS.2021.3113831 10.1126/science.1234485 10.1109/CVPR46437.2021.01207 10.1016/j.isprsjprs.2012.12.002 10.1109/MGRS.2021.3088865 10.1109/TGRS.2018.2863224 10.1109/TGRS.2021.3095166 10.1109/IGARSS.2018.8518015 10.1016/0034-4257(80)90021-8 10.1109/ICPR48806.2021.9411990 10.1109/TGRS.2021.3113912 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2022.3177235 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL)【Remote access available】 url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 4306 |
| ExternalDocumentID | oai_doaj_org_article_a60e405cf1324f408a130b74f557aeae 10_1109_JSTARS_2022_3177235 9780164 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61976234 funderid: 10.13039/501100001809 – fundername: Sun Yat-sen University grantid: 22qntd2001 funderid: 10.13039/501100002402 – fundername: Fundamental Research Funds for the Central Universities funderid: 10.13039/501100012226 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c408t-8c5660412f72705f73dc605f3a7b3cd97f1c97655ccb2dd74d40ad005f8d9acd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 262 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808062300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Oct 03 12:27:19 EDT 2025 Mon Jul 28 14:11:20 EDT 2025 Sat Nov 29 04:51:12 EST 2025 Tue Nov 18 22:41:19 EST 2025 Wed Aug 27 02:24:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-8c5660412f72705f73dc605f3a7b3cd97f1c97655ccb2dd74d40ad005f8d9acd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7013-2450 0000-0001-5237-4758 0000-0002-4642-9086 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9780164 |
| PQID | 2674081232 |
| PQPubID | 75722 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSTARS_2022_3177235 ieee_primary_9780164 proquest_journals_2674081232 doaj_primary_oai_doaj_org_article_a60e405cf1324f408a130b74f557aeae crossref_primary_10_1109_JSTARS_2022_3177235 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 Vaswani (ref35) 2017 ref11 ref10 ref17 ref16 ref19 Glorot (ref49) ref18 ref51 ref46 ref45 ref47 ref42 ref41 ref44 ref43 Hendrycks (ref50) 2016 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Ioffe (ref48) |
| References_xml | – ident: ref39 doi: 10.1109/CVPR42600.2020.01059 – start-page: 448 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref48 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – ident: ref14 doi: 10.1109/LGRS.2009.2020306 – ident: ref18 doi: 10.1016/j.rse.2016.11.004 – ident: ref12 doi: 10.1016/S0034-4257(97)00162-4 – ident: ref44 doi: 10.1109/TGRS.2021.3085870 – ident: ref24 doi: 10.1007/s11063-019-10174-x – ident: ref21 doi: 10.1038/nature14539 – ident: ref16 doi: 10.1016/j.rse.2015.08.020 – ident: ref46 doi: 10.1109/TGRS.2018.2858817 – ident: ref28 doi: 10.1016/j.isprsjprs.2020.06.003 – ident: ref15 doi: 10.3390/rs8110888 – start-page: 5998 volume-title: Proc. Adv. Neural Inf. Process. Syst., Annu. Conf. Neural Inf. Process. Syst. year: 2017 ident: ref35 article-title: Attention is all you need – ident: ref10 doi: 10.1080/014311698216062 – ident: ref40 doi: 10.3390/rs13030516 – ident: ref13 doi: 10.1016/j.jag.2011.07.002 – ident: ref20 doi: 10.1109/JSTARS.2016.2541678 – ident: ref29 doi: 10.3390/rs13153053 – ident: ref1 doi: 10.1126/science.1185383 – ident: ref51 doi: 10.1109/LGRS.2020.2988032 – ident: ref6 doi: 10.3390/rs12101688 – ident: ref22 doi: 10.3390/rs11111382 – ident: ref45 doi: 10.1109/IGARSS.2011.6050150 – ident: ref2 doi: 10.1002/fes3.261 – ident: ref27 doi: 10.1007/s11220-019-0252-0 – year: 2016 ident: ref50 article-title: Gaussian error linear units (GELUs) – ident: ref30 doi: 10.1109/TGRS.2021.3091758 – ident: ref31 doi: 10.3390/rs12101662 – ident: ref34 doi: 10.1109/TGRS.2019.2956756 – ident: ref42 doi: 10.1016/j.cviu.2019.07.003 – ident: ref32 doi: 10.1109/IGARSS.2019.8900330 – ident: ref3 doi: 10.1016/j.gfs.2014.10.004 – ident: ref36 doi: 10.1109/TIP.2021.3135477 – ident: ref47 doi: 10.1109/CVPR.2016.90 – ident: ref8 doi: 10.3390/rs11070830 – ident: ref5 doi: 10.1016/j.rse.2014.10.014 – ident: ref25 doi: 10.1016/j.jag.2021.102582 – ident: ref9 doi: 10.1109/JSTARS.2021.3066508 – ident: ref26 doi: 10.1109/JSTARS.2021.3113831 – ident: ref4 doi: 10.1126/science.1234485 – start-page: 315 volume-title: Proc. JMLR Workshop Conf. ident: ref49 article-title: Deep sparse rectifier neural networks – ident: ref38 doi: 10.1109/CVPR46437.2021.01207 – ident: ref7 doi: 10.1016/j.isprsjprs.2012.12.002 – ident: ref19 doi: 10.1109/MGRS.2021.3088865 – ident: ref33 doi: 10.1109/TGRS.2018.2863224 – ident: ref41 doi: 10.1109/TGRS.2021.3095166 – ident: ref23 doi: 10.1109/IGARSS.2018.8518015 – ident: ref11 doi: 10.1016/0034-4257(80)90021-8 – ident: ref17 doi: 10.1016/j.rse.2015.08.020 – ident: ref37 doi: 10.1109/ICPR48806.2021.9411990 – ident: ref43 doi: 10.1109/TGRS.2021.3113912 |
| SSID | ssj0062793 |
| Score | 2.6645334 |
| Snippet | Nonagriculturalization incidents are serious threats to local agricultural ecosystem and global food security. Remote sensing change detection (CD) can provide... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4297 |
| SubjectTerms | Agglomeration Aggregation Agricultural ecosystems Agricultural land Biological system modeling Change detection Change detection (CD) Computer applications Context cropland Data mining Datasets Decoding Deep layer deep learning (DL) Detection Feature extraction Food security Head High resolution Image resolution Remote sensing Resolution Spatial discrimination Spatial resolution Task analysis transformer Transformers |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS8MwFA0iCr6Inzi_yIOPlrVJurSPc7r5VEQn7i3kcxNkk1lF_703STcFQV98LWna3nuTnFOScxA6oxl1SnuPMEVJwoDqJEoSmVinMsUcVZzqYDbBq6oYjcqbb1Zffk9YlAeOgWvLTmoBVGgHtIk5lhYSZl3FmctzLq20fvYF1LMgU3EO7hAou0ZjKEvLNhR59_YO2CAhQFIBUAZ3t691KMj1N_4qPyblsNL0t9BmAxFxN77aNlqx0x20PggWvB-7aNLFvapKhgvEaee4inu58cNjPcHhSO0LhN7iID31XuPuGFj1OOQAwy24D9AyGXhzCGtwbz579tsbcTxogC9tHbZnTffQff9q2LtOGr-ERENc6qTQgM28fpYDUJLmjlOjga04Krmi2pTcZRrQR55rrYgxnBmWSgPD0BWmlNrQfbQ6nU3tAcJOO6MZSX0HjBmIprS8yCiQHWMAVLYQWURP6EZM3HtaPIlAKtJSxJALH3LRhLyFzpc3PUctjd-bX_i0LJt6IexwAcpDNOUh_iqPFtr1SV124gWXgCG20PEiyaIZtC-CdDh04DHm4X88-ght-M-J_2uO0Wo9f7UnaE2_QRHMT0O9fgLiB-w9 priority: 102 providerName: Directory of Open Access Journals |
| Title | A CNN-Transformer Network With Multiscale Context Aggregation for Fine-Grained Cropland Change Detection |
| URI | https://ieeexplore.ieee.org/document/9780164 https://www.proquest.com/docview/2674081232 https://doaj.org/article/a60e405cf1324f408a130b74f557aeae |
| Volume | 15 |
| WOSCitedRecordID | wos000808062300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL)【Remote access available】 customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FUhcoFAQW0rlA8caEttZJ8dlYcspQlBEb5Y_20pot9qmCP59ZxzvcgAh9RZFsWX5-eM9Z_wG4I2sZXKecoQ5KbhCqcOdFZbH5GqnknRa-pxsQvd9e37efd6Bk-1dmBhjDj6Lb-kx_8sPK39LR2XkBkuOULuwq7Ue72ptVt2p0NlgF_lIx8kypjgM1VX3Dof47MtX1IJCoERFOplzu_3ZhbJZf8mu8teSnPeZxZP7tXAfHhc-yWbjAHgKO3H5DB6e5ny9vw_gcsbmfc_PNvQ0rlk_Bn6z71fDJcv3b28Qp8iyT9Wvgc0uUIJfZMAYFmEL5KH8lDJJxMDm69U1xUKy8VYC-xCHHMu1fA7fFh_P5p94Sa7AvaragbceiRyZbSVkMFWTtAwepU2SVjvpQ6dT7ZGqNI33ToSgVVCVDThnUxs664N8AXvL1TK-BJZ8Cl6JiipQKiAQNuq2lqiMQkAGOgGx6Wzji_M4JcD4YbICqTozImQIIVMQmsDJttD1aLzx_8_fE4rbT8k1O79AeEyZhMZOq4gE1SeU4CphN1jcwZ1WqWm0jTZO4IAg3VZS0JzA0WZMmDLDb4yYaqyACOnhv0u9gkfUwPG45gj2hvVtfA0P_E-EdX2ctf9xHsJ3EIbsQQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VFgSXtlAQC_3wgWMNie2sk-OyZVtEiRAsojfLny0S2q22aQX_nrHj3R5AlXqLotiy_Mb2G2fmDcAbXvJgbKwRZjijAl0dajTT1AdTGhG4kdymYhOybeuzs-bLGhyucmG89yn4zL-Nj-lfvpvb63hVFtVgoyLUA9iohGBln6213HeHTCaJXWQkDY2iMVljqCyad2jko6_f0BtkDJ1UJJSputvtOZTk-nN9lX825XTSTLbuN8Zt2MyMkox6E3gKa372DB4dp4q9f3bgYkTGbUunS4LqF6TtQ7_Jj5_dBUkZuFeIlCdJqep3R0bn6ISfJ8gINiETZKL0ONaS8I6MF_PLGA1J-rwEcuS7FM01ew7fJx-m4xOayytQK4q6o7VFKhfltgJymKIKkjuLzk3gWhpuXSNDaZGsVJW1hjknhROFdrhqQ-0abR1_Aeuz-cy_BBJscFawInYghEMgtJd1ydE3cg456ADYcrKVzdrjsQTGL5V8kKJRPUIqIqQyQgM4XDW67KU37v78fURx9WnUzU4vEB6Vl6HSw8IjRbUBnXARcBo0nuFGilBVUnvtB7ATIV11ktEcwO7SJlRe41eKDSV2ECnpq_-3OoDHJ9PPp-r0Y_vpNTyJg-0vb3ZhvVtc-z14aG8Q4sV-MuS_7DDukw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CNN-Transformer+Network+With+Multiscale+Context+Aggregation+for+Fine-Grained+Cropland+Change+Detection&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Liu%2C+Mengxi&rft.au=Chai%2C+Zhuoqun&rft.au=Deng%2C+Haojun&rft.au=Liu%2C+Rong&rft.date=2022&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=15&rft.spage=4297&rft.epage=4306&rft_id=info:doi/10.1109%2FJSTARS.2022.3177235&rft.externalDocID=9780164 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |