A New Hybrid Algorithm Based on Grey Wolf Optimization and Crow Search Algorithm for Unconstrained Function Optimization and Feature Selection

Grey wolf optimizer (GWO) is a very efficient metaheuristic inspired by the hierarchy of the Canis lupus wolves. It has been extensively employed to a variety of practical applications. Crow search algorithm (CSA) is a recently proposed metaheuristic algorithm, which mimics the intellectual conduct...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 7; s. 26343 - 26361
Hlavní autori: Arora, Sankalap, Singh, Harpreet, Sharma, Manik, Sharma, Sanjeev, Anand, Priyanka
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Grey wolf optimizer (GWO) is a very efficient metaheuristic inspired by the hierarchy of the Canis lupus wolves. It has been extensively employed to a variety of practical applications. Crow search algorithm (CSA) is a recently proposed metaheuristic algorithm, which mimics the intellectual conduct of crows. In this paper, a hybrid GWO with CSA, namely GWOCSA is proposed, which combines the strengths of both the algorithms effectively with the aim to generate promising candidate solutions in order to achieve global optima efficiently. In order to validate the competence of the proposed hybrid GWOCSA, a widely utilized set of 23 benchmark test functions having a wide range of dimensions and varied complexities is used in this paper. The results obtained by the proposed algorithm are compared to 10 other algorithms in this paper for verification. The statistical results demonstrate that the GWOCSA outperforms other algorithms, including the recent variants of GWO called, enhanced grey wolf optimizer (EGWO) and augmented grey wolf optimizer (AGWO) in terms of high local optima avoidance ability and fast convergence speed. Furthermore, in order to demonstrate the applicability of the proposed algorithm at solving complex real-world problems, the GWOCSA is also employed to solve the feature selection problem as well. The GWOCSA as a feature selection approach is tested on 21 widely employed data sets acquired from the University of California at Irvine repository. The experimental results are compared to the state-of-the-art feature selection techniques, including the native GWO, the EGWO, and the AGWO. The results reveal that the GWOCSA has comprehensive superiority in solving the feature selection problem, which proves the capability of the proposed algorithm in solving real-world complex problems.
AbstractList Grey wolf optimizer (GWO) is a very efficient metaheuristic inspired by the hierarchy of the Canis lupus wolves. It has been extensively employed to a variety of practical applications. Crow search algorithm (CSA) is a recently proposed metaheuristic algorithm, which mimics the intellectual conduct of crows. In this paper, a hybrid GWO with CSA, namely GWOCSA is proposed, which combines the strengths of both the algorithms effectively with the aim to generate promising candidate solutions in order to achieve global optima efficiently. In order to validate the competence of the proposed hybrid GWOCSA, a widely utilized set of 23 benchmark test functions having a wide range of dimensions and varied complexities is used in this paper. The results obtained by the proposed algorithm are compared to 10 other algorithms in this paper for verification. The statistical results demonstrate that the GWOCSA outperforms other algorithms, including the recent variants of GWO called, enhanced grey wolf optimizer (EGWO) and augmented grey wolf optimizer (AGWO) in terms of high local optima avoidance ability and fast convergence speed. Furthermore, in order to demonstrate the applicability of the proposed algorithm at solving complex real-world problems, the GWOCSA is also employed to solve the feature selection problem as well. The GWOCSA as a feature selection approach is tested on 21 widely employed data sets acquired from the University of California at Irvine repository. The experimental results are compared to the state-of-the-art feature selection techniques, including the native GWO, the EGWO, and the AGWO. The results reveal that the GWOCSA has comprehensive superiority in solving the feature selection problem, which proves the capability of the proposed algorithm in solving real-world complex problems.
Author Arora, Sankalap
Sharma, Sanjeev
Sharma, Manik
Anand, Priyanka
Singh, Harpreet
Author_xml – sequence: 1
  givenname: Sankalap
  orcidid: 0000-0002-3676-4534
  surname: Arora
  fullname: Arora, Sankalap
  email: sankalap.arora@gmail.com
  organization: Department of Computer Science and Engineering, DAV University, Jalandhar, India
– sequence: 2
  givenname: Harpreet
  surname: Singh
  fullname: Singh, Harpreet
  organization: Department of Computer Science and Engineering, DAV University, Jalandhar, India
– sequence: 3
  givenname: Manik
  orcidid: 0000-0002-5942-134X
  surname: Sharma
  fullname: Sharma, Manik
  organization: Department of Computer Science and Applications, DAV University, Jalandhar, India
– sequence: 4
  givenname: Sanjeev
  surname: Sharma
  fullname: Sharma, Sanjeev
  organization: Department of Computer Science and Applications, DAV University, Jalandhar, India
– sequence: 5
  givenname: Priyanka
  surname: Anand
  fullname: Anand, Priyanka
  organization: Department of Computer Science and Engineering, Lovely Professional University, Jalandhar, India
BookMark eNp9kc1OGzEUhUcVlaCUJ2BjqesE_41zvUxHBJBQWQTE0rrjH3A0GaeeiVD6EH1mJhlaoVbCm2sdne_o6p4vxVGbWl8U54xOGaP6Yl5Vl8vllFOmpxz0TPDyU3HCmdITUQp19O5_XJx13YoODwapnJ0Uv-fkh38h17s6R0fmzVPKsX9ek-_YeUdSS66y35HH1ARyt-njOv7CPg4yto5UOb2Qpcdsn9-RIWXy0NrUdn3G2A4pi21rD9B_CQuP_Tb7IaTxB8vX4nPApvNnb_O0eFhc3lfXk9u7q5tqfjuxkkI_AbQhIA3MSRQ1glS0DoGLIEtdS-mss-BpABYkt6CBMxaoU1YHr5xDEKfFzZjrEq7MJsc15p1JGM1BSPnJYO6jbbyZgRJQW6ih1NJhAMBSWq5C0FYi6CHr25i1yenn1ne9WaVtbof1DZdlqZgquRpcenTZnLou-2Bs7A-X2J-pMYyafZtmbNPs2zRvbQ6s-If9s_HH1PlIRe_9XwKUFEKCeAVOg6_3
CODEN IAECCG
CitedBy_id crossref_primary_10_1186_s43067_020_00023_6
crossref_primary_10_1007_s00366_020_01028_5
crossref_primary_10_1016_j_rser_2025_115415
crossref_primary_10_1016_j_apm_2021_04_018
crossref_primary_10_1016_j_eswa_2021_114737
crossref_primary_10_1007_s00607_021_01037_2
crossref_primary_10_1109_ACCESS_2022_3221194
crossref_primary_10_1109_ACCESS_2023_3298955
crossref_primary_10_3390_app11156864
crossref_primary_10_1016_j_eswa_2019_112824
crossref_primary_10_1109_ACCESS_2019_2934994
crossref_primary_10_3390_math11092079
crossref_primary_10_1051_itmconf_20224702007
crossref_primary_10_1016_j_asoc_2023_110558
crossref_primary_10_1016_j_bbe_2022_09_001
crossref_primary_10_1007_s00607_020_00891_w
crossref_primary_10_1080_23335777_2020_1811383
crossref_primary_10_1016_j_asoc_2023_110319
crossref_primary_10_1007_s00500_022_07115_7
crossref_primary_10_7717_peerj_cs_2084
crossref_primary_10_1007_s42235_022_00253_6
crossref_primary_10_1007_s10462_020_09860_3
crossref_primary_10_1007_s10462_022_10164_x
crossref_primary_10_1016_j_knosys_2021_107139
crossref_primary_10_1007_s00521_023_08588_9
crossref_primary_10_1109_ACCESS_2019_2949582
crossref_primary_10_1016_j_neucom_2022_04_083
crossref_primary_10_3233_JIFS_232700
crossref_primary_10_3390_sym12101631
crossref_primary_10_1080_0952813X_2023_2183267
crossref_primary_10_3390_drones9040246
crossref_primary_10_3390_rs15163980
crossref_primary_10_1080_0952813X_2025_2515578
crossref_primary_10_1109_ACCESS_2020_2993148
crossref_primary_10_1007_s00521_022_07852_8
crossref_primary_10_1142_S0218001424520025
crossref_primary_10_1109_ACCESS_2023_3263584
crossref_primary_10_1109_ACCESS_2020_3033757
crossref_primary_10_1080_10106049_2022_2136265
crossref_primary_10_3390_app12199627
crossref_primary_10_1016_j_jocs_2022_101867
crossref_primary_10_3390_pr11092550
crossref_primary_10_1007_s00500_021_06224_z
crossref_primary_10_1007_s10462_024_10822_2
crossref_primary_10_3390_s20072147
crossref_primary_10_1016_j_eswa_2021_115882
crossref_primary_10_1007_s41315_022_00241_3
crossref_primary_10_1109_ACCESS_2020_2973763
crossref_primary_10_1016_j_jwpe_2023_103957
crossref_primary_10_32604_cmes_2024_047239
crossref_primary_10_3390_fermentation10010012
crossref_primary_10_1016_j_epsr_2020_106477
crossref_primary_10_1007_s11227_022_04623_z
crossref_primary_10_1016_j_engappai_2022_105124
crossref_primary_10_1088_1742_6596_2005_1_012080
crossref_primary_10_1049_rpg2_12435
crossref_primary_10_1016_j_jocs_2022_101636
crossref_primary_10_1038_s41598_024_75743_0
crossref_primary_10_1016_j_cosrev_2023_100559
crossref_primary_10_1007_s12665_021_10098_7
crossref_primary_10_1016_j_patcog_2020_107470
crossref_primary_10_1016_j_eswa_2021_116431
crossref_primary_10_1049_sfw2_12065
crossref_primary_10_1007_s13042_023_02006_1
crossref_primary_10_1016_j_apenergy_2024_124139
crossref_primary_10_1016_j_asoc_2024_111976
crossref_primary_10_1016_j_cja_2023_06_014
crossref_primary_10_1016_j_rser_2023_113192
crossref_primary_10_1007_s10462_020_09911_9
crossref_primary_10_3390_fire6040171
crossref_primary_10_2166_ws_2023_122
crossref_primary_10_1109_ACCESS_2023_3295242
crossref_primary_10_1016_j_eswa_2021_114778
crossref_primary_10_1109_ACCESS_2024_3376235
crossref_primary_10_1109_ACCESS_2021_3138403
crossref_primary_10_1007_s00500_023_08577_z
crossref_primary_10_3390_e23091189
crossref_primary_10_3390_math10193606
crossref_primary_10_1155_2022_4756347
crossref_primary_10_1016_j_cie_2021_107904
crossref_primary_10_1007_s00500_021_06205_2
crossref_primary_10_1007_s10489_023_04732_z
crossref_primary_10_3390_en13051186
crossref_primary_10_1007_s00521_024_09565_6
crossref_primary_10_1080_0305215X_2023_2173747
crossref_primary_10_1016_j_renene_2020_06_020
crossref_primary_10_3390_en14082201
crossref_primary_10_1016_j_asoc_2021_107476
crossref_primary_10_1016_j_knosys_2023_110462
crossref_primary_10_3390_biomimetics9010009
crossref_primary_10_1002_ett_4277
crossref_primary_10_1109_ACCESS_2022_3166901
crossref_primary_10_1007_s12559_022_10022_6
crossref_primary_10_1016_j_apenergy_2024_125047
crossref_primary_10_1109_ACCESS_2019_2953800
crossref_primary_10_1016_j_eswa_2020_113572
crossref_primary_10_1155_2022_7391145
crossref_primary_10_23919_CJEE_2023_000002
crossref_primary_10_3390_informatics9010004
crossref_primary_10_1007_s11227_024_06790_7
crossref_primary_10_1051_e3sconf_202455601026
crossref_primary_10_1109_ACCESS_2020_3001151
crossref_primary_10_1007_s00521_023_08400_8
crossref_primary_10_1007_s00366_020_00994_0
crossref_primary_10_1109_ACCESS_2021_3108097
crossref_primary_10_1109_ACCESS_2020_3012633
crossref_primary_10_1371_journal_pone_0286060
crossref_primary_10_1007_s12530_024_09584_7
crossref_primary_10_1016_j_bdr_2025_100556
crossref_primary_10_3390_biomimetics9030186
crossref_primary_10_1109_ACCESS_2021_3117567
crossref_primary_10_1109_ACCESS_2020_2980300
crossref_primary_10_2478_cait_2020_0029
crossref_primary_10_1016_j_compeleceng_2021_107632
crossref_primary_10_1051_e3sconf_202455601024
crossref_primary_10_1109_ACCESS_2020_3024108
crossref_primary_10_1109_ACCESS_2020_3025714
crossref_primary_10_1016_j_compbiomed_2023_106854
crossref_primary_10_1007_s00366_020_01119_3
crossref_primary_10_1007_s40996_020_00571_x
crossref_primary_10_1093_jcde_qwad108
crossref_primary_10_1109_ACCESS_2019_2910813
crossref_primary_10_1051_e3sconf_202455601019
crossref_primary_10_1109_ACCESS_2021_3056407
crossref_primary_10_1007_s00500_021_06502_w
crossref_primary_10_1109_TITS_2021_3071319
crossref_primary_10_1177_01423312221111607
crossref_primary_10_1007_s10115_023_01931_5
crossref_primary_10_1016_j_knosys_2022_108743
crossref_primary_10_1155_2020_8506365
crossref_primary_10_3390_electronics13122397
crossref_primary_10_1155_2022_2052061
crossref_primary_10_1002_dac_4697
crossref_primary_10_3390_a16030167
crossref_primary_10_1016_j_matcom_2023_06_021
crossref_primary_10_1016_j_eswa_2020_113873
crossref_primary_10_1109_ACCESS_2021_3093084
crossref_primary_10_1016_j_eswa_2020_114288
crossref_primary_10_1371_journal_pone_0254239
crossref_primary_10_1007_s11831_020_09412_6
crossref_primary_10_1049_sfw2_12025
crossref_primary_10_1007_s13748_019_00191_1
crossref_primary_10_1016_j_swevo_2020_100793
crossref_primary_10_1007_s12065_022_00721_2
crossref_primary_10_1109_ACCESS_2020_2999540
crossref_primary_10_1177_1748006X221102992
crossref_primary_10_1007_s10916_019_1341_2
crossref_primary_10_1007_s11042_022_13728_9
Cites_doi 10.1016/j.asoc.2016.01.044
10.1080/00207721.2013.791000
10.1504/IJBIC.2010.032124
10.1109/CEFC.2016.7815927
10.1016/j.eswa.2017.02.042
10.1023/A:1022602019183
10.1007/978-3-642-12538-6_6
10.1016/j.eswa.2016.06.004
10.1155/2017/2030489
10.1007/s00521-017-2988-6
10.1016/j.eswa.2016.03.047
10.1016/j.infsof.2012.01.002
10.1155/2013/524017
10.1016/j.asoc.2018.02.049
10.1016/j.neucom.2016.03.101
10.1109/MHS.1995.494215
10.1016/j.jmatprotec.2008.06.028
10.1109/PDGC.2014.7030711
10.7763/IJMLC.2012.V2.114
10.1109/ICSEC.2014.6978196
10.1109/CEC.2009.4983263
10.1016/j.knosys.2017.12.037
10.1016/j.energy.2016.05.105
10.1002/9780470496916
10.1007/s00500-018-3102-4
10.1109/AICCSA.2008.4493515
10.1155/2016/7950348
10.1016/j.neucom.2017.04.053
10.1016/j.engappai.2017.01.006
10.1016/j.engappai.2017.10.024
10.3233/FI-2017-1539
10.1109/4235.585893
10.1016/j.neucom.2011.03.034
10.1007/s00521-018-3343-2
10.1016/j.asoc.2013.09.018
10.4018/978-1-59904-498-9.ch007
10.1016/j.ins.2013.02.041
10.1109/ICITEED.2015.7408911
10.1016/j.asoc.2007.07.002
10.1023/A:1008202821328
10.2307/2685209
10.1016/j.swevo.2011.02.002
10.1016/j.jocs.2018.06.008
10.1109/TEVC.2008.919004
10.1016/j.eswa.2015.07.007
10.1016/j.advengsoft.2013.12.007
10.1007/s00500-016-2385-6
10.1109/TPAMI.2004.105
10.1016/j.advengsoft.2016.01.008
10.1016/j.compeleceng.2013.11.024
10.1016/j.asoc.2017.11.006
10.3923/pjbs.2014.266.271
10.1016/j.ins.2011.07.026
10.1016/j.neucom.2015.06.083
10.1016/j.eswa.2018.08.051
10.1007/s00521-018-3688-6
10.1007/BF02985802
10.1109/TEVC.2004.826895
10.1016/j.asoc.2018.05.006
10.1007/s12652-018-0924-y
10.1016/j.advengsoft.2017.01.004
10.1016/j.compstruc.2016.03.001
10.1016/j.camwa.2011.01.029
10.1016/j.patrec.2016.03.014
10.1007/s12293-017-0234-5
10.1007/s00521-015-1920-1
10.1023/A:1016540724870
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2897325
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2169-3536
EndPage 26361
ExternalDocumentID oai_doaj_org_article_78638bc8b8594daf88a54c26ff9c4a89
10_1109_ACCESS_2019_2897325
8643348
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-8acffa0f1d4a3ba8460bff23f459b44dcdc8e0f81f42c898211f0d6c9fe6dda83
IEDL.DBID DOA
ISICitedReferencesCount 175
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000462276700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:31 EDT 2025
Sat Oct 25 02:15:08 EDT 2025
Sat Nov 29 03:33:43 EST 2025
Tue Nov 18 21:00:23 EST 2025
Wed Aug 27 02:51:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-8acffa0f1d4a3ba8460bff23f459b44dcdc8e0f81f42c898211f0d6c9fe6dda83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3676-4534
0000-0002-5942-134X
OpenAccessLink https://doaj.org/article/78638bc8b8594daf88a54c26ff9c4a89
PQID 2455616526
PQPubID 4845423
PageCount 19
ParticipantIDs crossref_primary_10_1109_ACCESS_2019_2897325
ieee_primary_8643348
crossref_citationtrail_10_1109_ACCESS_2019_2897325
doaj_primary_oai_doaj_org_article_78638bc8b8594daf88a54c26ff9c4a89
proquest_journals_2455616526
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
y?ld?z (ref4) 2009; 209
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
mafarja (ref20) 2013; 49
ref17
ref16
ref19
ref18
ref51
ref50
yang (ref3) 2012
ref46
ref45
ref48
ref47
ref42
ref41
ref44
talbi (ref27) 2009; 74
ref49
ref8
ref7
ref9
ref6
ref5
babatunde (ref43) 2014; 7
ref40
ref35
ref34
ref37
ref36
ref31
ref74
ref30
ref33
ref32
ref39
ref38
ref71
ref70
ref73
ref72
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref66
ref22
ref65
ref21
ref28
ref29
holland (ref63) 1989
brownlee (ref2) 2011
ref60
ref62
ref61
eberhart (ref64) 1995
yang (ref1) 2008
References_xml – volume: 49
  start-page: 507
  year: 2013
  ident: ref20
  article-title: Record-to-record travel algorithm for attribute reduction in rough set theory
  publication-title: J Theor Appl Inf Technol
– ident: ref41
  doi: 10.1016/j.asoc.2016.01.044
– ident: ref21
  doi: 10.1080/00207721.2013.791000
– ident: ref10
  doi: 10.1504/IJBIC.2010.032124
– ident: ref58
  doi: 10.1109/CEFC.2016.7815927
– year: 1989
  ident: ref63
  publication-title: Genetic Algorithms in Search Optimization and Machine Learning
– ident: ref57
  doi: 10.1016/j.eswa.2017.02.042
– ident: ref7
  doi: 10.1023/A:1022602019183
– ident: ref9
  doi: 10.1007/978-3-642-12538-6_6
– start-page: 1942
  year: 1995
  ident: ref64
  article-title: Particle swarm optimization
  publication-title: Proc IEEE Int Conf Neural Netw
– ident: ref45
  doi: 10.1016/j.eswa.2016.06.004
– ident: ref35
  doi: 10.1155/2017/2030489
– ident: ref55
  doi: 10.1007/s00521-017-2988-6
– ident: ref32
  doi: 10.1016/j.eswa.2016.03.047
– ident: ref68
  doi: 10.1016/j.infsof.2012.01.002
– ident: ref19
  doi: 10.1155/2013/524017
– ident: ref37
  doi: 10.1016/j.asoc.2018.02.049
– ident: ref23
  doi: 10.1016/j.neucom.2016.03.101
– ident: ref6
  doi: 10.1109/MHS.1995.494215
– volume: 209
  start-page: 2773
  year: 2009
  ident: ref4
  article-title: An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2008.06.028
– ident: ref11
  doi: 10.1109/PDGC.2014.7030711
– ident: ref73
  doi: 10.7763/IJMLC.2012.V2.114
– ident: ref53
  doi: 10.1109/ICSEC.2014.6978196
– year: 2008
  ident: ref1
  publication-title: Introduction to Mathematical Optimization-from Linear Programming to Metaheuristics
– ident: ref42
  doi: 10.1109/CEC.2009.4983263
– ident: ref49
  doi: 10.1016/j.knosys.2017.12.037
– ident: ref34
  doi: 10.1016/j.energy.2016.05.105
– volume: 74
  year: 2009
  ident: ref27
  publication-title: Metaheuristics From Design to Implementation
  doi: 10.1002/9780470496916
– ident: ref12
  doi: 10.1007/s00500-018-3102-4
– ident: ref40
  doi: 10.1109/AICCSA.2008.4493515
– ident: ref59
  doi: 10.1155/2016/7950348
– ident: ref46
  doi: 10.1016/j.neucom.2017.04.053
– ident: ref65
  doi: 10.1016/j.engappai.2017.01.006
– ident: ref60
  doi: 10.1016/j.engappai.2017.10.024
– ident: ref66
  doi: 10.3233/FI-2017-1539
– ident: ref52
  doi: 10.1109/4235.585893
– ident: ref18
  doi: 10.1016/j.neucom.2011.03.034
– ident: ref70
  doi: 10.1007/s00521-018-3343-2
– ident: ref17
  doi: 10.1016/j.asoc.2013.09.018
– ident: ref48
  doi: 10.4018/978-1-59904-498-9.ch007
– ident: ref50
  doi: 10.1016/j.ins.2013.02.041
– ident: ref31
  doi: 10.1109/ICITEED.2015.7408911
– ident: ref29
  doi: 10.1016/j.asoc.2007.07.002
– ident: ref8
  doi: 10.1023/A:1008202821328
– ident: ref74
  doi: 10.2307/2685209
– ident: ref71
  doi: 10.1016/j.swevo.2011.02.002
– ident: ref36
  doi: 10.1016/j.jocs.2018.06.008
– ident: ref61
  doi: 10.1109/TEVC.2008.919004
– ident: ref15
  doi: 10.1016/j.eswa.2015.07.007
– volume: 7
  start-page: 49
  year: 2014
  ident: ref43
  article-title: Feature dimensionality reduction using a dual level metaheuristic algorithm
  publication-title: Optimization
– ident: ref13
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref16
  doi: 10.1007/s00500-016-2385-6
– ident: ref39
  doi: 10.1109/TPAMI.2004.105
– ident: ref69
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref51
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: ref25
  doi: 10.1016/j.asoc.2017.11.006
– ident: ref44
  doi: 10.3923/pjbs.2014.266.271
– ident: ref5
  doi: 10.1016/j.ins.2011.07.026
– ident: ref22
  doi: 10.1016/j.neucom.2015.06.083
– ident: ref26
  doi: 10.1016/j.eswa.2018.08.051
– ident: ref56
  doi: 10.1007/s00521-018-3688-6
– ident: ref72
  doi: 10.1007/BF02985802
– ident: ref30
  doi: 10.1109/TEVC.2004.826895
– ident: ref67
  doi: 10.1016/j.asoc.2018.05.006
– year: 2012
  ident: ref3
  publication-title: Metaheuristics in Water, Geotechnical and Transport Engineering
– ident: ref38
  doi: 10.1007/s12652-018-0924-y
– ident: ref47
  doi: 10.1016/j.advengsoft.2017.01.004
– ident: ref14
  doi: 10.1016/j.compstruc.2016.03.001
– ident: ref54
  doi: 10.1016/j.camwa.2011.01.029
– ident: ref24
  doi: 10.1016/j.patrec.2016.03.014
– ident: ref33
  doi: 10.1007/s12293-017-0234-5
– ident: ref62
  doi: 10.1007/s00521-015-1920-1
– year: 2011
  ident: ref2
  publication-title: Clever Algorithms Nature-Inspired Programming Recipes
– ident: ref28
  doi: 10.1023/A:1016540724870
SSID ssj0000816957
Score 2.5561934
Snippet Grey wolf optimizer (GWO) is a very efficient metaheuristic inspired by the hierarchy of the Canis lupus wolves. It has been extensively employed to a variety...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26343
SubjectTerms Algorithms
Computer science
crow search algorithm
Data acquisition
Feature extraction
Feature selection
function optimization
Genetic algorithms
Grey wolf optimizer
Heuristic algorithms
Heuristic methods
hybrid algorithm
Optimization
Prediction algorithms
Search algorithms
Search problems
SummonAdditionalLinks – databaseName: IEEE Electronic Library Online
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQwcNRWHOBAoQV1S0E-cGzaPGxnfNyuWHpAhQMVvUWOH1Bpm6DtLhI_0W9m7HijlYqQuEWRZ2JrxvPKPADeC-srbIXMbFv5jDunMiVqn2nDLc81WiFiofCn-uoKb27Ulx04HWthnHMx-cydhcf4L9_2Zh1CZedI6rPiuAu7dV0PtVpjPCUMkKCvpMZCRa7Op7MZnSFkb6kzcivqKozD3lI-sUd_GqrySBJH9TLf_7-NvYDnyYxk04HuL2HHdQewvxnRwNKNPYBnW_0GD-FhykioscvfoUyLTRff--Xt6scduyBVZlnfsY9EWPatX3j2mUTJXarRZLqzbEb-OhuSk7cgyeRl150JRmaYNUFY5qQoI9AjDMHaXC8dIVnE_K_uFVzPP3ydXWZpIENmeI6rDLXxXue-sFxXrSbTJW-9LyvPhWo5t8YadLnHwvPSoEJyLn1upVHeSWs1Vq9hr-s7dwSM29yYWnreKhIjFdfGFQJRW_RS2kJMoNxQqjGpW3k4yKKJXkuumoG8TSBvk8g7gdMR6OfQrOPfyy8CC4xLQ6ft-IJo26SL29RIEqo12KJQ3GpPexTclNJ7ZbhGNYHDwA8jksQKEzjZMFSTpMJ9U_IwjFSKUh7_HeoNPA0bHEI8J7C3Wq7dW3hifq1u75fvIsP_AR9tAd4
  priority: 102
  providerName: IEEE
Title A New Hybrid Algorithm Based on Grey Wolf Optimization and Crow Search Algorithm for Unconstrained Function Optimization and Feature Selection
URI https://ieeexplore.ieee.org/document/8643348
https://www.proquest.com/docview/2455616526
https://doaj.org/article/78638bc8b8594daf88a54c26ff9c4a89
Volume 7
WOSCitedRecordID wos000462276700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQxQEOCCiIhVL5wJFQJ7Gd8XG76qoHKByo6M1ybA8gbbNou0XqhUfgmRk77ipSJbhwySGyx7FnMj_WzDeMvVEBW-iVrkLfYiVjNJVRHVbOyyCFg6BULhR-352dwcWF-TRp9ZVywkZ44PHgjjogCek99KCMDA4BnJK-0YjGSwe5dI-8nkkwlXUw1JrWLDBDtTBH88WCdpRyucw7CjK6NjXHnpiijNhfWqzc0cvZ2Cwfs0fFS-Tz8euesHtxeMoeTrAD99nvOScFxU9vUskVn6--rinM_3bJj8ksBb4eOAX_N_zLeoX8I6mFy1Jvyd0Q-IJibz4mGk9mkvvKzwefHMbUN4KoLMno5Ul3KCTP8XoTicgq53INz9j58uTz4rQqzRUqLwVsK3Ae0Qmsg3Rt78gNET1i06JUppcy-OAhCoQaZePBAAWKKIL2BqMOwUH7nO0N6yG-YFwG4X2nUfaGVEIrnY-1Ij4FQK1DrWasuT1n6wvyeNrIyuYIRBg7Mscm5tjCnBl7u5v0YwTe-Pvw48TA3dCEmp1fkCzZIkv2X7I0Y_uJ_TsiQO5aK2HGDm7FwZY__Mo2MjUW1arRL__H0q_Yg7Sd8XLngO1tN9fxNbvvf26_X20Os3DT88Ovk8NcovgH6jYA_Q
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw8DQGEtsDg42JwgA_8Lhs-bAT-7GrKEWUwsMm9mY5to9N6pKpa5H2J_jN2I4bVRpC4i2KfBdbd76v3AfAB2aw4DUrE1MXmFBrRSJYhYnS1NBUccNYKBSeVrMZv7wU37fguK-FsdaG5DN74h_Dv3zT6pUPlZ1ypz4Lyh_BY0ZpnnXVWn1ExY-QcN-JrYWyVJwORyN3Cp-_JU6cY1EVfiD2hvoJXfrjWJUHsjgomPHe_23tOTyLhiQZdpR_AVu22Ye99ZAGEu_sPuxudBw8gN9D4sQamdz7Qi0ynP9sF9fLqxty5pSZIW1DPjnSkh_tHMk3J0xuYpUmUY0hI-exky49eQPSGb3kotHezPTTJhyWsVOVAegBBm9vrhbWIZmHDLDmJVyMP56PJkkcyZBomvJlwpVGVClmhqqiVs54SWvEvEDKRE2p0UZzmyLPkOaaC-7cS0xNqQXa0hjFi0PYbtrGvgJCTap1VSKthRMkBVXaZoxzZTiWpcnYAPI1paSO_cr9QeYy-C2pkB15pSevjOQdwHEPdNu16_j38jPPAv1S32s7vHC0lfHqyoo7GVVrXnMmqFHo9siozktEoaniYgAHnh96JJEVBnC0ZigZ5cKdzKkfR1qyvHz9d6j38HRy_nUqp59nX97Ajt9sF_A5gu3lYmXfwhP9a3l9t3gXmP8PovMFJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Hybrid+Algorithm+Based+on+Grey+Wolf+Optimization+and+Crow+Search+Algorithm+for+Unconstrained+Function+Optimization+and+Feature+Selection&rft.jtitle=IEEE+access&rft.au=Arora%2C+Sankalap&rft.au=Singh%2C+Harpreet&rft.au=Sharma%2C+Manik&rft.au=Sharma%2C+Sanjeev&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=26343&rft.epage=26361&rft_id=info:doi/10.1109%2FACCESS.2019.2897325&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2897325
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon