Robust DoA Estimation Using Denoising Autoencoder and Deep Neural Networks
As one of the most critical technology in array signal processing, direction of arrival (DoA) estimation has received a great deal of attention in many areas. Traditional methods perform well when the signal-to-noise ratio (SNR) is high and the receiving array is perfect, which are quite different f...
Saved in:
| Published in: | IEEE access Vol. 10; pp. 52551 - 52564 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As one of the most critical technology in array signal processing, direction of arrival (DoA) estimation has received a great deal of attention in many areas. Traditional methods perform well when the signal-to-noise ratio (SNR) is high and the receiving array is perfect, which are quite different from the situation in some real applications (e.g., the marine communication scenario). To get satisfying performance of DoA estimation when SNR is low and the array is inaccurate (mutual coupling exist), this paper introduces a scheme consisting of denoising autoencoder (DAE) and deep neural networks (DNN), referred to as DAE-DNN scheme. DAE is used to reconstruct a clean "repaired" input from its corrupted version to increase the robustness, and then divide the input into multiple parts in different sub-areas. DNN is used to learn the mapping between the received signals and the refined grids of angle in each sub-areas, then the outputs of each sub-areas are concatenated to perform the final DoA estimation. By simulations in different SNR regimes, we study the performance of DAE-DNN in terms of the different snapshots, batch size, learning rate, and epoch. Our results demonstrate that the proposed DAE-DNN scheme outperforms traditional methods in accuracy and robustness. |
|---|---|
| AbstractList | As one of the most critical technology in array signal processing, direction of arrival (DoA) estimation has received a great deal of attention in many areas. Traditional methods perform well when the signal-to-noise ratio (SNR) is high and the receiving array is perfect, which are quite different from the situation in some real applications (e.g., the marine communication scenario). To get satisfying performance of DoA estimation when SNR is low and the array is inaccurate (mutual coupling exist), this paper introduces a scheme consisting of denoising autoencoder (DAE) and deep neural networks (DNN), referred to as DAE-DNN scheme. DAE is used to reconstruct a clean "repaired" input from its corrupted version to increase the robustness, and then divide the input into multiple parts in different sub-areas. DNN is used to learn the mapping between the received signals and the refined grids of angle in each sub-areas, then the outputs of each sub-areas are concatenated to perform the final DoA estimation. By simulations in different SNR regimes, we study the performance of DAE-DNN in terms of the different snapshots, batch size, learning rate, and epoch. Our results demonstrate that the proposed DAE-DNN scheme outperforms traditional methods in accuracy and robustness. |
| Author | Gu, Xuemai Chen, Dawei Shi, Shuo Shim, Byonghyo |
| Author_xml | – sequence: 1 givenname: Dawei orcidid: 0000-0002-4950-9153 surname: Chen fullname: Chen, Dawei organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China – sequence: 2 givenname: Shuo orcidid: 0000-0002-5671-266X surname: Shi fullname: Shi, Shuo organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China – sequence: 3 givenname: Xuemai orcidid: 0000-0002-6011-9885 surname: Gu fullname: Gu, Xuemai email: guxuemai@hit.edu.cn organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China – sequence: 4 givenname: Byonghyo orcidid: 0000-0001-5051-1763 surname: Shim fullname: Shim, Byonghyo organization: School of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea |
| BookMark | eNqFUU1LxDAQDaLg5y_wUvC8a9I0aXJc1vULUfDjHKbpVLKuzZqkiP_euBURL85lhpl57w3z9sl273sk5JjRKWNUn87m88XDw7SkZTnlTFZK11tkr2RST7jgcvtXvUuOYlzSHCq3RL1Hru99M8RUnPlZsYjJvUJyvi-eouufizPsvdtUsyF57K1vMRTQt3mC6-IWhwCrnNK7Dy_xkOx0sIp49J0PyNP54nF-Obm5u7iaz24mtqIqTRQw3emOW1BN0ylLOyERsaKtEFJLACqhYqJGqmvQNQfNuZUKQdZWCYH8gFyNvK2HpVmHfHP4MB6c2TR8eDYQkrMrNCBEq7iC1rKuUhQalKxjtFWNaoTSVeY6GbnWwb8NGJNZ-iH0-XxTSqmZ0JzpvMXHLRt8jAG7H1VGzZcHZvTAfHlgvj3IKP0HZV3avDcFcKt_sMcj1uXX_KjputJlLfknCtOV3Q |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_LWC_2025_3572346 crossref_primary_10_1109_ACCESS_2025_3547146 crossref_primary_10_1109_ACCESS_2022_3172478 crossref_primary_10_1109_ACCESS_2023_3309643 crossref_primary_10_3390_app15031123 crossref_primary_10_1016_j_aeue_2024_155132 crossref_primary_10_1109_ACCESS_2024_3477920 crossref_primary_10_1109_TVT_2024_3496119 crossref_primary_10_1109_ACCESS_2025_3550949 crossref_primary_10_3390_s24010091 |
| Cites_doi | 10.1109/TWC.2013.012513.120966 10.1109/PROC.1969.7278 10.1109/TMECH.2017.2759301 10.1016/j.sigpro.2011.08.017 10.1109/TCOMM.2020.2969184 10.1109/TVT.2019.2919737 10.1049/iet-rsn.2016.0446 10.1109/29.32276 10.1109/TBME.2016.2613960 10.1002/0471221104 10.1109/ACCESS.2019.2914731 10.1109/COMST.2019.2926625 10.1109/LCOMM.2018.2884457 10.1109/TAP.2018.2874430 10.1109/TAES.2012.6129676 10.1109/78.469863 10.1109/TSP.2009.2037074 10.1109/TASLP.2017.2738559 10.1109/COMST.2017.2664421 10.1109/TIM.2018.2868490 10.1109/JSAC.2019.2904352 10.1109/MCOM.001.1900664 10.1109/8.855496 10.1109/5.622504 10.1109/TWC.2019.2919280 10.1109/LSP.2012.2204435 10.1109/JIOT.2018.2876695 10.1109/LCOMM.2020.3029197 10.1145/1390156.1390294 10.1109/TAP.1986.1143830 10.1109/TVT.2018.2851783 10.1109/MCOM.2019.1800610 10.1109/ICC.2012.6363665 10.1016/j.sigpro.2012.06.013 10.26599/TST.2018.9010002 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2022.3164897 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 52564 |
| ExternalDocumentID | oai_doaj_org_article_a55d838adc1f480abe61f10d8b8b5894 10_1109_ACCESS_2022_3164897 9749276 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Korean Government through the Ministry of Science, ICT and Future Planning (MSIP) grantid: 2020R1A2C2102198 funderid: 10.13039/501100003621 – fundername: Ministry of Science and ICT (MSIT) through the Information Technology Research Center (ITRC) Program supervised by the Institute for Information & Communications Technology Promotion (IITP) grantid: IITP-2019-2017-0-01637 – fundername: National Research Foundation (NRF) funderid: 10.13039/501100003725 – fundername: National Natural Science Foundation of China grantid: 62171158 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-8a19f9f3ca8bbf8c0f56eee40d55696aa06a4157e097a973a933c68ea67c855e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000802070200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:43:04 EDT 2025 Mon Jun 30 04:20:31 EDT 2025 Sat Nov 29 06:32:01 EST 2025 Tue Nov 18 22:32:58 EST 2025 Wed Aug 27 02:36:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-8a19f9f3ca8bbf8c0f56eee40d55696aa06a4157e097a973a933c68ea67c855e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5051-1763 0000-0002-5671-266X 0000-0002-6011-9885 0000-0002-4950-9153 |
| OpenAccessLink | https://doaj.org/article/a55d838adc1f480abe61f10d8b8b5894 |
| PQID | 2669159319 |
| PQPubID | 4845423 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2669159319 doaj_primary_oai_doaj_org_article_a55d838adc1f480abe61f10d8b8b5894 ieee_primary_9749276 crossref_primary_10_1109_ACCESS_2022_3164897 crossref_citationtrail_10_1109_ACCESS_2022_3164897 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 Vincent (ref35) 2010; 11 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Abadi (ref36) 2016 |
| References_xml | – ident: ref5 doi: 10.1109/TWC.2013.012513.120966 – ident: ref8 doi: 10.1109/PROC.1969.7278 – ident: ref21 doi: 10.1109/TMECH.2017.2759301 – ident: ref13 doi: 10.1016/j.sigpro.2011.08.017 – volume: 11 start-page: 3371 year: 2010 ident: ref35 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – ident: ref32 doi: 10.1109/TCOMM.2020.2969184 – ident: ref6 doi: 10.1109/TVT.2019.2919737 – ident: ref4 doi: 10.1049/iet-rsn.2016.0446 – volume-title: arXiv:1603.04467 year: 2016 ident: ref36 article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems – ident: ref10 doi: 10.1109/29.32276 – ident: ref25 doi: 10.1109/TBME.2016.2613960 – ident: ref11 doi: 10.1002/0471221104 – ident: ref22 doi: 10.1109/ACCESS.2019.2914731 – ident: ref28 doi: 10.1109/COMST.2019.2926625 – ident: ref16 doi: 10.1109/LCOMM.2018.2884457 – ident: ref34 doi: 10.1109/TAP.2018.2874430 – ident: ref37 doi: 10.1109/TAES.2012.6129676 – ident: ref7 doi: 10.1109/78.469863 – ident: ref15 doi: 10.1109/TSP.2009.2037074 – ident: ref18 doi: 10.1109/TASLP.2017.2738559 – ident: ref2 doi: 10.1109/COMST.2017.2664421 – ident: ref23 doi: 10.1109/TIM.2018.2868490 – ident: ref31 doi: 10.1109/JSAC.2019.2904352 – ident: ref27 doi: 10.1109/MCOM.001.1900664 – ident: ref26 doi: 10.1109/8.855496 – ident: ref1 doi: 10.1109/5.622504 – ident: ref3 doi: 10.1109/TWC.2019.2919280 – ident: ref12 doi: 10.1109/LSP.2012.2204435 – ident: ref24 doi: 10.1109/JIOT.2018.2876695 – ident: ref17 doi: 10.1109/LCOMM.2020.3029197 – ident: ref19 doi: 10.1145/1390156.1390294 – ident: ref9 doi: 10.1109/TAP.1986.1143830 – ident: ref30 doi: 10.1109/TVT.2018.2851783 – ident: ref29 doi: 10.1109/MCOM.2019.1800610 – ident: ref33 doi: 10.1109/ICC.2012.6363665 – ident: ref14 doi: 10.1016/j.sigpro.2012.06.013 – ident: ref20 doi: 10.26599/TST.2018.9010002 |
| SSID | ssj0000816957 |
| Score | 2.391354 |
| Snippet | As one of the most critical technology in array signal processing, direction of arrival (DoA) estimation has received a great deal of attention in many areas.... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 52551 |
| SubjectTerms | Array signal processing Arrays Artificial neural networks Covariance matrices deep neural networks denoising autoencoder Direction of arrival Direction-of-arrival estimation DoA Estimation Feature extraction Machine learning Mutual coupling Neural networks Noise reduction Robustness Signal processing Signal to noise ratio SNR |
| SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6S0EN7SB9pyaZJ8KHHuJEt63XcbhJKDkspLeQm9BhBoNhh19vfX0lWTKClkJuQJTHy59GMxtI3AJ-UtY7TltWd5L6Omqhq1WGoaWKC5NammpxsQqzX8u5OfduDi_kuDCLmw2f4ORXzv3w_uF0KlV1G31e1gu_DvhBiuqs1x1NSAgnFRCEWaoi6XK5WcQ5xC9i2cWfKO5mInZ4Yn8zRX5Kq_LUSZ_Ny8_p5gr2Bw-JGVssJ97ewh_07ePWEXPAIbr8Pdrcdq6thWV1HRZ7uKFb5jEB1hf1wn0vL3TgkMkuPm8r0Pj7BhypRdsTh19MZ8e17-Hlz_WP1tS6ZE2rXETnW0jQqqECdkdYG6UhgPArdEc8YV9wYwk203AKJEkYJahSljks0XDjJGNIPcNAPPR5DFbxjCrlxEe2OIZPUGmpkoMQ2yB1fQPv4SrUrtOIpu8UvnbcXROkJB51w0AWHBVzMnR4mVo3_N_-SsJqbJkrsXBFB0EXDtGHMSyqNd03oJDEWeRMa4qWVlknVLeAoATcPUjBbwOkj8rqo71ZHr0VFPy8uTyf_7vURXiYBp1jMKRyMmx2ewQv3e7zfbs7zl_kHBIjhKw priority: 102 providerName: IEEE |
| Title | Robust DoA Estimation Using Denoising Autoencoder and Deep Neural Networks |
| URI | https://ieeexplore.ieee.org/document/9749276 https://www.proquest.com/docview/2669159319 https://doaj.org/article/a55d838adc1f480abe61f10d8b8b5894 |
| Volume | 10 |
| WOSCitedRecordID | wos000802070200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUl5NAcSpoPuk0afMixJrJlyTPH7WZDCGQJoYXchCRLEAh22PX2mN-ekewsC4XmkosxsiyPnkaaGSO9YewcrXVKlDKvQDU5zUTMsfIhF5EJUlkbS1KyiXqxgIcHvNtK9RX3hA30wANwF0bKBgSYxhWhAm6sV0UoeAMWrARMTKDk9WwFU2kNhkKhrEeaoYLjxXQ2ox5RQFiWFKeqCiLN05YpSoz9Y4qVf9blZGyu9tmX0UvMpoN0X9kn3x6wvS3uwEN2c9_Z9arPLrtpNqd5OhxBzNIWgOzSt91jupuu-y5yVTZ-mZm2oSf-OYuMHNT8YtgCvjpif67mv2fX-ZgYIXcVhz4HU2DAIJwBawM4HqQisSveSKlQGcOVIcNce461wVoYFMIp8EbVDqT04pjttF3rv7EsNE6iV8bRYFbSSxDWCANBcFt45dSElW8YaTeyhsfkFU86RQ8c9QCsjsDqEdgJ-7l56Xkgzfh_9V8R_E3VyHidCkgP9KgH-j09mLDDOHSbRihOwrIm-U_fhlKPs3OlySlBcuNo9fn-EZ8-YZ9jd4YfM6dsp1-u_Q-26_72j6vlWVJMut6-zM_S8cJXKFfmmg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgkQ58CpVFwrkwLGhTvyIfVy2rQqUFUJF6s3yYyJVQkm1m-3vx3bcqBKoUm-WY1vjfBnPeGJ_A_BJWesErXnJpPBl0ERVKoZtSSMTpLA21qRkE81yKS8v1c8tOJzuwiBiOnyGn2Mx_cv3vdvEUNlR8H1V3YhH8JgzVlfjba0pohJTSCjeZGqhiqij-WIRZhE2gXUd9qaCyUjtdMf8JJb-nFbln7U4GZjTFw8T7SU8z45kMR-RfwVb2L2GZ3foBXfh26_ebtZDcdzPi5OgyuMtxSKdEiiOseuvUmm-GfpIZ-lxVZjOhyd4XUTSjjD8cjwlvn4Dv09PLhZnZc6dUDpG5FBKU6lWtdQZaW0rHWm5CEIz4jkXShhDhAm2u0GiGqMaahSlTkg0onGSc6R7sN31He5D0XrHFQrjAt6MI5fUGmpkS4mtUDgxg_r2lWqXicVjfos_Om0wiNIjDjrioDMOMzicOl2PvBr3N_8SsZqaRlLsVBFA0FnHtOHcSyqNd1XLJDEWRdVWxEsrLZeKzWA3AjcNkjGbwcEt8jor8FoHv0UFTy8sUG__3-sjPD27-HGuz78uv7-DnSjsGJk5gO1htcH38MTdDFfr1Yf0lf4F3n3kcg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+DoA+Estimation+Using+Denoising+Autoencoder+and+Deep+Neural+Networks&rft.jtitle=IEEE+access&rft.au=Chen%2C+Dawei&rft.au=Shi%2C+Shuo&rft.au=Gu%2C+Xuemai&rft.au=Shim%2C+Byonghyo&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=52551&rft.epage=52564&rft_id=info:doi/10.1109%2FACCESS.2022.3164897&rft.externalDocID=9749276 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |