Robust DoA Estimation Using Denoising Autoencoder and Deep Neural Networks

As one of the most critical technology in array signal processing, direction of arrival (DoA) estimation has received a great deal of attention in many areas. Traditional methods perform well when the signal-to-noise ratio (SNR) is high and the receiving array is perfect, which are quite different f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 10; s. 52551 - 52564
Hlavní autori: Chen, Dawei, Shi, Shuo, Gu, Xuemai, Shim, Byonghyo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As one of the most critical technology in array signal processing, direction of arrival (DoA) estimation has received a great deal of attention in many areas. Traditional methods perform well when the signal-to-noise ratio (SNR) is high and the receiving array is perfect, which are quite different from the situation in some real applications (e.g., the marine communication scenario). To get satisfying performance of DoA estimation when SNR is low and the array is inaccurate (mutual coupling exist), this paper introduces a scheme consisting of denoising autoencoder (DAE) and deep neural networks (DNN), referred to as DAE-DNN scheme. DAE is used to reconstruct a clean "repaired" input from its corrupted version to increase the robustness, and then divide the input into multiple parts in different sub-areas. DNN is used to learn the mapping between the received signals and the refined grids of angle in each sub-areas, then the outputs of each sub-areas are concatenated to perform the final DoA estimation. By simulations in different SNR regimes, we study the performance of DAE-DNN in terms of the different snapshots, batch size, learning rate, and epoch. Our results demonstrate that the proposed DAE-DNN scheme outperforms traditional methods in accuracy and robustness.
AbstractList As one of the most critical technology in array signal processing, direction of arrival (DoA) estimation has received a great deal of attention in many areas. Traditional methods perform well when the signal-to-noise ratio (SNR) is high and the receiving array is perfect, which are quite different from the situation in some real applications (e.g., the marine communication scenario). To get satisfying performance of DoA estimation when SNR is low and the array is inaccurate (mutual coupling exist), this paper introduces a scheme consisting of denoising autoencoder (DAE) and deep neural networks (DNN), referred to as DAE-DNN scheme. DAE is used to reconstruct a clean "repaired" input from its corrupted version to increase the robustness, and then divide the input into multiple parts in different sub-areas. DNN is used to learn the mapping between the received signals and the refined grids of angle in each sub-areas, then the outputs of each sub-areas are concatenated to perform the final DoA estimation. By simulations in different SNR regimes, we study the performance of DAE-DNN in terms of the different snapshots, batch size, learning rate, and epoch. Our results demonstrate that the proposed DAE-DNN scheme outperforms traditional methods in accuracy and robustness.
Author Gu, Xuemai
Chen, Dawei
Shi, Shuo
Shim, Byonghyo
Author_xml – sequence: 1
  givenname: Dawei
  orcidid: 0000-0002-4950-9153
  surname: Chen
  fullname: Chen, Dawei
  organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Shuo
  orcidid: 0000-0002-5671-266X
  surname: Shi
  fullname: Shi, Shuo
  organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 3
  givenname: Xuemai
  orcidid: 0000-0002-6011-9885
  surname: Gu
  fullname: Gu, Xuemai
  email: guxuemai@hit.edu.cn
  organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 4
  givenname: Byonghyo
  orcidid: 0000-0001-5051-1763
  surname: Shim
  fullname: Shim, Byonghyo
  organization: School of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
BookMark eNqFUU1LxDAQDaLg5y_wUvC8a9I0aXJc1vULUfDjHKbpVLKuzZqkiP_euBURL85lhpl57w3z9sl273sk5JjRKWNUn87m88XDw7SkZTnlTFZK11tkr2RST7jgcvtXvUuOYlzSHCq3RL1Hru99M8RUnPlZsYjJvUJyvi-eouufizPsvdtUsyF57K1vMRTQt3mC6-IWhwCrnNK7Dy_xkOx0sIp49J0PyNP54nF-Obm5u7iaz24mtqIqTRQw3emOW1BN0ylLOyERsaKtEFJLACqhYqJGqmvQNQfNuZUKQdZWCYH8gFyNvK2HpVmHfHP4MB6c2TR8eDYQkrMrNCBEq7iC1rKuUhQalKxjtFWNaoTSVeY6GbnWwb8NGJNZ-iH0-XxTSqmZ0JzpvMXHLRt8jAG7H1VGzZcHZvTAfHlgvj3IKP0HZV3avDcFcKt_sMcj1uXX_KjputJlLfknCtOV3Q
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_LWC_2025_3572346
crossref_primary_10_1109_ACCESS_2025_3547146
crossref_primary_10_1109_ACCESS_2022_3172478
crossref_primary_10_1109_ACCESS_2023_3309643
crossref_primary_10_3390_app15031123
crossref_primary_10_1016_j_aeue_2024_155132
crossref_primary_10_1109_ACCESS_2024_3477920
crossref_primary_10_1109_TVT_2024_3496119
crossref_primary_10_1109_ACCESS_2025_3550949
crossref_primary_10_3390_s24010091
Cites_doi 10.1109/TWC.2013.012513.120966
10.1109/PROC.1969.7278
10.1109/TMECH.2017.2759301
10.1016/j.sigpro.2011.08.017
10.1109/TCOMM.2020.2969184
10.1109/TVT.2019.2919737
10.1049/iet-rsn.2016.0446
10.1109/29.32276
10.1109/TBME.2016.2613960
10.1002/0471221104
10.1109/ACCESS.2019.2914731
10.1109/COMST.2019.2926625
10.1109/LCOMM.2018.2884457
10.1109/TAP.2018.2874430
10.1109/TAES.2012.6129676
10.1109/78.469863
10.1109/TSP.2009.2037074
10.1109/TASLP.2017.2738559
10.1109/COMST.2017.2664421
10.1109/TIM.2018.2868490
10.1109/JSAC.2019.2904352
10.1109/MCOM.001.1900664
10.1109/8.855496
10.1109/5.622504
10.1109/TWC.2019.2919280
10.1109/LSP.2012.2204435
10.1109/JIOT.2018.2876695
10.1109/LCOMM.2020.3029197
10.1145/1390156.1390294
10.1109/TAP.1986.1143830
10.1109/TVT.2018.2851783
10.1109/MCOM.2019.1800610
10.1109/ICC.2012.6363665
10.1016/j.sigpro.2012.06.013
10.26599/TST.2018.9010002
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3164897
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 52564
ExternalDocumentID oai_doaj_org_article_a55d838adc1f480abe61f10d8b8b5894
10_1109_ACCESS_2022_3164897
9749276
Genre orig-research
GrantInformation_xml – fundername: Korean Government through the Ministry of Science, ICT and Future Planning (MSIP)
  grantid: 2020R1A2C2102198
  funderid: 10.13039/501100003621
– fundername: Ministry of Science and ICT (MSIT) through the Information Technology Research Center (ITRC) Program supervised by the Institute for Information & Communications Technology Promotion (IITP)
  grantid: IITP-2019-2017-0-01637
– fundername: National Research Foundation (NRF)
  funderid: 10.13039/501100003725
– fundername: National Natural Science Foundation of China
  grantid: 62171158
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-8a19f9f3ca8bbf8c0f56eee40d55696aa06a4157e097a973a933c68ea67c855e3
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000802070200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:43:04 EDT 2025
Mon Jun 30 04:20:31 EDT 2025
Sat Nov 29 06:32:01 EST 2025
Tue Nov 18 22:32:58 EST 2025
Wed Aug 27 02:36:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-8a19f9f3ca8bbf8c0f56eee40d55696aa06a4157e097a973a933c68ea67c855e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5051-1763
0000-0002-5671-266X
0000-0002-6011-9885
0000-0002-4950-9153
OpenAccessLink https://ieeexplore.ieee.org/document/9749276
PQID 2669159319
PQPubID 4845423
PageCount 14
ParticipantIDs proquest_journals_2669159319
doaj_primary_oai_doaj_org_article_a55d838adc1f480abe61f10d8b8b5894
ieee_primary_9749276
crossref_primary_10_1109_ACCESS_2022_3164897
crossref_citationtrail_10_1109_ACCESS_2022_3164897
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
Vincent (ref35) 2010; 11
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Abadi (ref36) 2016
References_xml – ident: ref5
  doi: 10.1109/TWC.2013.012513.120966
– ident: ref8
  doi: 10.1109/PROC.1969.7278
– ident: ref21
  doi: 10.1109/TMECH.2017.2759301
– ident: ref13
  doi: 10.1016/j.sigpro.2011.08.017
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref35
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: ref32
  doi: 10.1109/TCOMM.2020.2969184
– ident: ref6
  doi: 10.1109/TVT.2019.2919737
– ident: ref4
  doi: 10.1049/iet-rsn.2016.0446
– volume-title: arXiv:1603.04467
  year: 2016
  ident: ref36
  article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
– ident: ref10
  doi: 10.1109/29.32276
– ident: ref25
  doi: 10.1109/TBME.2016.2613960
– ident: ref11
  doi: 10.1002/0471221104
– ident: ref22
  doi: 10.1109/ACCESS.2019.2914731
– ident: ref28
  doi: 10.1109/COMST.2019.2926625
– ident: ref16
  doi: 10.1109/LCOMM.2018.2884457
– ident: ref34
  doi: 10.1109/TAP.2018.2874430
– ident: ref37
  doi: 10.1109/TAES.2012.6129676
– ident: ref7
  doi: 10.1109/78.469863
– ident: ref15
  doi: 10.1109/TSP.2009.2037074
– ident: ref18
  doi: 10.1109/TASLP.2017.2738559
– ident: ref2
  doi: 10.1109/COMST.2017.2664421
– ident: ref23
  doi: 10.1109/TIM.2018.2868490
– ident: ref31
  doi: 10.1109/JSAC.2019.2904352
– ident: ref27
  doi: 10.1109/MCOM.001.1900664
– ident: ref26
  doi: 10.1109/8.855496
– ident: ref1
  doi: 10.1109/5.622504
– ident: ref3
  doi: 10.1109/TWC.2019.2919280
– ident: ref12
  doi: 10.1109/LSP.2012.2204435
– ident: ref24
  doi: 10.1109/JIOT.2018.2876695
– ident: ref17
  doi: 10.1109/LCOMM.2020.3029197
– ident: ref19
  doi: 10.1145/1390156.1390294
– ident: ref9
  doi: 10.1109/TAP.1986.1143830
– ident: ref30
  doi: 10.1109/TVT.2018.2851783
– ident: ref29
  doi: 10.1109/MCOM.2019.1800610
– ident: ref33
  doi: 10.1109/ICC.2012.6363665
– ident: ref14
  doi: 10.1016/j.sigpro.2012.06.013
– ident: ref20
  doi: 10.26599/TST.2018.9010002
SSID ssj0000816957
Score 2.391354
Snippet As one of the most critical technology in array signal processing, direction of arrival (DoA) estimation has received a great deal of attention in many areas....
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 52551
SubjectTerms Array signal processing
Arrays
Artificial neural networks
Covariance matrices
deep neural networks
denoising autoencoder
Direction of arrival
Direction-of-arrival estimation
DoA
Estimation
Feature extraction
Machine learning
Mutual coupling
Neural networks
Noise reduction
Robustness
Signal processing
Signal to noise ratio
SNR
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQg6iquL3rwaDF9JJkc11URkUVExVtI8wBBWtnt-vudpN1lQdCLt9KmafLNJDMTpt8Qcp45aiDzNgVburQUWqQ65LraMhdecJ77SDz_-iAmE3h7k48rpb5CTlhHD9wBd6kZs1CAtibzJVBdOZ75jFqooGIgIxMoej0rwVTcgyHjkomeZiij8nI0HuOMMCDMc4xTeQmB5mnFFEXG_r7Eyo99ORqb2x2y3XuJyagb3S5Zc_Ue2VrhDhyQ-6emms_a5LoZJTe4TrtfEJOYApBcu7p5j1ejedsErkrrpomuLT5xn0lg5MDuJ10K-GyfvNzePI_v0r4wQmpKCm0KOpNe-sJoqCoPhnrGcdgltYxxybWmXKNhFo5KoaUotCwKw8FpLgww5ooDsl43tTskiQaHaDjGAe20oJUuaCVM6VCEknkqhiRfYKRMzxoeild8qBg9UKk6YFUAVvXADsnF8qXPjjTj9-ZXAfxl08B4HW-gHqheD9RfejAkgyC6ZScYJ8lc8CE5WYhS9atzptApkejG4e5z9B-fPiabYTrdwcwJWW-nc3dKNsxX-z6bnkXF_AZj3OPI
  priority: 102
  providerName: Directory of Open Access Journals
Title Robust DoA Estimation Using Denoising Autoencoder and Deep Neural Networks
URI https://ieeexplore.ieee.org/document/9749276
https://www.proquest.com/docview/2669159319
https://doaj.org/article/a55d838adc1f480abe61f10d8b8b5894
Volume 10
WOSCitedRecordID wos000802070200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc48CqIhVLlwLGhTuLH-Lhst0IIVggB6i1y7LFUCSXVbpYjvx3bcaNKICQukZXY1sRf7Jlxxt8AvKmIWay8K9FxKrkyqjQx1tXxWnklZe0T8fz3j2qzwasr_fkAzuazMESUgs_obSymf_lusPu4VXYebF9dK3kIh0qp6azWvJ8SE0hooTKxUMX0-XK1Cu8QXMC6Dp6p5BiJne4on8TRn5Oq_LESJ_Vy-ej_BHsMD7MZWSwn3J_AAfVP4cEdcsFj-PBl6Pa7sbgYlsU6TOTpjGKRYgSKC-qH61Ra7schklk62hamd-EJ3RSRsiN0v5lixHfP4Nvl-uvqfZkzJ5SWMxxLNJX22jfWYNd5tMwLGYTmzAkhtTSGSRM0tyKmldGqMbpprEQyUlkUgprncNQPPb2AwiCFwSMhMShyxTrTsE5ZTgFjLTxTC6hvh7S1mVY8Zrf40Sb3gul2wqGNOLQZhwWczY1uJlaNf1d_F7Gaq0ZK7HQjgNDmGdYaIRw2aJytPEdmOpKVr5jDDjuBmi_gOAI3d5IxW8DJLfJtnr67NlgtOth5YXl6-fdWr-B-FHDaizmBo3G7p9dwz_4cr3fb0-TYh-unX-vT9JX-BsLT4rE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQceLWIhQI5cGyok_h5XLatCiwrhArqzXLssVQJJdVutr-_tuNGlUBI3KzEtmx_Gc_YmfkG4EOFxMrKu1I6iiUVRpQm-ro6WgsvOK99Ip7_tRSrlby4UN934HCKhUHE5HyGH2Mx_ct3vd3Gq7KjYPuqWvB7cJ9RWldjtNZ0oxJTSCgmMrVQRdTRfLEIswiHwLoOZ1NOZaR2uqN-Ekt_Tqvyx16cFMzp0_8b2jN4kg3JYj4i_xx2sHsBj-_QC-7Blx99u90MxXE_L06CKI9RikXyEiiOsesvU2m-HfpIZ-lwXZjOhTd4VUTSjtD9avQS3-zDz9OT88VZmXMnlJYSOZTSVMor31gj29ZLSzzjYdCUOMa44sYQboLuFkiUMEo0RjWN5RINF1Yyhs1L2O36Dl9BYSSGxUPGZVDlgrSmIa2wFAPKinkiZlDfLqm2mVg85rf4rdMBgyg94qAjDjrjMIPDqdHVyKvx7-qfIlZT1UiKnR4EEHSWMW0Yc7KRxtnKU0lMi7zyFXGylS2Tis5gLwI3dZIxm8HBLfI6C_BGB7tFBUsvbFCv_97qPTw8O_-21MvPq69v4FEc7HgzcwC7w3qLb-GBvR4uN-t36Su9AQNa49I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+DoA+Estimation+Using+Denoising+Autoencoder+and+Deep+Neural+Networks&rft.jtitle=IEEE+access&rft.au=Chen%2C+Dawei&rft.au=Shi%2C+Shuo&rft.au=Gu%2C+Xuemai&rft.au=Shim%2C+Byonghyo&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=52551&rft.epage=52564&rft_id=info:doi/10.1109%2FACCESS.2022.3164897&rft.externalDocID=9749276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon