Healthcare Techniques Through Deep Learning: Issues, Challenges and Opportunities

In artificial intelligence, deep learning (DL) is a process that replicates the working mechanism of the human brain in data processing, and it also creates patterns for decision making. Deep learning or neural networks have been deployed in several fields, such as computer vision, natural language...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 9; pp. 98523 - 98541
Main Authors: Nisar, Dur-E-Maknoon, Amin, Rashid, Shah, Noor-Ul-Huda, Ghamdi, Mohammed A. Al, Almotiri, Sultan H., Alruily, Meshrif
Format: Journal Article
Language:English
Published: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In artificial intelligence, deep learning (DL) is a process that replicates the working mechanism of the human brain in data processing, and it also creates patterns for decision making. Deep learning or neural networks have been deployed in several fields, such as computer vision, natural language processing, and speech recognition. It has been used in many healthcare applications for the diagnosis and treatment of many chronic diseases. These algorithms have the power to avoid outbreaks of illness, recognize and diagnose illnesses, minimize running expenses for hospital management and patients. This paper discusses the deep learning methods used in different healthcare fields, i.e., identifying depression, heart diseases, physiological signals, lymph node metastases from breast cancer, etc. These diseases are categorized into the central nervous system, cardiovascular system, and respiratory system. For each category, after summarizing the studies, comparison tables are laid down using some important factors. Different applications, tools, methods, and data sets used for DL models are leveraged. Finally, research opportunities and challenges being faced for deep learning models are discussed.
AbstractList In artificial intelligence, deep learning (DL) is a process that replicates the working mechanism of the human brain in data processing, and it also creates patterns for decision making. Deep learning or neural networks have been deployed in several fields, such as computer vision, natural language processing, and speech recognition. It has been used in many healthcare applications for the diagnosis and treatment of many chronic diseases. These algorithms have the power to avoid outbreaks of illness, recognize and diagnose illnesses, minimize running expenses for hospital management and patients. This paper discusses the deep learning methods used in different healthcare fields, i.e., identifying depression, heart diseases, physiological signals, lymph node metastases from breast cancer, etc. These diseases are categorized into the central nervous system, cardiovascular system, and respiratory system. For each category, after summarizing the studies, comparison tables are laid down using some important factors. Different applications, tools, methods, and data sets used for DL models are leveraged. Finally, research opportunities and challenges being faced for deep learning models are discussed.
Author Alruily, Meshrif
Nisar, Dur-E-Maknoon
Amin, Rashid
Ghamdi, Mohammed A. Al
Shah, Noor-Ul-Huda
Almotiri, Sultan H.
Author_xml – sequence: 1
  givenname: Dur-E-Maknoon
  orcidid: 0000-0002-1546-0574
  surname: Nisar
  fullname: Nisar, Dur-E-Maknoon
  organization: Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan
– sequence: 2
  givenname: Rashid
  orcidid: 0000-0002-3143-689X
  surname: Amin
  fullname: Amin, Rashid
  email: rashid4nw@gmail.com
  organization: Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan
– sequence: 3
  givenname: Noor-Ul-Huda
  orcidid: 0000-0003-3356-5860
  surname: Shah
  fullname: Shah, Noor-Ul-Huda
  organization: Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan
– sequence: 4
  givenname: Mohammed A. Al
  orcidid: 0000-0002-5993-5236
  surname: Ghamdi
  fullname: Ghamdi, Mohammed A. Al
  organization: Computer Science Department, Umm Al-Qura University, Mecca, Saudi Arabia
– sequence: 5
  givenname: Sultan H.
  orcidid: 0000-0003-1594-9115
  surname: Almotiri
  fullname: Almotiri, Sultan H.
  organization: Computer Science Department, Umm Al-Qura University, Mecca, Saudi Arabia
– sequence: 6
  givenname: Meshrif
  orcidid: 0000-0002-9479-1848
  surname: Alruily
  fullname: Alruily, Meshrif
  organization: Department of Computer Science, Jouf University, Sakaka, Saudi Arabia
BookMark eNqFUUtr3DAQFiGFpGl-QS6GXrsbyXpZvQU3j4WFULI9i1l5vNbiSq6sPfTf145DKL10LhpG32Ok7yM5DzEgITeMrhmj5vauru9fXtYlLdmaUyM5K8_IZcmUWXHJ1flf_QW5HscjnaqaRlJfku9PCH3uHCQsdui64H-dcCx2XYqnQ1d8QxyKLUIKPhy-FptxnG6_FHUHfY_hMCEhNMXzMMSUT8Fnj-Mn8qGFfsTrt_OK_Hi439VPq-3z46a-266coFVeVUYpMFJw3FOuJCgmNDijQQpV8Wpv2mk_Z1ALZ9qGATda8XYvhCtNC07wK7JZdJsIRzsk_xPSbxvB29dBTAcLKXvXoxUUpJ71y9YIKCmg5rrZt8rJqmnaWevzojWkOL8_22M8pTCtb0spp--jrJpRfEG5FMcxYfvuyqido7BLFHaOwr5FMbHMPyznM2QfQ07g-_9wbxauR8R3NyO0olzzP0Erl8w
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11831_025_10315_7
crossref_primary_10_1016_j_eswa_2025_127515
crossref_primary_10_1016_j_neuroimage_2023_120495
crossref_primary_10_1016_j_dcan_2025_04_001
crossref_primary_10_32604_cmc_2023_042590
crossref_primary_10_3390_electronics11244178
crossref_primary_10_1016_j_dajour_2023_100280
crossref_primary_10_1155_2022_4239536
crossref_primary_10_4103_tp_tp_12_23
crossref_primary_10_1109_ACCESS_2023_3309671
crossref_primary_10_3389_frai_2024_1434022
crossref_primary_10_3390_app142210144
crossref_primary_10_3390_diagnostics13162659
crossref_primary_10_1016_j_jneumeth_2024_110210
crossref_primary_10_1109_TEM_2022_3189734
crossref_primary_10_1109_ACCESS_2024_3430109
crossref_primary_10_1016_j_heliyon_2023_e16812
crossref_primary_10_1016_j_neuri_2025_100207
crossref_primary_10_1109_ACCESS_2022_3163384
crossref_primary_10_1007_s11042_023_17530_z
crossref_primary_10_3390_electronics11071111
crossref_primary_10_1007_s42979_024_03381_4
crossref_primary_10_1038_s41598_023_34629_3
crossref_primary_10_1016_j_apacoust_2024_110299
crossref_primary_10_1088_1741_2552_adf6e6
crossref_primary_10_1109_ACCESS_2024_3468163
crossref_primary_10_3390_s23104693
crossref_primary_10_32604_cmc_2025_061998
crossref_primary_10_1155_bmri_9554590
crossref_primary_10_1155_int_8546245
crossref_primary_10_1186_s12955_025_02365_z
Cites_doi 10.1109/TBME.2016.2559800
10.1016/j.alit.2019.04.010
10.1007/978-981-15-2740-1_9
10.1109/ISCAS.2010.5537907
10.1093/brain/awaa137
10.1016/j.mri.2019.07.003
10.1016/j.jbi.2020.103648
10.1109/JPROC.2015.2494198
10.5220/0007366904910500
10.1007/978-3-319-47157-0_21
10.1371/journal.pone.0204155
10.1109/ICASSP.2013.6639344
10.1016/j.survophthal.2018.09.002
10.1080/02813432.2018.1523996
10.2200/S00187ED1V01Y200904BME031
10.1055/s-0040-1714379
10.1109/TASLP.2014.2304637
10.3390/s19040920
10.1016/j.cmpb.2018.01.025
10.1109/TBME.2016.2573285
10.1371/journal.pcbi.1006633
10.4236/jilsa.2017.91001
10.1038/s41598-020-74399-w
10.1016/B978-0-12-818148-5.00013-8
10.1007/s10916-019-1428-9
10.1080/02770903.2020.1742352
10.1109/BIBM.2014.6999219
10.1145/3065386
10.3389/fninf.2019.00033
10.1155/2017/8314740
10.1088/1742-6596/801/1/012039
10.3390/ijerph16111876
10.1016/j.eswa.2020.113918
10.1371/journal.pmed.1002686
10.1007/978-3-319-98204-5_18
10.1007/s00521-018-03980-2
10.1109/ICASSP.2013.6639345
10.2337/db14-1370
10.1007/s11571-013-9247-z
10.3390/bios8040101
10.4236/jcc.2018.61003
10.1016/j.jocs.2018.12.003
10.1007/s00330-020-07044-9
10.1162/neco.1997.9.8.1735
10.1016/j.jnca.2018.12.012
10.1007/978-3-642-21111-9_52
10.1016/j.artmed.2017.06.004
10.1038/s41591-018-0268-3
10.1109/TPAMI.2002.1017616
10.1117/12.2292188
10.1145/3281548.3281558
10.1371/journal.pone.0230111
10.1016/j.bios.2020.112799
10.1109/JBHI.2020.3027443
10.1117/1.JMI.7.1.012705
10.1038/s41591-018-0320-3
10.1007/s10278-018-00172-1
10.1109/JBHI.2015.2450362
10.1109/ACCESS.2017.2775180
10.1162/neco.1989.1.2.270
10.1162/neco.2006.18.7.1527
10.1109/TMI.2016.2553401
10.1378/chest.129.1_suppl.95S
10.1016/j.eswa.2019.06.038
10.1155/2015/287604
10.1002/jmri.27288
10.1109/ICPR.2016.7900010
10.1016/j.cogsys.2018.12.007
10.1016/j.ins.2017.04.012
10.1109/JBHI.2016.2636665
10.1016/B978-0-12-816176-0.00011-9
10.1109/ICASSP.2012.6289082
10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A4054
10.1016/j.fcij.2017.12.001
10.1016/j.expneurol.2020.113526
10.1007/978-3-319-50478-0_6
10.1038/s41467-019-13163-9
10.3390/rs12101685
10.1113/jphysiol.1962.sp006837
10.1016/j.compbiomed.2020.103801
10.1109/ACCESS.2019.2902252
10.1109/ISBI.2018.8363572
10.1186/s40537-019-0190-7
10.1007/978-3-319-70772-3_20
10.1016/j.annemergmed.2015.03.032
10.1007/s11042-019-7174-7
10.21437/Interspeech.2016-879
10.1109/ICAwST.2017.8256481
10.1007/s00521-019-04069-0
10.3174/ajnr.A5667
10.1109/T-C.1972.223572
10.1093/bib/bbx044
10.1109/TIM.2020.3033072
10.1002/mp.13047
10.1109/CRV.2015.25
10.2139/ssrn.3466968
10.1016/j.ymssp.2019.106587
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3095312
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals - NZ
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 98541
ExternalDocumentID oai_doaj_org_article_40a57147a2f94a20ae737dbf6c58ddf4
10_1109_ACCESS_2021_3095312
9476037
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-8966a9543eb0365a6147ac97a546838b9f957c9e74c9fd1a39763fb44c29fac43
IEDL.DBID RIE
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673272800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:46:21 EDT 2025
Sun Nov 30 05:02:27 EST 2025
Sat Nov 29 06:12:25 EST 2025
Tue Nov 18 22:26:30 EST 2025
Wed Aug 27 02:40:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-8966a9543eb0365a6147ac97a546838b9f957c9e74c9fd1a39763fb44c29fac43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3143-689X
0000-0003-1594-9115
0000-0003-3356-5860
0000-0002-1546-0574
0000-0002-5993-5236
0000-0002-9479-1848
OpenAccessLink https://ieeexplore.ieee.org/document/9476037
PQID 2552160184
PQPubID 4845423
PageCount 19
ParticipantIDs crossref_primary_10_1109_ACCESS_2021_3095312
proquest_journals_2552160184
crossref_citationtrail_10_1109_ACCESS_2021_3095312
doaj_primary_oai_doaj_org_article_40a57147a2f94a20ae737dbf6c58ddf4
ieee_primary_9476037
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref53
ref52
ref55
ref54
paragliola (ref68) 2021; 113
ref50
rajpurkar (ref93) 2017
ref46
shen (ref85) 2015
ref48
ref47
ref42
ref44
xi (ref74) 2018
ref49
venugopalan (ref40) 2021; 11
ref8
ref7
ref9
ref4
ref3
ref6
basaia (ref33) 2019; 21
ref5
xu (ref17) 2020
ref100
ref101
ref35
ref34
ref37
ref36
aouedi (ref22) 2018
ref31
ref30
ref39
ref38
ref24
ref23
ref26
ref25
ref20
p?awiak (ref60) 2020; 32
ref28
ref29
lemoyne (ref41) 2018
sivaranjini (ref45) 2019; 79
ref13
chang (ref51) 2018; 39
carreira-perpinan (ref10) 2005; 10
ref12
ref15
porcel (ref82) 2015; 7
ref14
ref97
ref96
ref99
ref11
ref98
cheriyath (ref104) 2010; 2
rahman (ref27) 2021
ref16
oh (ref43) 2018; 32
ref18
sikdar (ref2) 2020
attia (ref116) 2018; 138
ref92
ref94
ref91
ref90
ref89
ref86
ref88
ref87
islam (ref32) 2017
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref107
ref75
ref77
ref102
ref76
ref103
warrick (ref58) 2017
ref1
de onis (ref21) 2015
rajpurkar (ref95) 2017
ref71
ref111
ref70
ref112
ref73
ref72
ullah (ref61) 2020; 12
ref110
andreotti (ref59) 2017
ref67
ref117
ref69
ref64
ref115
ref63
ref66
ref113
ref65
ref114
gacek (ref105) 2011
wu (ref106) 2015
ref62
goodfellow (ref19) 2016; 1
References_xml – ident: ref109
  doi: 10.1109/TBME.2016.2559800
– ident: ref44
  doi: 10.1016/j.alit.2019.04.010
– start-page: 113
  year: 2020
  ident: ref2
  article-title: Advancements of healthcare technologies: Paradigm towards smart healthcare systems
  publication-title: Recent Trends in Image and Signal Processing in Computer Vision
  doi: 10.1007/978-981-15-2740-1_9
– ident: ref103
  doi: 10.1109/ISCAS.2010.5537907
– ident: ref39
  doi: 10.1093/brain/awaa137
– ident: ref36
  doi: 10.1016/j.mri.2019.07.003
– volume: 113
  year: 2021
  ident: ref68
  article-title: An hybrid ECG-based deep network for the early identification of high-risk to major cardiovascular events for hypertension patients
  publication-title: J Biomed Informat
  doi: 10.1016/j.jbi.2020.103648
– ident: ref98
  doi: 10.1109/JPROC.2015.2494198
– ident: ref69
  doi: 10.5220/0007366904910500
– ident: ref5
  doi: 10.1007/978-3-319-47157-0_21
– ident: ref80
  doi: 10.1371/journal.pone.0204155
– ident: ref88
  doi: 10.1109/ICASSP.2013.6639344
– ident: ref7
  doi: 10.1016/j.survophthal.2018.09.002
– ident: ref96
  doi: 10.1080/02813432.2018.1523996
– ident: ref110
  doi: 10.2200/S00187ED1V01Y200904BME031
– volume: 7
  start-page: 961
  year: 2015
  ident: ref82
  article-title: Advances and controversies in pleural diseases
  publication-title: Thoracic Diseases
– ident: ref71
  doi: 10.1055/s-0040-1714379
– ident: ref90
  doi: 10.1109/TASLP.2014.2304637
– ident: ref50
  doi: 10.3390/s19040920
– ident: ref113
  doi: 10.1016/j.cmpb.2018.01.025
– ident: ref102
  doi: 10.1109/TBME.2016.2573285
– ident: ref112
  doi: 10.1371/journal.pcbi.1006633
– ident: ref12
  doi: 10.4236/jilsa.2017.91001
– start-page: 96
  year: 2018
  ident: ref22
  article-title: An ensemble of deep auto-encoders for healthcare monitoring
  publication-title: Proc Int Conf Hybrid Intell Syst
– start-page: 1
  year: 2021
  ident: ref27
  article-title: Bioinformatics and machine learning methodologies to identify the effects of central nervous system disorders on glioblastoma progression
  publication-title: Briefings Bioinf
– volume: 32
  start-page: 1
  year: 2018
  ident: ref43
  article-title: A deep learning approach for Parkinson's disease diagnosis from EEG signals
  publication-title: Neural Comput Appl
– volume: 11
  start-page: 1
  year: 2021
  ident: ref40
  article-title: Multimodal deep learning models for early detection of Alzheimer's disease stage
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-74399-w
– ident: ref15
  doi: 10.1016/B978-0-12-818148-5.00013-8
– start-page: 542
  year: 2015
  ident: ref106
  article-title: Image recognition based on deep learning
  publication-title: Proc Chin Automat Congr (CAC)
– ident: ref34
  doi: 10.1007/s10916-019-1428-9
– ident: ref92
  doi: 10.1080/02770903.2020.1742352
– ident: ref66
  doi: 10.1109/BIBM.2014.6999219
– ident: ref86
  doi: 10.1145/3065386
– ident: ref31
  doi: 10.3389/fninf.2019.00033
– ident: ref84
  doi: 10.1155/2017/8314740
– ident: ref64
  doi: 10.1088/1742-6596/801/1/012039
– ident: ref30
  doi: 10.3390/ijerph16111876
– ident: ref54
  doi: 10.1016/j.eswa.2020.113918
– ident: ref73
  doi: 10.1371/journal.pmed.1002686
– ident: ref72
  doi: 10.1007/978-3-319-98204-5_18
– volume: 32
  start-page: 11137
  year: 2020
  ident: ref60
  article-title: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-03980-2
– ident: ref89
  doi: 10.1109/ICASSP.2013.6639345
– ident: ref108
  doi: 10.2337/db14-1370
– ident: ref26
  doi: 10.1007/s11571-013-9247-z
– volume: 2
  start-page: 201
  year: 2010
  ident: ref104
  article-title: High total bilirubin as a protective factor for diabetes mellitus: An analysis of NHANES data from 1999-2006
  publication-title: Clinical Medicine & Research
– ident: ref65
  doi: 10.3390/bios8040101
– ident: ref78
  doi: 10.4236/jcc.2018.61003
– ident: ref46
  doi: 10.1016/j.jocs.2018.12.003
– year: 2017
  ident: ref95
  article-title: Cardiologist-level arrhythmia detection with convolutional neural networks
  publication-title: arXiv 1707 01836
– ident: ref94
  doi: 10.1007/s00330-020-07044-9
– year: 2017
  ident: ref93
  article-title: CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning
  publication-title: arXiv 1711 05225
– ident: ref14
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref53
  doi: 10.1016/j.jnca.2018.12.012
– ident: ref9
  doi: 10.1007/978-3-642-21111-9_52
– ident: ref55
  doi: 10.1016/j.artmed.2017.06.004
– volume: 79
  start-page: 1
  year: 2019
  ident: ref45
  article-title: Deep learning based diagnosis of Parkinson 's disease using convolutional neural network
  publication-title: Multimedia Tools Appl
– ident: ref56
  doi: 10.1038/s41591-018-0268-3
– ident: ref8
  doi: 10.1109/TPAMI.2002.1017616
– ident: ref79
  doi: 10.1117/12.2292188
– start-page: 19
  year: 2018
  ident: ref74
  article-title: A deep residual network integrating spatial-temporal properties to predict influenza trends at an intra-urban scale
  publication-title: Proc 2nd ACM SIGSPATIAL Int Workshop AI Geograph Knowl Discovery
  doi: 10.1145/3281548.3281558
– ident: ref67
  doi: 10.1371/journal.pone.0230111
– ident: ref91
  doi: 10.1016/j.bios.2020.112799
– start-page: 1
  year: 2017
  ident: ref58
  article-title: Cardiac arrhythmia detection from ECG combining convolutional and long short-term memory networks
  publication-title: Proc Comput Cardiol Conf (CinC)
– ident: ref18
  doi: 10.1109/JBHI.2020.3027443
– ident: ref97
  doi: 10.1117/1.JMI.7.1.012705
– ident: ref4
  doi: 10.1038/s41591-018-0320-3
– ident: ref29
  doi: 10.1007/s10278-018-00172-1
– ident: ref101
  doi: 10.1109/JBHI.2015.2450362
– start-page: 42
  year: 2020
  ident: ref17
  article-title: DeepHealth: Deep representation learning with autoencoders for healthcare prediction
  publication-title: Proc IEEE Symp Ser Comput Intell (SSCI)
– ident: ref1
  doi: 10.1109/ACCESS.2017.2775180
– ident: ref13
  doi: 10.1162/neco.1989.1.2.270
– ident: ref24
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref100
  doi: 10.1109/TMI.2016.2553401
– ident: ref76
  doi: 10.1378/chest.129.1_suppl.95S
– ident: ref37
  doi: 10.1016/j.eswa.2019.06.038
– ident: ref75
  doi: 10.1155/2015/287604
– ident: ref52
  doi: 10.1002/jmri.27288
– start-page: 1
  year: 2017
  ident: ref59
  article-title: Comparing feature based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG
  publication-title: Proc Comput Cardiol Conf (CinC)
– ident: ref63
  doi: 10.1109/ICPR.2016.7900010
– volume: 21
  year: 2019
  ident: ref33
  article-title: Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks
  publication-title: Clin Neuro
– ident: ref48
  doi: 10.1016/j.cogsys.2018.12.007
– ident: ref57
  doi: 10.1016/j.ins.2017.04.012
– volume: 10
  start-page: 33
  year: 2005
  ident: ref10
  article-title: On contrastive divergence learning
  publication-title: Proc AISTATS
– ident: ref6
  doi: 10.1109/JBHI.2016.2636665
– ident: ref16
  doi: 10.1016/B978-0-12-816176-0.00011-9
– start-page: 19
  year: 2015
  ident: ref21
  article-title: World health organization reference curves
  publication-title: The ECOG's eBook on Child and Adolescent Obesity
– ident: ref23
  doi: 10.1109/ICASSP.2012.6289082
– start-page: 588
  year: 2015
  ident: ref85
  article-title: Multi-scale convolutional neural networks for lung nodule classification
  publication-title: Proc Int Conf Inf Process Med Imag
– ident: ref70
  doi: 10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A4054
– ident: ref25
  doi: 10.1016/j.fcij.2017.12.001
– ident: ref117
  doi: 10.1016/j.expneurol.2020.113526
– ident: ref99
  doi: 10.1007/978-3-319-50478-0_6
– ident: ref35
  doi: 10.1038/s41467-019-13163-9
– volume: 12
  start-page: 1685
  year: 2020
  ident: ref61
  article-title: Classification of arrhythmia by using deep learning with 2-D ECG spectral image representation
  publication-title: Remote Sens
  doi: 10.3390/rs12101685
– ident: ref20
  doi: 10.1113/jphysiol.1962.sp006837
– ident: ref115
  doi: 10.1016/j.compbiomed.2020.103801
– ident: ref49
  doi: 10.1109/ACCESS.2019.2902252
– year: 2018
  ident: ref41
  publication-title: Wearable and Wireless Systems for Healthcare I Gait and Reflex Response Quantification
– ident: ref77
  doi: 10.1109/ISBI.2018.8363572
– ident: ref38
  doi: 10.1186/s40537-019-0190-7
– start-page: 213
  year: 2017
  ident: ref32
  article-title: A novel deep learning based multi-class classification method for Alzheimer's disease detection using brain MRI data
  publication-title: Proc Int Conf Brain Informat
  doi: 10.1007/978-3-319-70772-3_20
– ident: ref3
  doi: 10.1016/j.annemergmed.2015.03.032
– ident: ref47
  doi: 10.1007/s11042-019-7174-7
– ident: ref87
  doi: 10.21437/Interspeech.2016-879
– ident: ref28
  doi: 10.1109/ICAwST.2017.8256481
– ident: ref42
  doi: 10.1007/s00521-019-04069-0
– volume: 39
  start-page: 1201
  year: 2018
  ident: ref51
  article-title: Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas
  publication-title: Amer J Neuroradiol
  doi: 10.3174/ajnr.A5667
– year: 2011
  ident: ref105
  publication-title: ECG Signal Processing Classification and Interpretation A Comprehensive Framework of Computational Intelligence
– ident: ref107
  doi: 10.1109/T-C.1972.223572
– volume: 138
  start-page: 15871a
  year: 2018
  ident: ref116
  article-title: Electrocardiographic screening for atrial fibrillation while in sinus rhythm using deep learning
  publication-title: Circulation
– ident: ref114
  doi: 10.1093/bib/bbx044
– ident: ref62
  doi: 10.1109/TIM.2020.3033072
– ident: ref111
  doi: 10.1002/mp.13047
– ident: ref83
  doi: 10.1109/CRV.2015.25
– ident: ref81
  doi: 10.2139/ssrn.3466968
– ident: ref11
  doi: 10.1016/j.ymssp.2019.106587
– volume: 1
  year: 2016
  ident: ref19
  publication-title: Deep Learning
SSID ssj0000816957
Score 2.4740987
Snippet In artificial intelligence, deep learning (DL) is a process that replicates the working mechanism of the human brain in data processing, and it also creates...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 98523
SubjectTerms Algorithms
Artificial intelligence
Biological neural networks
Brain modeling
Cardiovascular system
Central nervous system
Computer vision
Data processing
Decision making
Deep learning
Diseases
Health care
Heart diseases
Hidden Markov models
Illnesses
Machine learning
Medical services
Natural language processing
nervous system
Neural networks
Respiratory system
Solid modeling
Speech recognition
supervised and unsupervised learning
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NS8MwGMaDiAc9iJ84v8jBo9U0fdsk3mZ17CBTYYK3kKaJCFLHNv37TZp0TAS9eC3pR568Td43hN-D0JlLgZTLVFVidaoSKAqRCBc2CaE1qTmvrQh0_Ts2GvHnZ_GwZPXlz4QFPHAQ7hKIylkKTFErQFGiDMtYXdlC57yubUsCJUwsFVPtHMzTQuQsYoZSIi77Zel65ApCml5kHrKW0m9LUUvsjxYrP-bldrEZbKHNmCXifvi6bbRimh20scQO3EWPw8XJLTzuQKwzPA6-O_jGmAmO8NSXKxxM9s5x2XmnzLBqanw_8en3R9NiVffQ0-B2XA6T6I-QaCB8nnBXqiiRQ2Yqtw7lqvAyacFUDgXPeCWc0EwLw0ALW6fKpx6ZrQA0FVZpyPbRavPemAOEXVEHuS4MQFWBJ7hYojNNmK6AVoSrHqKdVFJHeLj3sHiTbRFBhAz6Sq-vjPr20PnipklgZ_ze_NqPwaKpB1-3F1w4yBgO8q9w6KFdP4KLhwhgBclYDx13IyrjTzqTLkZp6gpSDof_8eojtO67E_ZnjtHqfPphTtCa_py_zqanbXx-Ac9U5Xc
  priority: 102
  providerName: Directory of Open Access Journals
Title Healthcare Techniques Through Deep Learning: Issues, Challenges and Opportunities
URI https://ieeexplore.ieee.org/document/9476037
https://www.proquest.com/docview/2552160184
https://doaj.org/article/40a57147a2f94a20ae737dbf6c58ddf4
Volume 9
WOSCitedRecordID wos000673272800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6S0EN66Gtbuuk26NDjOivLY0vqLd0m5NBuW9hAbkLWIxSKs2R3c8xvjyRrTUtLoBdjjGQkfyPPjB7fB_AhhEA6RKq68KbUBTaNLGQwm4IyS60Q1sueXf8LXyzE1ZX8vgfT4SyMcy5tPnMn8Tat5dsbs41TZTOJvKEV34d9zpv-rNYwnxIFJGTNM7FQSeXsdD4PfQgpICtPqkirVrI_nE_i6M-iKn_9iZN7OX_-fw17Ac9yGElOe9xfwp7rXsHT38gFR_DjYtjaRZY7ptY1WfbCPOSzcyuS2VWvP5JehW9K5jtxlTXRnSXfVjE-33aJd_U1XJ6fLecXRRZQKAxSsSlEyGW0rLFybXBUtQ6umGsjua6xEZVoZUCCG-k4GultqWNsUvkW0TDptcHqDRx0N517CyRkfVibxiG2LUaKF09NZSg3LbKWCj0GtvuyymR28Shy8UulLINK1cOhIhwqwzGG6VBp1ZNrPF78U4RsKBqZsdODgIXKA00h1TWP_WReomZUO15x2_rG1MJaj2MYRfyGl2ToxjDZGYDKo3itghGzMmSsAo_-XesdHMYG9lMyEzjY3G7de3hi7jY_17fHKb8P16_3Z8fJWB8AKAXkRw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4qA2njAdhNKwzwwx6bzXFOYpu3UaiK6DqQirQ3y_FlQkJZtbb7_diJG4FASLxFkR3Z-Y5zLrG_D-AshEA6RKo68ybXGVaVzGQwm4wyS60Q1suOXX_G53NxcyO_DGDUn4VxzrWbz9x5vGz_5ds7s4mlsguJvKIFfwSPS0RGu9NafUUlSkjIkidqoZzKi8vxOMwiJIEsPy8isVrOfnM_LUt_klX541vcOpjJ8_8b2gt4lgJJctkhvw8D1xzA01_oBQ_h67Tf3EUWW67WFVl00jzkg3NLkvhVb9-RTodvRMZbeZUV0Y0l18sYoW-alnn1CL5NPi7G0yxJKGQGqVhnImQzWpZYuDq4qlIHZ8y1kVyXWIlC1DJgwY10HI30NtcxOil8jWiY9NpgcQw7zV3jToCEvA9LUznEusZI8uKpKQzlpkZWU6GHwLZvVpnELx5lLn6oNs-gUnVwqAiHSnAMYdR3Wnb0Gv9u_j5C1jeN3NjtjYCFSktNIdUlj_NkXqJmVDtecFv7ypTCWo9DOIz49Q9J0A3hdGsAKq3jlQpmzPKQswp8-fdeb2F3uriaqdmn-edXsBcH2xVoTmFnfb9xr-GJeVh_X92_aY31J2qO5Wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Healthcare+Techniques+Through+Deep+Learning%3A+Issues%2C+Challenges+and+Opportunities&rft.jtitle=IEEE+access&rft.au=Nisar%2C+Dur-E-Maknoon&rft.au=Amin%2C+Rashid&rft.au=Shah%2C+Noor-Ul-Huda&rft.au=Ghamdi%2C+Mohammed+A.+Al&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=98523&rft.epage=98541&rft_id=info:doi/10.1109%2FACCESS.2021.3095312&rft.externalDocID=9476037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon