Healthcare Techniques Through Deep Learning: Issues, Challenges and Opportunities
In artificial intelligence, deep learning (DL) is a process that replicates the working mechanism of the human brain in data processing, and it also creates patterns for decision making. Deep learning or neural networks have been deployed in several fields, such as computer vision, natural language...
Uloženo v:
| Vydáno v: | IEEE access Ročník 9; s. 98523 - 98541 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In artificial intelligence, deep learning (DL) is a process that replicates the working mechanism of the human brain in data processing, and it also creates patterns for decision making. Deep learning or neural networks have been deployed in several fields, such as computer vision, natural language processing, and speech recognition. It has been used in many healthcare applications for the diagnosis and treatment of many chronic diseases. These algorithms have the power to avoid outbreaks of illness, recognize and diagnose illnesses, minimize running expenses for hospital management and patients. This paper discusses the deep learning methods used in different healthcare fields, i.e., identifying depression, heart diseases, physiological signals, lymph node metastases from breast cancer, etc. These diseases are categorized into the central nervous system, cardiovascular system, and respiratory system. For each category, after summarizing the studies, comparison tables are laid down using some important factors. Different applications, tools, methods, and data sets used for DL models are leveraged. Finally, research opportunities and challenges being faced for deep learning models are discussed. |
|---|---|
| AbstractList | In artificial intelligence, deep learning (DL) is a process that replicates the working mechanism of the human brain in data processing, and it also creates patterns for decision making. Deep learning or neural networks have been deployed in several fields, such as computer vision, natural language processing, and speech recognition. It has been used in many healthcare applications for the diagnosis and treatment of many chronic diseases. These algorithms have the power to avoid outbreaks of illness, recognize and diagnose illnesses, minimize running expenses for hospital management and patients. This paper discusses the deep learning methods used in different healthcare fields, i.e., identifying depression, heart diseases, physiological signals, lymph node metastases from breast cancer, etc. These diseases are categorized into the central nervous system, cardiovascular system, and respiratory system. For each category, after summarizing the studies, comparison tables are laid down using some important factors. Different applications, tools, methods, and data sets used for DL models are leveraged. Finally, research opportunities and challenges being faced for deep learning models are discussed. |
| Author | Alruily, Meshrif Nisar, Dur-E-Maknoon Amin, Rashid Ghamdi, Mohammed A. Al Shah, Noor-Ul-Huda Almotiri, Sultan H. |
| Author_xml | – sequence: 1 givenname: Dur-E-Maknoon orcidid: 0000-0002-1546-0574 surname: Nisar fullname: Nisar, Dur-E-Maknoon organization: Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan – sequence: 2 givenname: Rashid orcidid: 0000-0002-3143-689X surname: Amin fullname: Amin, Rashid email: rashid4nw@gmail.com organization: Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan – sequence: 3 givenname: Noor-Ul-Huda orcidid: 0000-0003-3356-5860 surname: Shah fullname: Shah, Noor-Ul-Huda organization: Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan – sequence: 4 givenname: Mohammed A. Al orcidid: 0000-0002-5993-5236 surname: Ghamdi fullname: Ghamdi, Mohammed A. Al organization: Computer Science Department, Umm Al-Qura University, Mecca, Saudi Arabia – sequence: 5 givenname: Sultan H. orcidid: 0000-0003-1594-9115 surname: Almotiri fullname: Almotiri, Sultan H. organization: Computer Science Department, Umm Al-Qura University, Mecca, Saudi Arabia – sequence: 6 givenname: Meshrif orcidid: 0000-0002-9479-1848 surname: Alruily fullname: Alruily, Meshrif organization: Department of Computer Science, Jouf University, Sakaka, Saudi Arabia |
| BookMark | eNqFUUtr3DAQFiGFpGl-QS6GXrsbyXpZvQU3j4WFULI9i1l5vNbiSq6sPfTf145DKL10LhpG32Ok7yM5DzEgITeMrhmj5vauru9fXtYlLdmaUyM5K8_IZcmUWXHJ1flf_QW5HscjnaqaRlJfku9PCH3uHCQsdui64H-dcCx2XYqnQ1d8QxyKLUIKPhy-FptxnG6_FHUHfY_hMCEhNMXzMMSUT8Fnj-Mn8qGFfsTrt_OK_Hi439VPq-3z46a-266coFVeVUYpMFJw3FOuJCgmNDijQQpV8Wpv2mk_Z1ALZ9qGATda8XYvhCtNC07wK7JZdJsIRzsk_xPSbxvB29dBTAcLKXvXoxUUpJ71y9YIKCmg5rrZt8rJqmnaWevzojWkOL8_22M8pTCtb0spp--jrJpRfEG5FMcxYfvuyqido7BLFHaOwr5FMbHMPyznM2QfQ07g-_9wbxauR8R3NyO0olzzP0Erl8w |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s11831_025_10315_7 crossref_primary_10_1016_j_eswa_2025_127515 crossref_primary_10_1016_j_neuroimage_2023_120495 crossref_primary_10_1016_j_dcan_2025_04_001 crossref_primary_10_32604_cmc_2023_042590 crossref_primary_10_3390_electronics11244178 crossref_primary_10_1016_j_dajour_2023_100280 crossref_primary_10_1155_2022_4239536 crossref_primary_10_4103_tp_tp_12_23 crossref_primary_10_1109_ACCESS_2023_3309671 crossref_primary_10_3389_frai_2024_1434022 crossref_primary_10_3390_app142210144 crossref_primary_10_3390_diagnostics13162659 crossref_primary_10_1016_j_jneumeth_2024_110210 crossref_primary_10_1109_TEM_2022_3189734 crossref_primary_10_1109_ACCESS_2024_3430109 crossref_primary_10_1016_j_heliyon_2023_e16812 crossref_primary_10_1016_j_neuri_2025_100207 crossref_primary_10_1109_ACCESS_2022_3163384 crossref_primary_10_1007_s11042_023_17530_z crossref_primary_10_3390_electronics11071111 crossref_primary_10_1007_s42979_024_03381_4 crossref_primary_10_1038_s41598_023_34629_3 crossref_primary_10_1016_j_apacoust_2024_110299 crossref_primary_10_1088_1741_2552_adf6e6 crossref_primary_10_1109_ACCESS_2024_3468163 crossref_primary_10_3390_s23104693 crossref_primary_10_32604_cmc_2025_061998 crossref_primary_10_1155_bmri_9554590 crossref_primary_10_1155_int_8546245 crossref_primary_10_1186_s12955_025_02365_z |
| Cites_doi | 10.1109/TBME.2016.2559800 10.1016/j.alit.2019.04.010 10.1007/978-981-15-2740-1_9 10.1109/ISCAS.2010.5537907 10.1093/brain/awaa137 10.1016/j.mri.2019.07.003 10.1016/j.jbi.2020.103648 10.1109/JPROC.2015.2494198 10.5220/0007366904910500 10.1007/978-3-319-47157-0_21 10.1371/journal.pone.0204155 10.1109/ICASSP.2013.6639344 10.1016/j.survophthal.2018.09.002 10.1080/02813432.2018.1523996 10.2200/S00187ED1V01Y200904BME031 10.1055/s-0040-1714379 10.1109/TASLP.2014.2304637 10.3390/s19040920 10.1016/j.cmpb.2018.01.025 10.1109/TBME.2016.2573285 10.1371/journal.pcbi.1006633 10.4236/jilsa.2017.91001 10.1038/s41598-020-74399-w 10.1016/B978-0-12-818148-5.00013-8 10.1007/s10916-019-1428-9 10.1080/02770903.2020.1742352 10.1109/BIBM.2014.6999219 10.1145/3065386 10.3389/fninf.2019.00033 10.1155/2017/8314740 10.1088/1742-6596/801/1/012039 10.3390/ijerph16111876 10.1016/j.eswa.2020.113918 10.1371/journal.pmed.1002686 10.1007/978-3-319-98204-5_18 10.1007/s00521-018-03980-2 10.1109/ICASSP.2013.6639345 10.2337/db14-1370 10.1007/s11571-013-9247-z 10.3390/bios8040101 10.4236/jcc.2018.61003 10.1016/j.jocs.2018.12.003 10.1007/s00330-020-07044-9 10.1162/neco.1997.9.8.1735 10.1016/j.jnca.2018.12.012 10.1007/978-3-642-21111-9_52 10.1016/j.artmed.2017.06.004 10.1038/s41591-018-0268-3 10.1109/TPAMI.2002.1017616 10.1117/12.2292188 10.1145/3281548.3281558 10.1371/journal.pone.0230111 10.1016/j.bios.2020.112799 10.1109/JBHI.2020.3027443 10.1117/1.JMI.7.1.012705 10.1038/s41591-018-0320-3 10.1007/s10278-018-00172-1 10.1109/JBHI.2015.2450362 10.1109/ACCESS.2017.2775180 10.1162/neco.1989.1.2.270 10.1162/neco.2006.18.7.1527 10.1109/TMI.2016.2553401 10.1378/chest.129.1_suppl.95S 10.1016/j.eswa.2019.06.038 10.1155/2015/287604 10.1002/jmri.27288 10.1109/ICPR.2016.7900010 10.1016/j.cogsys.2018.12.007 10.1016/j.ins.2017.04.012 10.1109/JBHI.2016.2636665 10.1016/B978-0-12-816176-0.00011-9 10.1109/ICASSP.2012.6289082 10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A4054 10.1016/j.fcij.2017.12.001 10.1016/j.expneurol.2020.113526 10.1007/978-3-319-50478-0_6 10.1038/s41467-019-13163-9 10.3390/rs12101685 10.1113/jphysiol.1962.sp006837 10.1016/j.compbiomed.2020.103801 10.1109/ACCESS.2019.2902252 10.1109/ISBI.2018.8363572 10.1186/s40537-019-0190-7 10.1007/978-3-319-70772-3_20 10.1016/j.annemergmed.2015.03.032 10.1007/s11042-019-7174-7 10.21437/Interspeech.2016-879 10.1109/ICAwST.2017.8256481 10.1007/s00521-019-04069-0 10.3174/ajnr.A5667 10.1109/T-C.1972.223572 10.1093/bib/bbx044 10.1109/TIM.2020.3033072 10.1002/mp.13047 10.1109/CRV.2015.25 10.2139/ssrn.3466968 10.1016/j.ymssp.2019.106587 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2021.3095312 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals - NZ |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals - NZ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 98541 |
| ExternalDocumentID | oai_doaj_org_article_40a57147a2f94a20ae737dbf6c58ddf4 10_1109_ACCESS_2021_3095312 9476037 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-8966a9543eb0365a6147ac97a546838b9f957c9e74c9fd1a39763fb44c29fac43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673272800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:46:21 EDT 2025 Sun Nov 30 05:02:27 EST 2025 Sat Nov 29 06:12:25 EST 2025 Tue Nov 18 22:26:30 EST 2025 Wed Aug 27 02:40:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-8966a9543eb0365a6147ac97a546838b9f957c9e74c9fd1a39763fb44c29fac43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3143-689X 0000-0003-1594-9115 0000-0003-3356-5860 0000-0002-1546-0574 0000-0002-5993-5236 0000-0002-9479-1848 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9476037 |
| PQID | 2552160184 |
| PQPubID | 4845423 |
| PageCount | 19 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2021_3095312 proquest_journals_2552160184 crossref_citationtrail_10_1109_ACCESS_2021_3095312 doaj_primary_oai_doaj_org_article_40a57147a2f94a20ae737dbf6c58ddf4 ieee_primary_9476037 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref53 ref52 ref55 ref54 paragliola (ref68) 2021; 113 ref50 rajpurkar (ref93) 2017 ref46 shen (ref85) 2015 ref48 ref47 ref42 ref44 xi (ref74) 2018 ref49 venugopalan (ref40) 2021; 11 ref8 ref7 ref9 ref4 ref3 ref6 basaia (ref33) 2019; 21 ref5 xu (ref17) 2020 ref100 ref101 ref35 ref34 ref37 ref36 aouedi (ref22) 2018 ref31 ref30 ref39 ref38 ref24 ref23 ref26 ref25 ref20 p?awiak (ref60) 2020; 32 ref28 ref29 lemoyne (ref41) 2018 sivaranjini (ref45) 2019; 79 ref13 chang (ref51) 2018; 39 carreira-perpinan (ref10) 2005; 10 ref12 ref15 porcel (ref82) 2015; 7 ref14 ref97 ref96 ref99 ref11 ref98 cheriyath (ref104) 2010; 2 rahman (ref27) 2021 ref16 oh (ref43) 2018; 32 ref18 sikdar (ref2) 2020 attia (ref116) 2018; 138 ref92 ref94 ref91 ref90 ref89 ref86 ref88 ref87 islam (ref32) 2017 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref107 ref75 ref77 ref102 ref76 ref103 warrick (ref58) 2017 ref1 de onis (ref21) 2015 rajpurkar (ref95) 2017 ref71 ref111 ref70 ref112 ref73 ref72 ullah (ref61) 2020; 12 ref110 andreotti (ref59) 2017 ref67 ref117 ref69 ref64 ref115 ref63 ref66 ref113 ref65 ref114 gacek (ref105) 2011 wu (ref106) 2015 ref62 goodfellow (ref19) 2016; 1 |
| References_xml | – ident: ref109 doi: 10.1109/TBME.2016.2559800 – ident: ref44 doi: 10.1016/j.alit.2019.04.010 – start-page: 113 year: 2020 ident: ref2 article-title: Advancements of healthcare technologies: Paradigm towards smart healthcare systems publication-title: Recent Trends in Image and Signal Processing in Computer Vision doi: 10.1007/978-981-15-2740-1_9 – ident: ref103 doi: 10.1109/ISCAS.2010.5537907 – ident: ref39 doi: 10.1093/brain/awaa137 – ident: ref36 doi: 10.1016/j.mri.2019.07.003 – volume: 113 year: 2021 ident: ref68 article-title: An hybrid ECG-based deep network for the early identification of high-risk to major cardiovascular events for hypertension patients publication-title: J Biomed Informat doi: 10.1016/j.jbi.2020.103648 – ident: ref98 doi: 10.1109/JPROC.2015.2494198 – ident: ref69 doi: 10.5220/0007366904910500 – ident: ref5 doi: 10.1007/978-3-319-47157-0_21 – ident: ref80 doi: 10.1371/journal.pone.0204155 – ident: ref88 doi: 10.1109/ICASSP.2013.6639344 – ident: ref7 doi: 10.1016/j.survophthal.2018.09.002 – ident: ref96 doi: 10.1080/02813432.2018.1523996 – ident: ref110 doi: 10.2200/S00187ED1V01Y200904BME031 – volume: 7 start-page: 961 year: 2015 ident: ref82 article-title: Advances and controversies in pleural diseases publication-title: Thoracic Diseases – ident: ref71 doi: 10.1055/s-0040-1714379 – ident: ref90 doi: 10.1109/TASLP.2014.2304637 – ident: ref50 doi: 10.3390/s19040920 – ident: ref113 doi: 10.1016/j.cmpb.2018.01.025 – ident: ref102 doi: 10.1109/TBME.2016.2573285 – ident: ref112 doi: 10.1371/journal.pcbi.1006633 – ident: ref12 doi: 10.4236/jilsa.2017.91001 – start-page: 96 year: 2018 ident: ref22 article-title: An ensemble of deep auto-encoders for healthcare monitoring publication-title: Proc Int Conf Hybrid Intell Syst – start-page: 1 year: 2021 ident: ref27 article-title: Bioinformatics and machine learning methodologies to identify the effects of central nervous system disorders on glioblastoma progression publication-title: Briefings Bioinf – volume: 32 start-page: 1 year: 2018 ident: ref43 article-title: A deep learning approach for Parkinson's disease diagnosis from EEG signals publication-title: Neural Comput Appl – volume: 11 start-page: 1 year: 2021 ident: ref40 article-title: Multimodal deep learning models for early detection of Alzheimer's disease stage publication-title: Sci Rep doi: 10.1038/s41598-020-74399-w – ident: ref15 doi: 10.1016/B978-0-12-818148-5.00013-8 – start-page: 542 year: 2015 ident: ref106 article-title: Image recognition based on deep learning publication-title: Proc Chin Automat Congr (CAC) – ident: ref34 doi: 10.1007/s10916-019-1428-9 – ident: ref92 doi: 10.1080/02770903.2020.1742352 – ident: ref66 doi: 10.1109/BIBM.2014.6999219 – ident: ref86 doi: 10.1145/3065386 – ident: ref31 doi: 10.3389/fninf.2019.00033 – ident: ref84 doi: 10.1155/2017/8314740 – ident: ref64 doi: 10.1088/1742-6596/801/1/012039 – ident: ref30 doi: 10.3390/ijerph16111876 – ident: ref54 doi: 10.1016/j.eswa.2020.113918 – ident: ref73 doi: 10.1371/journal.pmed.1002686 – ident: ref72 doi: 10.1007/978-3-319-98204-5_18 – volume: 32 start-page: 11137 year: 2020 ident: ref60 article-title: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals publication-title: Neural Comput Appl doi: 10.1007/s00521-018-03980-2 – ident: ref89 doi: 10.1109/ICASSP.2013.6639345 – ident: ref108 doi: 10.2337/db14-1370 – ident: ref26 doi: 10.1007/s11571-013-9247-z – volume: 2 start-page: 201 year: 2010 ident: ref104 article-title: High total bilirubin as a protective factor for diabetes mellitus: An analysis of NHANES data from 1999-2006 publication-title: Clinical Medicine & Research – ident: ref65 doi: 10.3390/bios8040101 – ident: ref78 doi: 10.4236/jcc.2018.61003 – ident: ref46 doi: 10.1016/j.jocs.2018.12.003 – year: 2017 ident: ref95 article-title: Cardiologist-level arrhythmia detection with convolutional neural networks publication-title: arXiv 1707 01836 – ident: ref94 doi: 10.1007/s00330-020-07044-9 – year: 2017 ident: ref93 article-title: CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning publication-title: arXiv 1711 05225 – ident: ref14 doi: 10.1162/neco.1997.9.8.1735 – ident: ref53 doi: 10.1016/j.jnca.2018.12.012 – ident: ref9 doi: 10.1007/978-3-642-21111-9_52 – ident: ref55 doi: 10.1016/j.artmed.2017.06.004 – volume: 79 start-page: 1 year: 2019 ident: ref45 article-title: Deep learning based diagnosis of Parkinson 's disease using convolutional neural network publication-title: Multimedia Tools Appl – ident: ref56 doi: 10.1038/s41591-018-0268-3 – ident: ref8 doi: 10.1109/TPAMI.2002.1017616 – ident: ref79 doi: 10.1117/12.2292188 – start-page: 19 year: 2018 ident: ref74 article-title: A deep residual network integrating spatial-temporal properties to predict influenza trends at an intra-urban scale publication-title: Proc 2nd ACM SIGSPATIAL Int Workshop AI Geograph Knowl Discovery doi: 10.1145/3281548.3281558 – ident: ref67 doi: 10.1371/journal.pone.0230111 – ident: ref91 doi: 10.1016/j.bios.2020.112799 – start-page: 1 year: 2017 ident: ref58 article-title: Cardiac arrhythmia detection from ECG combining convolutional and long short-term memory networks publication-title: Proc Comput Cardiol Conf (CinC) – ident: ref18 doi: 10.1109/JBHI.2020.3027443 – ident: ref97 doi: 10.1117/1.JMI.7.1.012705 – ident: ref4 doi: 10.1038/s41591-018-0320-3 – ident: ref29 doi: 10.1007/s10278-018-00172-1 – ident: ref101 doi: 10.1109/JBHI.2015.2450362 – start-page: 42 year: 2020 ident: ref17 article-title: DeepHealth: Deep representation learning with autoencoders for healthcare prediction publication-title: Proc IEEE Symp Ser Comput Intell (SSCI) – ident: ref1 doi: 10.1109/ACCESS.2017.2775180 – ident: ref13 doi: 10.1162/neco.1989.1.2.270 – ident: ref24 doi: 10.1162/neco.2006.18.7.1527 – ident: ref100 doi: 10.1109/TMI.2016.2553401 – ident: ref76 doi: 10.1378/chest.129.1_suppl.95S – ident: ref37 doi: 10.1016/j.eswa.2019.06.038 – ident: ref75 doi: 10.1155/2015/287604 – ident: ref52 doi: 10.1002/jmri.27288 – start-page: 1 year: 2017 ident: ref59 article-title: Comparing feature based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG publication-title: Proc Comput Cardiol Conf (CinC) – ident: ref63 doi: 10.1109/ICPR.2016.7900010 – volume: 21 year: 2019 ident: ref33 article-title: Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks publication-title: Clin Neuro – ident: ref48 doi: 10.1016/j.cogsys.2018.12.007 – ident: ref57 doi: 10.1016/j.ins.2017.04.012 – volume: 10 start-page: 33 year: 2005 ident: ref10 article-title: On contrastive divergence learning publication-title: Proc AISTATS – ident: ref6 doi: 10.1109/JBHI.2016.2636665 – ident: ref16 doi: 10.1016/B978-0-12-816176-0.00011-9 – start-page: 19 year: 2015 ident: ref21 article-title: World health organization reference curves publication-title: The ECOG's eBook on Child and Adolescent Obesity – ident: ref23 doi: 10.1109/ICASSP.2012.6289082 – start-page: 588 year: 2015 ident: ref85 article-title: Multi-scale convolutional neural networks for lung nodule classification publication-title: Proc Int Conf Inf Process Med Imag – ident: ref70 doi: 10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A4054 – ident: ref25 doi: 10.1016/j.fcij.2017.12.001 – ident: ref117 doi: 10.1016/j.expneurol.2020.113526 – ident: ref99 doi: 10.1007/978-3-319-50478-0_6 – ident: ref35 doi: 10.1038/s41467-019-13163-9 – volume: 12 start-page: 1685 year: 2020 ident: ref61 article-title: Classification of arrhythmia by using deep learning with 2-D ECG spectral image representation publication-title: Remote Sens doi: 10.3390/rs12101685 – ident: ref20 doi: 10.1113/jphysiol.1962.sp006837 – ident: ref115 doi: 10.1016/j.compbiomed.2020.103801 – ident: ref49 doi: 10.1109/ACCESS.2019.2902252 – year: 2018 ident: ref41 publication-title: Wearable and Wireless Systems for Healthcare I Gait and Reflex Response Quantification – ident: ref77 doi: 10.1109/ISBI.2018.8363572 – ident: ref38 doi: 10.1186/s40537-019-0190-7 – start-page: 213 year: 2017 ident: ref32 article-title: A novel deep learning based multi-class classification method for Alzheimer's disease detection using brain MRI data publication-title: Proc Int Conf Brain Informat doi: 10.1007/978-3-319-70772-3_20 – ident: ref3 doi: 10.1016/j.annemergmed.2015.03.032 – ident: ref47 doi: 10.1007/s11042-019-7174-7 – ident: ref87 doi: 10.21437/Interspeech.2016-879 – ident: ref28 doi: 10.1109/ICAwST.2017.8256481 – ident: ref42 doi: 10.1007/s00521-019-04069-0 – volume: 39 start-page: 1201 year: 2018 ident: ref51 article-title: Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas publication-title: Amer J Neuroradiol doi: 10.3174/ajnr.A5667 – year: 2011 ident: ref105 publication-title: ECG Signal Processing Classification and Interpretation A Comprehensive Framework of Computational Intelligence – ident: ref107 doi: 10.1109/T-C.1972.223572 – volume: 138 start-page: 15871a year: 2018 ident: ref116 article-title: Electrocardiographic screening for atrial fibrillation while in sinus rhythm using deep learning publication-title: Circulation – ident: ref114 doi: 10.1093/bib/bbx044 – ident: ref62 doi: 10.1109/TIM.2020.3033072 – ident: ref111 doi: 10.1002/mp.13047 – ident: ref83 doi: 10.1109/CRV.2015.25 – ident: ref81 doi: 10.2139/ssrn.3466968 – ident: ref11 doi: 10.1016/j.ymssp.2019.106587 – volume: 1 year: 2016 ident: ref19 publication-title: Deep Learning |
| SSID | ssj0000816957 |
| Score | 2.4740987 |
| Snippet | In artificial intelligence, deep learning (DL) is a process that replicates the working mechanism of the human brain in data processing, and it also creates... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 98523 |
| SubjectTerms | Algorithms Artificial intelligence Biological neural networks Brain modeling Cardiovascular system Central nervous system Computer vision Data processing Decision making Deep learning Diseases Health care Heart diseases Hidden Markov models Illnesses Machine learning Medical services Natural language processing nervous system Neural networks Respiratory system Solid modeling Speech recognition supervised and unsupervised learning |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals - NZ dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA4iHvQgrlg3cvDY0ck2SbxptfTkAhV6C5ksIshYuvj7TTJpqQh68Tq8zEy-95L3XgjfB8BFTZzVXtjCMMML6oQrpGemqCuOHSJhbVY-iU3whwcxGsmnFamveCespQdugbuipWYcUa6xl1TjUjtOuK19ZZiw1icm0JLLlWYq7cECVZLxTDOESnl10-uFGYWGEKNLEknWEP6WihJjf5ZY-bEvp2TT3wHbuUqEN-3f7YI11-yBrRXuwH3wPFje3ILDBRHrFA5b3R1459wYZvLU12vYiux1YW-hnTKFurHwcRzL73mTaFUPwEv_ftgbFFkfoTC0FLNChFZFS0aJq0MeYrqKMBnJNaOVIKKWPkBgpOPUSG-RjqUH8TWlBkuvDSWHYL35aNwRgLwyklKPeDCm3GGNrQ2DQnHohWPedwBeQKVMJg-PGhbvKjURpVQtviriqzK-HdBdDhq33Bm_m99GHyxNI_F1ehDCQeVwUH-FQwfsRw8uXyIpr0rCO-B04VGVF-lUhW4Ko9CQCnr8H58-AZtxOu35zClYn03m7gxsmM_Z23RynuLzC3oJ5vk priority: 102 providerName: Directory of Open Access Journals |
| Title | Healthcare Techniques Through Deep Learning: Issues, Challenges and Opportunities |
| URI | https://ieeexplore.ieee.org/document/9476037 https://www.proquest.com/docview/2552160184 https://doaj.org/article/40a57147a2f94a20ae737dbf6c58ddf4 |
| Volume | 9 |
| WOSCitedRecordID | wos000673272800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals - NZ customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LatwwFL0koYt2kT7SkGnToEWW48TWw5K6S6cJ2TQPmEJ2QpauSiE4Q2amy357JVljWloC3RhjJCPpSL4PS-cAHHcMvQ3KV044WXFUWOkgXNW1kmLD4tpsQxabkFdX6u5O32zBdDwLg4h58xmepNv8L98_uHVKlZ1qLtuayW3YlrIdzmqN-ZQkIKGFLMRCTa1Pz2az2IcYAtLmhCVatYb-YXwyR38RVfnrS5zNy8XL_2vYK9gtbiQ5G3B_DVvYv4EXv5EL7sHt5bi1i8w3TK1LMh-EechnxAUp7KrfPpJBhW9KZhtxlSWxvSfXi-Sfr_vMu_oWvl6cz2eXVRFQqByv1apSMZaxWnCGXTRUwkZTLK3T0greKqY6HeKIOY2SOx18Y5NvwkLHuaM6WMfZPuz0Dz0eAJGt05yHRsbCXCK11PtYKXqPQaEIYQJ0M7LGFXbxJHJxb3KUUWszwGESHKbAMYHpWGkxkGs8XfxTgmwsmpix84OIhSkLzfDaCpn6SYPmltYWJZO-C60TyvvAJ7CX8BtfUqCbwOFmApiyipcmhlu0iRGr4u_-Xes9PE8NHFIyh7CzelzjB3jmfqy-Lx-Pcnwfr19-nh_lyfoLvvzlyQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxGP2oVbA-eKvF1ap58HGnncllkvhWV8uKdVVYoW8hk3wRQaZLd9ffb5LJDooi-DYMyZDkJPNdkpwD8LJj6G1QvnLCyYqjwkoH4aqulRQbFtdmG7LYhFws1OWl_rQH0_EuDCLmw2d4kh7zXr6_ctuUKjvVXLY1kzfgpuCc1sNtrTGjkiQktJCFWqip9enZbBZ7EYNA2pywRKzW0N_MT2bpL7Iqf_yLs4E5v_d_TbsPd4sjSc4G5B_AHvYP4c4v9IKH8Hk-Hu4iyx1X65osB2ke8gZxRQq_6tdXZNDhm5LZTl5lTWzvycdV8tC3fWZefQRfzt8uZ_OqSChUjtdqU6kYzVgtOMMumiphozGW1mlpBW8VU50OccScRsmdDr6xyTthoePcUR2s4-wI9vurHh8Dka3TnIdGxsJcIrXU-1gp-o9BoQhhAnQ3ssYVfvEkc_Hd5Dij1maAwyQ4TIFjAtOx0mqg1_h38dcJsrFo4sbOLyIWpiw1w2srZOonDZpbWluUTPoutE4o7wOfwGHCb_xIgW4Cx7sJYMo6XpsYcNEmxqyKP_l7rRdwe778cGEu3i3eP4WD1NghQXMM-5vrLT6DW-7H5tv6-nmerD8BA37m6g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Healthcare+Techniques+Through+Deep+Learning%3A+Issues%2C+Challenges+and+Opportunities&rft.jtitle=IEEE+access&rft.au=Nisar%2C+Dur-E-Maknoon&rft.au=Amin%2C+Rashid&rft.au=Shah%2C+Noor-Ul-Huda&rft.au=Ghamdi%2C+Mohammed+A.+Al&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=98523&rft.epage=98541&rft_id=info:doi/10.1109%2FACCESS.2021.3095312&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3095312 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |