Radar Signal Intra-Pulse Modulation Recognition Based on Convolutional Denoising Autoencoder and Deep Convolutional Neural Network
Radar signal intra-pulse modulation recognition is an important technology in electronic warfare. A radar signal intra-pulse modulation recognition method based on convolutional denoising autoencoder (CDAE) and deep convolutional neural network (DCNN) is proposed in this paper. First, we use Cohen...
Uložené v:
| Vydané v: | IEEE access Ročník 7; s. 112339 - 112347 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Radar signal intra-pulse modulation recognition is an important technology in electronic warfare. A radar signal intra-pulse modulation recognition method based on convolutional denoising autoencoder (CDAE) and deep convolutional neural network (DCNN) is proposed in this paper. First, we use Cohen's time-frequency distribution to convert radar signals into time-frequency images (TFIs). Then image preprocessing is applied to TFIs, including bilinear interpolation and amplitude normalization. Next, we design a CDAE to denoise and repair TFIs. Finally, we design a deep convolutional neural network based on Inception architecture to identify the processed TFIs. Simulation results demonstrate that CDAE effectively reduces the interference of noise on TFIs classification, and improves the classification performance at a low signal-to-noise ratio (SNR). The DCNN architecture we designed makes good use of computing resources and has a good classification effect. The approach has good noise immunity and generalization. It can classify twelve kinds of modulation signals and an overall probability of successful recognition is more than 95% when the SNR is −9 dB. |
|---|---|
| AbstractList | Radar signal intra-pulse modulation recognition is an important technology in electronic warfare. A radar signal intra-pulse modulation recognition method based on convolutional denoising autoencoder (CDAE) and deep convolutional neural network (DCNN) is proposed in this paper. First, we use Cohen's time-frequency distribution to convert radar signals into time-frequency images (TFIs). Then image preprocessing is applied to TFIs, including bilinear interpolation and amplitude normalization. Next, we design a CDAE to denoise and repair TFIs. Finally, we design a deep convolutional neural network based on Inception architecture to identify the processed TFIs. Simulation results demonstrate that CDAE effectively reduces the interference of noise on TFIs classification, and improves the classification performance at a low signal-to-noise ratio (SNR). The DCNN architecture we designed makes good use of computing resources and has a good classification effect. The approach has good noise immunity and generalization. It can classify twelve kinds of modulation signals and an overall probability of successful recognition is more than 95% when the SNR is -9 dB. Radar signal intra-pulse modulation recognition is an important technology in electronic warfare. A radar signal intra-pulse modulation recognition method based on convolutional denoising autoencoder (CDAE) and deep convolutional neural network (DCNN) is proposed in this paper. First, we use Cohen's time-frequency distribution to convert radar signals into time-frequency images (TFIs). Then image preprocessing is applied to TFIs, including bilinear interpolation and amplitude normalization. Next, we design a CDAE to denoise and repair TFIs. Finally, we design a deep convolutional neural network based on Inception architecture to identify the processed TFIs. Simulation results demonstrate that CDAE effectively reduces the interference of noise on TFIs classification, and improves the classification performance at a low signal-to-noise ratio (SNR). The DCNN architecture we designed makes good use of computing resources and has a good classification effect. The approach has good noise immunity and generalization. It can classify twelve kinds of modulation signals and an overall probability of successful recognition is more than 95% when the SNR is −9 dB. |
| Author | Qu, Zhiyu Wang, Wenyang Hou, Changbo Hou, Chenfan |
| Author_xml | – sequence: 1 givenname: Zhiyu surname: Qu fullname: Qu, Zhiyu organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China – sequence: 2 givenname: Wenyang orcidid: 0000-0003-4744-0268 surname: Wang fullname: Wang, Wenyang organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China – sequence: 3 givenname: Changbo surname: Hou fullname: Hou, Changbo email: houchangbo@hrbeu.edu.cn organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China – sequence: 4 givenname: Chenfan surname: Hou fullname: Hou, Chenfan organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China |
| BookMark | eNqFUU1v1DAQtVCRKEt_QS-ROGfr7yTHJbR0pVJQF86W44xXXoK92ElRr_3leDdVhXqpL_M0fm_ejN57dOKDB4TOCV4SgpuLVdtebjZLikmzpA0TlFdv0CklsimZYPLkP_wOnaW0w_nVuSWqU_R4p3sdi43bej0Uaz9GXX6fhgTF19BPgx5d8MUdmLD17og_6QR9kUEb_H0YpkMzKz-DDy45vy1W0xjAm9BDLLTv8w_sX5BvYYrHMv4N8dcH9Nbq7Hj2VBfo59Xlj_a6vPn2Zd2ubkrDcT2Wdc1B067BhlLLCaH5gI5L3VnBqq7qCCEdazDlwnBbWQEgOe1Eza2VGKRhC7Se5_ZB79Q-ut86PqignTo2QtwqHUdnBlBWMwZUAhYGOLWd7gHjykA2sxz3JM_6OM_ax_BngjSqXZhivi2pvICQeWMpM4vNLBNDShHssyvB6pCdmrNTh-zUU3ZZ1bxQGTceg8jhuOEV7fmsdQDw7FZXTS1xxf4B78KrfA |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_JIOT_2023_3332743 crossref_primary_10_7746_jkros_2023_18_3_271 crossref_primary_10_1080_10589759_2024_2383325 crossref_primary_10_1109_LSP_2024_3366113 crossref_primary_10_5515_KJKIEES_2024_35_3_232 crossref_primary_10_1007_s11227_022_04902_9 crossref_primary_10_3390_s23063326 crossref_primary_10_3390_rs14081950 crossref_primary_10_1109_ACCESS_2021_3119561 crossref_primary_10_4218_etrij_2020_0338 crossref_primary_10_1109_ACCESS_2023_3292408 crossref_primary_10_1109_ACCESS_2020_3044453 crossref_primary_10_1049_iet_rsn_2019_0550 crossref_primary_10_3390_knowledge4040030 crossref_primary_10_3390_s23094187 crossref_primary_10_1109_JSEN_2025_3560442 crossref_primary_10_3390_rs14051252 crossref_primary_10_1016_j_eswa_2025_128681 crossref_primary_10_1109_ACCESS_2020_2978875 crossref_primary_10_3390_rs16173215 crossref_primary_10_1016_j_neucom_2025_131200 crossref_primary_10_1155_2021_5548346 crossref_primary_10_1109_LSP_2021_3130797 crossref_primary_10_1109_TAES_2023_3277430 crossref_primary_10_1186_s13634_023_01053_8 crossref_primary_10_1109_JSEN_2025_3591125 crossref_primary_10_1109_JSAC_2021_3126074 crossref_primary_10_1109_TVT_2021_3104824 crossref_primary_10_1109_JIOT_2023_3325943 crossref_primary_10_1109_TCCN_2022_3220766 crossref_primary_10_3390_rs14225728 crossref_primary_10_3390_electronics12244934 crossref_primary_10_1109_JSEN_2025_3565883 crossref_primary_10_1155_2022_6900912 |
| Cites_doi | 10.1109/ICASSP.2006.1660851 10.1109/5.30749 10.1109/CVPR.2016.308 10.1109/SPS.2015.7168292 10.1109/ACCESS.2018.2864347 10.1109/CISP-BMEI.2017.8302111 10.1109/ACCESS.2017.2716191 10.1145/1390156.1390294 10.1038/323533a0 10.1109/CVPR.2015.7298594 10.1109/MAES.2004.1301226 10.1109/ICASSP.2017.7952594 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2019.2935247 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 112347 |
| ExternalDocumentID | oai_doaj_org_article_fa33e26e05ce42fbade007ceabff40d1 10_1109_ACCESS_2019_2935247 8798607 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Heilongjiang Province grantid: LH2019F005 funderid: 10.13039/501100005046 – fundername: National Natural Science Foundation of China grantid: 61801143 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 3072019CF0801; 3072019CFM0802 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-884ea2b90c22f4112695b46abf537b7b111b390245c4f7f5ee642b584ff60e6c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482598500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:30 EDT 2025 Sun Nov 09 08:37:34 EST 2025 Tue Nov 18 22:13:27 EST 2025 Sat Nov 29 03:57:54 EST 2025 Wed Aug 27 02:46:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-884ea2b90c22f4112695b46abf537b7b111b390245c4f7f5ee642b584ff60e6c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4744-0268 |
| OpenAccessLink | https://doaj.org/article/fa33e26e05ce42fbade007ceabff40d1 |
| PQID | 2455640866 |
| PQPubID | 4845423 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2019_2935247 doaj_primary_oai_doaj_org_article_fa33e26e05ce42fbade007ceabff40d1 crossref_citationtrail_10_1109_ACCESS_2019_2935247 ieee_primary_8798607 proquest_journals_2455640866 |
| PublicationCentury | 2000 |
| PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 20190000 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | bo (ref15) 2018; 27 ioffe (ref18) 2015 vincent (ref12) 2010; 11 ref11 liu (ref2) 2007; 22 jain (ref13) 2008 ref1 ref17 srivastava (ref20) 2014; 15 ref19 simonyan (ref16) 2015 ref8 ref7 ref9 rumelhart (ref10) 1986; 323 ref4 ref3 ref6 ref5 krizhevsky (ref14) 2012; 25 |
| References_xml | – ident: ref1 doi: 10.1109/ICASSP.2006.1660851 – ident: ref9 doi: 10.1109/5.30749 – ident: ref19 doi: 10.1109/CVPR.2016.308 – ident: ref3 doi: 10.1109/SPS.2015.7168292 – year: 2015 ident: ref16 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc ICLR – volume: 22 start-page: 1250 year: 2007 ident: ref2 article-title: Radar automatic target recognition based on SVM and nonparametric LDA publication-title: Control Decis – ident: ref8 doi: 10.1109/ACCESS.2018.2864347 – start-page: 1 year: 2015 ident: ref18 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Int Conf Mach Learn – volume: 25 start-page: 1097 year: 2012 ident: ref14 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref6 doi: 10.1109/CISP-BMEI.2017.8302111 – volume: 11 start-page: 3371 year: 2010 ident: ref12 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: ref7 doi: 10.1109/ACCESS.2017.2716191 – start-page: 769 year: 2008 ident: ref13 article-title: Natural image denoising with convolutional networks publication-title: Proc Int Conf Neural Inf Process – ident: ref11 doi: 10.1145/1390156.1390294 – volume: 323 start-page: 533 year: 1986 ident: ref10 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 15 start-page: 1929 year: 2014 ident: ref20 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref17 doi: 10.1109/CVPR.2015.7298594 – volume: 27 start-page: 170 year: 2018 ident: ref15 article-title: Image reconstruction algorithm based on deep convolution neural network publication-title: Comput Syst Appl – ident: ref4 doi: 10.1109/MAES.2004.1301226 – ident: ref5 doi: 10.1109/ICASSP.2017.7952594 |
| SSID | ssj0000816957 |
| Score | 2.4175155 |
| Snippet | Radar signal intra-pulse modulation recognition is an important technology in electronic warfare. A radar signal intra-pulse modulation recognition method... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 112339 |
| SubjectTerms | Artificial neural networks Classification Codes Cohen class time frequency distribution convolutional denoising autoencoder deep convolutional neural network Electronic warfare Feature extraction Frequency distribution Interpolation Modulation Neural networks Noise Noise reduction Pulse modulation Radar imaging Radar signal recognition Recognition Signal to noise ratio Time-frequency analysis |
| SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYo4lAOLS2t2BZQDhwJOIkf8XHZguBQhGgrcbP8GFcroQQtu_yA_vJ6HG-E2gqpp1iJHdn-bI89nvmGkCMkJKkah1aNFEpmAJ2VeVU61PgL7xomXQo2Ia-v27s7dbNBjkdfGABIxmdwgsl0l-97t0JV2WmL5dF1_JWUcvDVGvUpGEBCcZmJhSqqTqezWWwDWm-pkyjUeI0hVJ4Jn8TRn4Oq_LUSJ_Fy8fb_KrZD3uRtZDEdcH9HNqB7T7afkQvukl-3xptF8W3-E3NeoRK3vFlFSVh87X0O2lXcru2HYvosCjRfxMSs757yiIwlv0DXz1GjUExXyx55Lz0sCtP5-AUe_siMXB_pkYzLP5AfF-ffZ5dljrhQOkbbZdm2DExtFXV1HRh6FylumTA28EZaaePCaBuFt7WOBRk4QDy-2LiHCUFQEK75SDa7voM9UrS-DhW31AlWMR4bzJ0JXFoPSlbcmAmp11Bol-nIMSrGvU7HEqr0gJ9G_HTGb0KOx0IPAxvHy9nPEOMxK1JppxcRPJ1npg6maaAWQLkDVgdrPMR9k4PY6MCoryZkFwEff5KxnpD99YjRedo_6tgxXMSeFOLTv0t9Jq-xgoMOZ59sLhcrOCBb7mk5f1wcphH9Gx_D9j4 priority: 102 providerName: IEEE |
| Title | Radar Signal Intra-Pulse Modulation Recognition Based on Convolutional Denoising Autoencoder and Deep Convolutional Neural Network |
| URI | https://ieeexplore.ieee.org/document/8798607 https://www.proquest.com/docview/2455640866 https://doaj.org/article/fa33e26e05ce42fbade007ceabff40d1 |
| Volume | 7 |
| WOSCitedRecordID | wos000482598500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMcEG1BbGmrHDgS6iS2Ex-3Syt6aFUVkHqz_BijlVBSbXd75MAv74zjXa1AgguXxEpsJ56ZeDyT8TeMvSdAkqrxFNXIoRQWaLOyrEpPHn8VfCNan5JNtNfX3d2dvtlK9UUxYSM88Ei402ibBmoFXHoQdXQ2AKo1D9bFKHhIhg-ueraMqTQHd5XSss0wQxXXp9PZDEdEsVz6I6o4WVNClS1VlBD7c4qVP-blpGwuXrGXeZVYTMe322PPoN9nL7awAw_Yr1sb7KL4Mv9ONS_JR1verFDRFVdDyDm5itt1eBCWz1BfhQILs6F_zAKHLT9BP8zJYVBMV8uBYC0DLArbB7wD979VJiiPdEqx46_Zt4vzr7PPZU6oUHrBu2XZdQJs7TT3dR0FbR7S0gmFpJRN61qH855rNP2M9SK2UQKgdeJwiRKj4qB884bt9EMPb1nRhTpW0nGvRCUkDlh6G2XrAui2ktZOWL2mrfEZbZySXvwwyerg2owMMcQQkxkyYR82je5HsI2_Vz8jpm2qElJ2uoDyY7L8mH_Jz4QdEMs3nXQkoxz7PlqLgMlf9YNBwkiFlFTq8H88-h17TsMZHTpHbGe5WMEx2_WPy_nD4iQJNB6vfp6fpG2JT96o_VY |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqggQceBXEQoEcODat49hOfNwuVK1oV1UpUm-WH-NqJZRU293-AH45HscbVYCQOMVK7Mj2Z3vs8cw3hHxCQpKqdmjVSKHkBtBZWVSlQ42_9K7mjUvBJpr5vL26UudbZG_0hQGAZHwG-5hMd_m-d2tUlR20WB5dxx8Izlk1eGuNGhUMIaFEk6mFKqoOprNZbAXab6n9KNYEwyAq98RPYunPYVX-WIuTgDl69n9Ve06e5o1kMR2Qf0G2oHtJntyjF9whPy-MN8vi2-Iac56gGrc8X0dZWJz1PoftKi42FkQxfRhFmi9iYtZ3d3lMxpKfoesXqFMoputVj8yXHpaF6Xz8Aje_ZUa2j_RI5uWvyPejL5ez4zLHXCgdp-2qbFsOhllFHWOBo3-REpZLY4OoG9vYuDTaWuF9reOhCQIgHmBs3MWEIClIV78m213fwRtStJ6FSljqJK-4iA0WzgTRWA-qqYQxE8I2UGiXCckxLsYPnQ4mVOkBP4346YzfhOyNhW4GPo5_Zz9EjMesSKadXkTwdJ6bOpi6BiaBCgecBWs8xJ2Tg9jowKmvJmQHAR9_krGekN3NiNF54t_q2DFCxp6U8u3fS30kj44vz0716cn86zvyGCs7aHR2yfZquYb35KG7Wy1ulx_S6P4FCnr5hQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radar+Signal+Intra-Pulse+Modulation+Recognition+Based+on+Convolutional+Denoising+Autoencoder+and+Deep+Convolutional+Neural+Network&rft.jtitle=IEEE+access&rft.au=Qu%2C+Zhiyu&rft.au=Wang%2C+Wenyang&rft.au=Hou%2C+Changbo&rft.au=Hou%2C+Chenfan&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=112339&rft.epage=112347&rft_id=info:doi/10.1109%2FACCESS.2019.2935247&rft.externalDocID=8798607 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |