Radar Signal Intra-Pulse Modulation Recognition Based on Convolutional Denoising Autoencoder and Deep Convolutional Neural Network

Radar signal intra-pulse modulation recognition is an important technology in electronic warfare. A radar signal intra-pulse modulation recognition method based on convolutional denoising autoencoder (CDAE) and deep convolutional neural network (DCNN) is proposed in this paper. First, we use Cohen&#...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 7; s. 112339 - 112347
Hlavní autori: Qu, Zhiyu, Wang, Wenyang, Hou, Changbo, Hou, Chenfan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Radar signal intra-pulse modulation recognition is an important technology in electronic warfare. A radar signal intra-pulse modulation recognition method based on convolutional denoising autoencoder (CDAE) and deep convolutional neural network (DCNN) is proposed in this paper. First, we use Cohen's time-frequency distribution to convert radar signals into time-frequency images (TFIs). Then image preprocessing is applied to TFIs, including bilinear interpolation and amplitude normalization. Next, we design a CDAE to denoise and repair TFIs. Finally, we design a deep convolutional neural network based on Inception architecture to identify the processed TFIs. Simulation results demonstrate that CDAE effectively reduces the interference of noise on TFIs classification, and improves the classification performance at a low signal-to-noise ratio (SNR). The DCNN architecture we designed makes good use of computing resources and has a good classification effect. The approach has good noise immunity and generalization. It can classify twelve kinds of modulation signals and an overall probability of successful recognition is more than 95% when the SNR is −9 dB.
AbstractList Radar signal intra-pulse modulation recognition is an important technology in electronic warfare. A radar signal intra-pulse modulation recognition method based on convolutional denoising autoencoder (CDAE) and deep convolutional neural network (DCNN) is proposed in this paper. First, we use Cohen's time-frequency distribution to convert radar signals into time-frequency images (TFIs). Then image preprocessing is applied to TFIs, including bilinear interpolation and amplitude normalization. Next, we design a CDAE to denoise and repair TFIs. Finally, we design a deep convolutional neural network based on Inception architecture to identify the processed TFIs. Simulation results demonstrate that CDAE effectively reduces the interference of noise on TFIs classification, and improves the classification performance at a low signal-to-noise ratio (SNR). The DCNN architecture we designed makes good use of computing resources and has a good classification effect. The approach has good noise immunity and generalization. It can classify twelve kinds of modulation signals and an overall probability of successful recognition is more than 95% when the SNR is -9 dB.
Radar signal intra-pulse modulation recognition is an important technology in electronic warfare. A radar signal intra-pulse modulation recognition method based on convolutional denoising autoencoder (CDAE) and deep convolutional neural network (DCNN) is proposed in this paper. First, we use Cohen's time-frequency distribution to convert radar signals into time-frequency images (TFIs). Then image preprocessing is applied to TFIs, including bilinear interpolation and amplitude normalization. Next, we design a CDAE to denoise and repair TFIs. Finally, we design a deep convolutional neural network based on Inception architecture to identify the processed TFIs. Simulation results demonstrate that CDAE effectively reduces the interference of noise on TFIs classification, and improves the classification performance at a low signal-to-noise ratio (SNR). The DCNN architecture we designed makes good use of computing resources and has a good classification effect. The approach has good noise immunity and generalization. It can classify twelve kinds of modulation signals and an overall probability of successful recognition is more than 95% when the SNR is −9 dB.
Author Qu, Zhiyu
Wang, Wenyang
Hou, Changbo
Hou, Chenfan
Author_xml – sequence: 1
  givenname: Zhiyu
  surname: Qu
  fullname: Qu, Zhiyu
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
– sequence: 2
  givenname: Wenyang
  orcidid: 0000-0003-4744-0268
  surname: Wang
  fullname: Wang, Wenyang
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
– sequence: 3
  givenname: Changbo
  surname: Hou
  fullname: Hou, Changbo
  email: houchangbo@hrbeu.edu.cn
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
– sequence: 4
  givenname: Chenfan
  surname: Hou
  fullname: Hou, Chenfan
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
BookMark eNqFUU1v1DAQtVCRKEt_QS-ROGfr7yTHJbR0pVJQF86W44xXXoK92ElRr_3leDdVhXqpL_M0fm_ejN57dOKDB4TOCV4SgpuLVdtebjZLikmzpA0TlFdv0CklsimZYPLkP_wOnaW0w_nVuSWqU_R4p3sdi43bej0Uaz9GXX6fhgTF19BPgx5d8MUdmLD17og_6QR9kUEb_H0YpkMzKz-DDy45vy1W0xjAm9BDLLTv8w_sX5BvYYrHMv4N8dcH9Nbq7Hj2VBfo59Xlj_a6vPn2Zd2ubkrDcT2Wdc1B067BhlLLCaH5gI5L3VnBqq7qCCEdazDlwnBbWQEgOe1Eza2VGKRhC7Se5_ZB79Q-ut86PqignTo2QtwqHUdnBlBWMwZUAhYGOLWd7gHjykA2sxz3JM_6OM_ax_BngjSqXZhivi2pvICQeWMpM4vNLBNDShHssyvB6pCdmrNTh-zUU3ZZ1bxQGTceg8jhuOEV7fmsdQDw7FZXTS1xxf4B78KrfA
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_JIOT_2023_3332743
crossref_primary_10_7746_jkros_2023_18_3_271
crossref_primary_10_1080_10589759_2024_2383325
crossref_primary_10_1109_LSP_2024_3366113
crossref_primary_10_5515_KJKIEES_2024_35_3_232
crossref_primary_10_1007_s11227_022_04902_9
crossref_primary_10_3390_s23063326
crossref_primary_10_3390_rs14081950
crossref_primary_10_1109_ACCESS_2021_3119561
crossref_primary_10_4218_etrij_2020_0338
crossref_primary_10_1109_ACCESS_2023_3292408
crossref_primary_10_1109_ACCESS_2020_3044453
crossref_primary_10_1049_iet_rsn_2019_0550
crossref_primary_10_3390_knowledge4040030
crossref_primary_10_3390_s23094187
crossref_primary_10_1109_JSEN_2025_3560442
crossref_primary_10_3390_rs14051252
crossref_primary_10_1016_j_eswa_2025_128681
crossref_primary_10_1109_ACCESS_2020_2978875
crossref_primary_10_3390_rs16173215
crossref_primary_10_1016_j_neucom_2025_131200
crossref_primary_10_1155_2021_5548346
crossref_primary_10_1109_LSP_2021_3130797
crossref_primary_10_1109_TAES_2023_3277430
crossref_primary_10_1186_s13634_023_01053_8
crossref_primary_10_1109_JSEN_2025_3591125
crossref_primary_10_1109_JSAC_2021_3126074
crossref_primary_10_1109_TVT_2021_3104824
crossref_primary_10_1109_JIOT_2023_3325943
crossref_primary_10_1109_TCCN_2022_3220766
crossref_primary_10_3390_rs14225728
crossref_primary_10_3390_electronics12244934
crossref_primary_10_1109_JSEN_2025_3565883
crossref_primary_10_1155_2022_6900912
Cites_doi 10.1109/ICASSP.2006.1660851
10.1109/5.30749
10.1109/CVPR.2016.308
10.1109/SPS.2015.7168292
10.1109/ACCESS.2018.2864347
10.1109/CISP-BMEI.2017.8302111
10.1109/ACCESS.2017.2716191
10.1145/1390156.1390294
10.1038/323533a0
10.1109/CVPR.2015.7298594
10.1109/MAES.2004.1301226
10.1109/ICASSP.2017.7952594
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2935247
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 112347
ExternalDocumentID oai_doaj_org_article_fa33e26e05ce42fbade007ceabff40d1
10_1109_ACCESS_2019_2935247
8798607
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Heilongjiang Province
  grantid: LH2019F005
  funderid: 10.13039/501100005046
– fundername: National Natural Science Foundation of China
  grantid: 61801143
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 3072019CF0801; 3072019CFM0802
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-884ea2b90c22f4112695b46abf537b7b111b390245c4f7f5ee642b584ff60e6c3
IEDL.DBID DOA
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482598500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:30 EDT 2025
Sun Nov 09 08:37:34 EST 2025
Tue Nov 18 22:13:27 EST 2025
Sat Nov 29 03:57:54 EST 2025
Wed Aug 27 02:46:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-884ea2b90c22f4112695b46abf537b7b111b390245c4f7f5ee642b584ff60e6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4744-0268
OpenAccessLink https://doaj.org/article/fa33e26e05ce42fbade007ceabff40d1
PQID 2455640866
PQPubID 4845423
PageCount 9
ParticipantIDs crossref_primary_10_1109_ACCESS_2019_2935247
doaj_primary_oai_doaj_org_article_fa33e26e05ce42fbade007ceabff40d1
crossref_citationtrail_10_1109_ACCESS_2019_2935247
ieee_primary_8798607
proquest_journals_2455640866
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References bo (ref15) 2018; 27
ioffe (ref18) 2015
vincent (ref12) 2010; 11
ref11
liu (ref2) 2007; 22
jain (ref13) 2008
ref1
ref17
srivastava (ref20) 2014; 15
ref19
simonyan (ref16) 2015
ref8
ref7
ref9
rumelhart (ref10) 1986; 323
ref4
ref3
ref6
ref5
krizhevsky (ref14) 2012; 25
References_xml – ident: ref1
  doi: 10.1109/ICASSP.2006.1660851
– ident: ref9
  doi: 10.1109/5.30749
– ident: ref19
  doi: 10.1109/CVPR.2016.308
– ident: ref3
  doi: 10.1109/SPS.2015.7168292
– year: 2015
  ident: ref16
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc ICLR
– volume: 22
  start-page: 1250
  year: 2007
  ident: ref2
  article-title: Radar automatic target recognition based on SVM and nonparametric LDA
  publication-title: Control Decis
– ident: ref8
  doi: 10.1109/ACCESS.2018.2864347
– start-page: 1
  year: 2015
  ident: ref18
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Int Conf Mach Learn
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref14
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref6
  doi: 10.1109/CISP-BMEI.2017.8302111
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref12
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref7
  doi: 10.1109/ACCESS.2017.2716191
– start-page: 769
  year: 2008
  ident: ref13
  article-title: Natural image denoising with convolutional networks
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref11
  doi: 10.1145/1390156.1390294
– volume: 323
  start-page: 533
  year: 1986
  ident: ref10
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref20
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref17
  doi: 10.1109/CVPR.2015.7298594
– volume: 27
  start-page: 170
  year: 2018
  ident: ref15
  article-title: Image reconstruction algorithm based on deep convolution neural network
  publication-title: Comput Syst Appl
– ident: ref4
  doi: 10.1109/MAES.2004.1301226
– ident: ref5
  doi: 10.1109/ICASSP.2017.7952594
SSID ssj0000816957
Score 2.4175155
Snippet Radar signal intra-pulse modulation recognition is an important technology in electronic warfare. A radar signal intra-pulse modulation recognition method...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112339
SubjectTerms Artificial neural networks
Classification
Codes
Cohen class time frequency distribution
convolutional denoising autoencoder
deep convolutional neural network
Electronic warfare
Feature extraction
Frequency distribution
Interpolation
Modulation
Neural networks
Noise
Noise reduction
Pulse modulation
Radar imaging
Radar signal recognition
Recognition
Signal to noise ratio
Time-frequency analysis
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYo4lAOLS2t2BZQDhwJOIkf8XHZguBQhGgrcbP8GFcroQQtu_yA_vJ6HG-E2gqpp1iJHdn-bI89nvmGkCMkJKkah1aNFEpmAJ2VeVU61PgL7xomXQo2Ia-v27s7dbNBjkdfGABIxmdwgsl0l-97t0JV2WmL5dF1_JWUcvDVGvUpGEBCcZmJhSqqTqezWWwDWm-pkyjUeI0hVJ4Jn8TRn4Oq_LUSJ_Fy8fb_KrZD3uRtZDEdcH9HNqB7T7afkQvukl-3xptF8W3-E3NeoRK3vFlFSVh87X0O2lXcru2HYvosCjRfxMSs757yiIwlv0DXz1GjUExXyx55Lz0sCtP5-AUe_siMXB_pkYzLP5AfF-ffZ5dljrhQOkbbZdm2DExtFXV1HRh6FylumTA28EZaaePCaBuFt7WOBRk4QDy-2LiHCUFQEK75SDa7voM9UrS-DhW31AlWMR4bzJ0JXFoPSlbcmAmp11Bol-nIMSrGvU7HEqr0gJ9G_HTGb0KOx0IPAxvHy9nPEOMxK1JppxcRPJ1npg6maaAWQLkDVgdrPMR9k4PY6MCoryZkFwEff5KxnpD99YjRedo_6tgxXMSeFOLTv0t9Jq-xgoMOZ59sLhcrOCBb7mk5f1wcphH9Gx_D9j4
  priority: 102
  providerName: IEEE
Title Radar Signal Intra-Pulse Modulation Recognition Based on Convolutional Denoising Autoencoder and Deep Convolutional Neural Network
URI https://ieeexplore.ieee.org/document/8798607
https://www.proquest.com/docview/2455640866
https://doaj.org/article/fa33e26e05ce42fbade007ceabff40d1
Volume 7
WOSCitedRecordID wos000482598500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMcEG1BbGmrHDgS6iS2Ex-3Syt6aFUVkHqz_BijlVBSbXd75MAv74zjXa1AgguXxEpsJ56ZeDyT8TeMvSdAkqrxFNXIoRQWaLOyrEpPHn8VfCNan5JNtNfX3d2dvtlK9UUxYSM88Ei402ibBmoFXHoQdXQ2AKo1D9bFKHhIhg-ueraMqTQHd5XSss0wQxXXp9PZDEdEsVz6I6o4WVNClS1VlBD7c4qVP-blpGwuXrGXeZVYTMe322PPoN9nL7awAw_Yr1sb7KL4Mv9ONS_JR1verFDRFVdDyDm5itt1eBCWz1BfhQILs6F_zAKHLT9BP8zJYVBMV8uBYC0DLArbB7wD979VJiiPdEqx46_Zt4vzr7PPZU6oUHrBu2XZdQJs7TT3dR0FbR7S0gmFpJRN61qH855rNP2M9SK2UQKgdeJwiRKj4qB884bt9EMPb1nRhTpW0nGvRCUkDlh6G2XrAui2ktZOWL2mrfEZbZySXvwwyerg2owMMcQQkxkyYR82je5HsI2_Vz8jpm2qElJ2uoDyY7L8mH_Jz4QdEMs3nXQkoxz7PlqLgMlf9YNBwkiFlFTq8H88-h17TsMZHTpHbGe5WMEx2_WPy_nD4iQJNB6vfp6fpG2JT96o_VY
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqggQceBXEQoEcODat49hOfNwuVK1oV1UpUm-WH-NqJZRU293-AH45HscbVYCQOMVK7Mj2Z3vs8cw3hHxCQpKqdmjVSKHkBtBZWVSlQ42_9K7mjUvBJpr5vL26UudbZG_0hQGAZHwG-5hMd_m-d2tUlR20WB5dxx8Izlk1eGuNGhUMIaFEk6mFKqoOprNZbAXab6n9KNYEwyAq98RPYunPYVX-WIuTgDl69n9Ve06e5o1kMR2Qf0G2oHtJntyjF9whPy-MN8vi2-Iac56gGrc8X0dZWJz1PoftKi42FkQxfRhFmi9iYtZ3d3lMxpKfoesXqFMoputVj8yXHpaF6Xz8Aje_ZUa2j_RI5uWvyPejL5ez4zLHXCgdp-2qbFsOhllFHWOBo3-REpZLY4OoG9vYuDTaWuF9reOhCQIgHmBs3MWEIClIV78m213fwRtStJ6FSljqJK-4iA0WzgTRWA-qqYQxE8I2UGiXCckxLsYPnQ4mVOkBP4346YzfhOyNhW4GPo5_Zz9EjMesSKadXkTwdJ6bOpi6BiaBCgecBWs8xJ2Tg9jowKmvJmQHAR9_krGekN3NiNF54t_q2DFCxp6U8u3fS30kj44vz0716cn86zvyGCs7aHR2yfZquYb35KG7Wy1ulx_S6P4FCnr5hQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radar+Signal+Intra-Pulse+Modulation+Recognition+Based+on+Convolutional+Denoising+Autoencoder+and+Deep+Convolutional+Neural+Network&rft.jtitle=IEEE+access&rft.au=Qu%2C+Zhiyu&rft.au=Wang%2C+Wenyang&rft.au=Hou%2C+Changbo&rft.au=Hou%2C+Chenfan&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=112339&rft.epage=112347&rft_id=info:doi/10.1109%2FACCESS.2019.2935247&rft.externalDocID=8798607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon