Radar Signal Intra-Pulse Modulation Recognition Based on Convolutional Denoising Autoencoder and Deep Convolutional Neural Network

Radar signal intra-pulse modulation recognition is an important technology in electronic warfare. A radar signal intra-pulse modulation recognition method based on convolutional denoising autoencoder (CDAE) and deep convolutional neural network (DCNN) is proposed in this paper. First, we use Cohen&#...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 7; s. 112339 - 112347
Hlavní autoři: Qu, Zhiyu, Wang, Wenyang, Hou, Changbo, Hou, Chenfan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Radar signal intra-pulse modulation recognition is an important technology in electronic warfare. A radar signal intra-pulse modulation recognition method based on convolutional denoising autoencoder (CDAE) and deep convolutional neural network (DCNN) is proposed in this paper. First, we use Cohen's time-frequency distribution to convert radar signals into time-frequency images (TFIs). Then image preprocessing is applied to TFIs, including bilinear interpolation and amplitude normalization. Next, we design a CDAE to denoise and repair TFIs. Finally, we design a deep convolutional neural network based on Inception architecture to identify the processed TFIs. Simulation results demonstrate that CDAE effectively reduces the interference of noise on TFIs classification, and improves the classification performance at a low signal-to-noise ratio (SNR). The DCNN architecture we designed makes good use of computing resources and has a good classification effect. The approach has good noise immunity and generalization. It can classify twelve kinds of modulation signals and an overall probability of successful recognition is more than 95% when the SNR is −9 dB.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2935247