Multi-Modal Stacked Denoising Autoencoder for Handling Missing Data in Healthcare Big Data

Supply and demand increase in response to healthcare trends. Moreover, personal health records (PHRs) are being managed by individuals. Such records are collected using different avenues and vary considerably in terms of their type and scope depending on the particular circumstances. As a result, so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 8; S. 104933 - 104943
Hauptverfasser: Kim, Joo-Chang, Chung, Kyungyong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Supply and demand increase in response to healthcare trends. Moreover, personal health records (PHRs) are being managed by individuals. Such records are collected using different avenues and vary considerably in terms of their type and scope depending on the particular circumstances. As a result, some data may be missing, which has a negative effect on the data analysis, and such data should, therefore, be replaced with appropriate values. In this study, a method for estimating missing data using a multi-modal autoencoder applied to the field of healthcare big data is proposed. The proposed method uses a stacked denoising autoencoder to estimate the missing data that occur during the data collection and processing stages. Autoencoders are neural networks that output value of x ^ similar to an input value of x. In the present study, data from the Korean National Health Nutrition Examination Survey (KNHNES), conducted by the Korea Centers for Disease Control and Prevention (KCDC), are used. As representative healthcare data from South Korea, they contain a large number of parameters identical to those used in the PHRs. Based on this, models can be generated to estimate missing data occurring in PHRs. Furthermore, PHRs involve a multi-modality that allows the data to be collected from multiple sources for a single object. Therefore, the stacked denoising autoencoder applied is configured under a multi-modal setting. Through pre-processing, a set of data without missing value in KNHNES is designed. In the data set based learning, a label is set as original data, and an autoencoder input is set as noised input that additionally has as many random zero numbers as noise factor. In this way, the autoencoder learns in the way of making the zero-based noise value similar to the original label value. When the amount of missing data in a dataset reaches approximately 25%, the accuracy of the proposed method using a multi-modal stacked denoising autoencoder is 0.9217, which is higher than that achieved by other ordinary methods. For a single-modal denoising autoencoder, the accuracy is 0.932, with a slight difference of approximately 0.01, which falls within the allowable limits in data analysis. In terms of computational performance, a single-modal autoencoder has 10,384 parameters, which is 5,594 more than those used in a multi-modal stacked autoencoder. These parameters affect the speed of the model. Both models exhibit a significant difference in the number of parameters but demonstrate a relatively small difference in accuracy, suggesting that the proposed multi-modal stacked denoising autoencoder is advantageous over a single-modal model when used on a personal device. Moreover, a multi-modal model can save additional time when processing large amounts of data in locations such as hospitals and institutions.
AbstractList Supply and demand increase in response to healthcare trends. Moreover, personal health records (PHRs) are being managed by individuals. Such records are collected using different avenues and vary considerably in terms of their type and scope depending on the particular circumstances. As a result, some data may be missing, which has a negative effect on the data analysis, and such data should, therefore, be replaced with appropriate values. In this study, a method for estimating missing data using a multi-modal autoencoder applied to the field of healthcare big data is proposed. The proposed method uses a stacked denoising autoencoder to estimate the missing data that occur during the data collection and processing stages. Autoencoders are neural networks that output value of x ^ similar to an input value of x. In the present study, data from the Korean National Health Nutrition Examination Survey (KNHNES), conducted by the Korea Centers for Disease Control and Prevention (KCDC), are used. As representative healthcare data from South Korea, they contain a large number of parameters identical to those used in the PHRs. Based on this, models can be generated to estimate missing data occurring in PHRs. Furthermore, PHRs involve a multi-modality that allows the data to be collected from multiple sources for a single object. Therefore, the stacked denoising autoencoder applied is configured under a multi-modal setting. Through pre-processing, a set of data without missing value in KNHNES is designed. In the data set based learning, a label is set as original data, and an autoencoder input is set as noised input that additionally has as many random zero numbers as noise factor. In this way, the autoencoder learns in the way of making the zero-based noise value similar to the original label value. When the amount of missing data in a dataset reaches approximately 25%, the accuracy of the proposed method using a multi-modal stacked denoising autoencoder is 0.9217, which is higher than that achieved by other ordinary methods. For a single-modal denoising autoencoder, the accuracy is 0.932, with a slight difference of approximately 0.01, which falls within the allowable limits in data analysis. In terms of computational performance, a single-modal autoencoder has 10,384 parameters, which is 5,594 more than those used in a multi-modal stacked autoencoder. These parameters affect the speed of the model. Both models exhibit a significant difference in the number of parameters but demonstrate a relatively small difference in accuracy, suggesting that the proposed multi-modal stacked denoising autoencoder is advantageous over a single-modal model when used on a personal device. Moreover, a multi-modal model can save additional time when processing large amounts of data in locations such as hospitals and institutions.
Author Kim, Joo-Chang
Chung, Kyungyong
Author_xml – sequence: 1
  givenname: Joo-Chang
  surname: Kim
  fullname: Kim, Joo-Chang
  organization: Department of Computer Science, Kyonggi University, Suwon-si, South Korea
– sequence: 2
  givenname: Kyungyong
  orcidid: 0000-0002-6439-9992
  surname: Chung
  fullname: Chung, Kyungyong
  email: dragonhci@gmail.com
  organization: Division of Computer Science and Engineering, Kyonggi University, Suwon-si, South Korea
BookMark eNqFkctOAyEYhYnRRK19gm4mcT2V2wywrPVSkzYuqhs3hAKj1BEqQxe-vbTTGONGNpDD-c5POOfg2AdvARghOEYIiqvJdHq7XI4xxHCMhWC4qo7AGUa1KElF6uNf51Mw7Lo1zItnqWJn4GWxbZMrF8Gotlgmpd-tKW6sD65z_rWYbFOwXgdjY9GEWMyUN-3uYuG6veFGJVU4X8ysatObVtEW166XL8BJo9rODg_7ADzf3T5NZ-X88f5hOpmXmkKeSs4Y0xgyRgzGWhNGG8qVqFeQaVIxBLng0FLdkFVtLMVGUEhXWiiiUV0bSAbgoc81Qa3lJroPFb9kUE7uhRBfpYrJ6dbKHIUoqnXdUErZinAKWZX_TCPKTGOanHXZZ21i-NzaLsl12Eafny8xrTKEBBfZRXqXjqHrom1-piIod53IvhO560QeOsmU-ENpl1RywaeoXPsPO-pZZ639mSagEJgj8g1MIpkv
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s00779_021_01602_8
crossref_primary_10_1145_3746456
crossref_primary_10_1109_ACCESS_2020_3037920
crossref_primary_10_1177_01445987231221877
crossref_primary_10_1016_j_jfca_2022_104638
crossref_primary_10_12688_f1000research_161477_2
crossref_primary_10_1109_ACCESS_2024_3357533
crossref_primary_10_12688_f1000research_161477_1
crossref_primary_10_1016_j_cosrev_2024_100720
crossref_primary_10_1016_j_jbi_2023_104295
crossref_primary_10_1007_s00500_022_07026_7
crossref_primary_10_1016_j_iot_2025_101642
crossref_primary_10_3390_s21227540
crossref_primary_10_1007_s00779_021_01558_9
crossref_primary_10_1142_S0219649224300018
crossref_primary_10_1371_journal_pcbi_1010718
crossref_primary_10_1007_s44163_025_00292_y
crossref_primary_10_1109_ACCESS_2020_3031762
crossref_primary_10_1007_s00371_021_02166_7
crossref_primary_10_1007_s00779_021_01552_1
crossref_primary_10_1016_j_neunet_2025_108061
crossref_primary_10_1002_cpe_6986
crossref_primary_10_1016_j_artmed_2023_102587
crossref_primary_10_1109_ACCESS_2021_3086103
crossref_primary_10_3390_data5040087
crossref_primary_10_1080_07391102_2024_2310785
crossref_primary_10_1109_ACCESS_2022_3160841
crossref_primary_10_1007_s11042_021_10649_x
crossref_primary_10_1109_ACCESS_2021_3102954
crossref_primary_10_1109_ACCESS_2021_3073775
crossref_primary_10_1109_ACCESS_2021_3068597
crossref_primary_10_3390_healthcare8030234
crossref_primary_10_1186_s13613_023_01154_5
Cites_doi 10.1016/j.neunet.2018.02.010
10.1007/978-3-319-10247-4_4
10.1007/s11277-018-5983-z
10.1002/sim.4780100410
10.1007/s10799-015-0241-5
10.1097/00002800-200611000-00005
10.1007/s10586-016-0531-7
10.1109/72.977258
10.1109/TII.2017.2766528
10.1007/s11277-016-3715-9
10.15607/RSS.2016.XII.041
10.1109/JAS.2017.7510583
10.1038/s41598-018-24271-9
10.1109/TAC.1997.633847
10.1109/TSC.2016.2597829
10.1109/JAS.2018.7511189
10.1007/s10586-013-0315-2
10.1177/1475921717699375
10.1016/j.csda.2009.11.023
10.1109/JIOT.2018.2823084
10.1109/TFUZZ.2017.2738605
10.2307/2346830
10.1007/s12083-017-0620-2
10.1056/NEJMp1500523
10.1145/1390156.1390294
10.1007/s12083-018-0631-7
10.3233/THC-191730
10.3233/THC-151118
10.1007/s10586-014-0376-x
10.1016/j.compbiomed.2009.06.004
10.3233/THC-191731
10.1109/TIM.2017.2698738
10.1109/ICDE.1995.380415
10.1007/s12652-018-0972-3
10.1007/s10799-015-0218-4
10.1007/s11042-012-1195-9
10.14778/2732296.2732301
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.2997255
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 104943
ExternalDocumentID oai_doaj_org_article_8981416c6f4447b384075299c147dfdf
10_1109_ACCESS_2020_2997255
9099281
Genre orig-research
GrantInformation_xml – fundername: Ministry of Land, Infrastructure, and Transport
  grantid: 20CTAP-C157011-01
  funderid: 10.13039/501100003565
– fundername: Korea Agency for Infrastructure Technology Advancement (KAIA)
  funderid: 10.13039/501100007694
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-8777c20773d22cc374f48a96b07c357108980e4cf3b6de42d9404bc9a3c166d03
IEDL.DBID RIE
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541044200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:17 EDT 2025
Sun Jun 29 16:05:46 EDT 2025
Sat Nov 29 04:13:45 EST 2025
Tue Nov 18 21:08:06 EST 2025
Wed Aug 27 02:38:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-8777c20773d22cc374f48a96b07c357108980e4cf3b6de42d9404bc9a3c166d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6439-9992
OpenAccessLink https://ieeexplore.ieee.org/document/9099281
PQID 2454441989
PQPubID 4845423
PageCount 11
ParticipantIDs crossref_primary_10_1109_ACCESS_2020_2997255
crossref_citationtrail_10_1109_ACCESS_2020_2997255
doaj_primary_oai_doaj_org_article_8981416c6f4447b384075299c147dfdf
proquest_journals_2454441989
ieee_primary_9099281
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref11
krizhevsky (ref17) 2012
ref32
ref10
ref2
ref1
ref39
ref38
ref19
witten (ref29) 2016
kurucz (ref22) 2007; 12
ref18
garcía (ref24) 2015
kingma (ref27) 2014
benesty (ref34) 2009
glorot (ref26) 2011
ref45
ref23
ref25
ref20
ref42
ref41
ref44
ref21
ref43
ref28
ref8
(ref16) 2020
ref7
ref9
ref4
ref3
ref6
ref5
ref40
kim (ref33) 2019; 13
References_xml – ident: ref41
  doi: 10.1016/j.neunet.2018.02.010
– start-page: 59
  year: 2015
  ident: ref24
  publication-title: Data Preprocessing in Data Mining
  doi: 10.1007/978-3-319-10247-4_4
– ident: ref32
  doi: 10.1007/s11277-018-5983-z
– ident: ref19
  doi: 10.1002/sim.4780100410
– start-page: 1
  year: 2009
  ident: ref34
  article-title: Pearson correlation coefficient
  publication-title: Noise Reduction in Speech Processing
– ident: ref11
  doi: 10.1007/s10799-015-0241-5
– ident: ref18
  doi: 10.1097/00002800-200611000-00005
– ident: ref28
  doi: 10.1007/s10586-016-0531-7
– volume: 12
  start-page: 31
  year: 2007
  ident: ref22
  article-title: Methods for large scale SVD with missing values
  publication-title: Proc KDD Cup Workshop
– ident: ref2
  doi: 10.1109/72.977258
– start-page: 1097
  year: 2012
  ident: ref17
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref40
  doi: 10.1109/TII.2017.2766528
– ident: ref14
  doi: 10.1007/s11277-016-3715-9
– ident: ref30
  doi: 10.15607/RSS.2016.XII.041
– ident: ref45
  doi: 10.1109/JAS.2017.7510583
– ident: ref20
  doi: 10.1038/s41598-018-24271-9
– ident: ref1
  doi: 10.1109/TAC.1997.633847
– ident: ref39
  doi: 10.1109/TSC.2016.2597829
– ident: ref38
  doi: 10.1109/JAS.2018.7511189
– year: 2014
  ident: ref27
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref15
  doi: 10.1007/s10586-013-0315-2
– ident: ref6
  doi: 10.1177/1475921717699375
– year: 2016
  ident: ref29
  publication-title: Data Mining Practical Machine Learning Tools and Techniques
– ident: ref21
  doi: 10.1016/j.csda.2009.11.023
– ident: ref43
  doi: 10.1109/JIOT.2018.2823084
– ident: ref44
  doi: 10.1109/TFUZZ.2017.2738605
– ident: ref35
  doi: 10.2307/2346830
– ident: ref12
  doi: 10.1007/s12083-017-0620-2
– ident: ref3
  doi: 10.1056/NEJMp1500523
– ident: ref25
  doi: 10.1145/1390156.1390294
– ident: ref9
  doi: 10.1007/s12083-018-0631-7
– ident: ref31
  doi: 10.3233/THC-191730
– ident: ref13
  doi: 10.3233/THC-151118
– ident: ref37
  doi: 10.1007/s10586-014-0376-x
– year: 2020
  ident: ref16
  publication-title: Korean National Health and Nutrition Examination Survey Korea Centers for Disease Control and Prevention
– ident: ref5
  doi: 10.1016/j.compbiomed.2009.06.004
– ident: ref36
  doi: 10.3233/THC-191731
– ident: ref42
  doi: 10.1109/TIM.2017.2698738
– volume: 13
  start-page: 2060
  year: 2019
  ident: ref33
  article-title: Prediction model of user physical activity using data characteristics-based long short-term memory recurrent neural networks
  publication-title: KSII Trans Internet Inf Syst
– start-page: 315
  year: 2011
  ident: ref26
  article-title: Deep sparse rectifier neural networks
  publication-title: Proc 14th Int Conf Artif Intell Statist
– ident: ref10
  doi: 10.1109/ICDE.1995.380415
– ident: ref23
  doi: 10.1007/s12652-018-0972-3
– ident: ref8
  doi: 10.1007/s10799-015-0218-4
– ident: ref4
  doi: 10.1007/s11042-012-1195-9
– ident: ref7
  doi: 10.14778/2732296.2732301
SSID ssj0000816957
Score 2.3333282
Snippet Supply and demand increase in response to healthcare trends. Moreover, personal health records (PHRs) are being managed by individuals. Such records are...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104933
SubjectTerms Accuracy
Autoencoder
Big Data
Computational modeling
Data analysis
Data collection
data estimation
data imputation
Data models
data pre-processing
Disease control
Estimation
health big data
Health care
Machine learning
Mathematical models
Medical services
Missing data
multi-modal
Neural networks
Noise factor
Noise reduction
Nutrition
Parameters
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqxKEcKgqt2EKRDxyb4tiT2D4uC6u9LOJAJdSL5fhDWgllqyXw-zuThNVKleiFUyTHceLn8fhNZL9h7KIBJRVYUegEUIANOOd8VEVdGx_ACyty7pNN6Ntb8_Bg73ZSfdGesEEeeADu0lhTImkIdQYA3SgMSHSFPjSUoGOOmbyv0HYnmOp9sClrW-lRZqgU9nI6m2GPMCCU4qek06J0uG9nKeoV-8cUK__45X6xmR-yTyNL5NPh6z6zD6k9Ygc72oHH7Hd_dLZYriNWRMqIszHy69SuVxT98-lztyaNypg2HHkpX5CaAt1YItJ0vfad56uWL7YbwPjVaij-wn7Nb-5ni2JMlFAEEKYrSNMvIApaRSlDUBoyGG_rRuigKuQQCKJIELJq6phARgsCmmC9CmVdR6G-sr123aYTxkU2KpaNp9ADfFbWRy8rkxJEiQzXT5h8xcyFUUWcklk8uj6aENYNQDsC2o1AT9iP7UN_BhGNt6tf0WBsq5ICdl-AduFGu3D_s4sJO6ah3DZikQpjDybs7HVo3Thbn5yEChuh3WPf3uPVp-wjdWf4UXPG9rrNc_rO9sNLt3ranPeG-heJTOWl
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-Modal Stacked Denoising Autoencoder for Handling Missing Data in Healthcare Big Data
URI https://ieeexplore.ieee.org/document/9099281
https://www.proquest.com/docview/2454441989
https://doaj.org/article/8981416c6f4447b384075299c147dfdf
Volume 8
WOSCitedRecordID wos000541044200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9wgEEVp1EN76Fdadds04tBjnGAYG3PcbBLtZaMeWinqBWHA0kqVHW28Pfa3dwYTK1KrSr3YFgYEPDAzY-YNY59bUFKBEYWOAAUYj2vOBVXUdeM8OGFE16VgE_rmprm9NV8O2OnsCxNjTIfP4hk9pn_5YfB7MpWdGxRnJPlZP9G6nny1ZnsKBZAwlc7EQqUw58vVCvuAKqAUZ5L8Q8md79Hmkzj6c1CVP77EaXu5fvl_DXvFXmQxki8n3F-zg9i_Yc8fkQsese_Jt7bYDAEzokyJyzXwy9gPWzIP8OV-HIjEMsQdR8GVr4lugV5sEAq6X7rR8W3P1_MJMX6xnZLfsm_XV19X6yJHUig8iGYsiPTPS6G1ClJ6rzR00DhTt0J7VaGQ0ZhGRPCdausQQQYDAlpvnPJlXQeh3rHDfujje8ZF16hQto50E3CdMi44WTUxQsARaN2CyYchtj7TjFO0ix82qRvC2AkXS7jYjMuCnc6F7iaWjX9nvyDs5qxEkZ0SEBSbV5zFLpUobfq6AwDdKtRkdYUV-BJ06EK3YEcE5FxJxnDBjh9mgs3L-d5KqLASOl724e-lPrJn1MDJNnPMDsfdPn5iT_3PcXu_O0mKPl43v65O0qz9DZ9l5ic
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYhLbQ5pI-0ZNO01aHHOJGlWcs6bjYNW5pdekgh9CJkPWAh2GXjze-PRlZMoKXQk40tCUmfxpoZa74h5EsDggtQrJAeoABlo8wZJ4qqqo0FwxQLISWbkKtVfXOjfuyQkzEWxnufDp_5U7xN__JdZ7foKjtTUZ3hGGf9DDNn5Wit0aOCKSTUVGZqoZKps9l8HkcRjUDOTjlGiGJA35PtJ7H057Qqf3yL0wZz-er_uvaa7GdFks4G5N-QHd--JXtP6AUPyK8UXVssOxcLRq0yCqyjF77t1uggoLNt3yGNpfMbGlVXukDCBXyxjGDg9cL0hq5buhjPiNHz9fD4Hfl5-fV6vihyLoXCAqv7Amn_LGdSCse5tUJCgNqoqmHSimlUM2pVMw82iKZyHrhTwKCxyghbVpVj4j3ZbbvWHxLKQi1c2Ri0TsAEoYwzfFp7Dy7OQGMmhD9OsbaZaBzzXdzqZHAwpQdcNOKiMy4TcjJW-j3wbPy7-DliNxZFkuz0IIKis8zpOKQy6pu2CgAgGxFtWTmNDdgSpAsuTMgBAjk2kjGckOPHlaCzQN9pDnHJAR4wO_p7rc_kxeJ6eaWvvq2-fyAvsbODp-aY7Pabrf9Intv7fn23-ZRW7QPqqudK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Modal+Stacked+Denoising+Autoencoder+for+Handling+Missing+Data+in+Healthcare+Big+Data&rft.jtitle=IEEE+access&rft.au=Kim%2C+Joo-Chang&rft.au=Chung%2C+Kyungyong&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=104933&rft.epage=104943&rft_id=info:doi/10.1109%2FACCESS.2020.2997255&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2997255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon