Multi-Modal Stacked Denoising Autoencoder for Handling Missing Data in Healthcare Big Data
Supply and demand increase in response to healthcare trends. Moreover, personal health records (PHRs) are being managed by individuals. Such records are collected using different avenues and vary considerably in terms of their type and scope depending on the particular circumstances. As a result, so...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 8; S. 104933 - 104943 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Supply and demand increase in response to healthcare trends. Moreover, personal health records (PHRs) are being managed by individuals. Such records are collected using different avenues and vary considerably in terms of their type and scope depending on the particular circumstances. As a result, some data may be missing, which has a negative effect on the data analysis, and such data should, therefore, be replaced with appropriate values. In this study, a method for estimating missing data using a multi-modal autoencoder applied to the field of healthcare big data is proposed. The proposed method uses a stacked denoising autoencoder to estimate the missing data that occur during the data collection and processing stages. Autoencoders are neural networks that output value of x ^ similar to an input value of x. In the present study, data from the Korean National Health Nutrition Examination Survey (KNHNES), conducted by the Korea Centers for Disease Control and Prevention (KCDC), are used. As representative healthcare data from South Korea, they contain a large number of parameters identical to those used in the PHRs. Based on this, models can be generated to estimate missing data occurring in PHRs. Furthermore, PHRs involve a multi-modality that allows the data to be collected from multiple sources for a single object. Therefore, the stacked denoising autoencoder applied is configured under a multi-modal setting. Through pre-processing, a set of data without missing value in KNHNES is designed. In the data set based learning, a label is set as original data, and an autoencoder input is set as noised input that additionally has as many random zero numbers as noise factor. In this way, the autoencoder learns in the way of making the zero-based noise value similar to the original label value. When the amount of missing data in a dataset reaches approximately 25%, the accuracy of the proposed method using a multi-modal stacked denoising autoencoder is 0.9217, which is higher than that achieved by other ordinary methods. For a single-modal denoising autoencoder, the accuracy is 0.932, with a slight difference of approximately 0.01, which falls within the allowable limits in data analysis. In terms of computational performance, a single-modal autoencoder has 10,384 parameters, which is 5,594 more than those used in a multi-modal stacked autoencoder. These parameters affect the speed of the model. Both models exhibit a significant difference in the number of parameters but demonstrate a relatively small difference in accuracy, suggesting that the proposed multi-modal stacked denoising autoencoder is advantageous over a single-modal model when used on a personal device. Moreover, a multi-modal model can save additional time when processing large amounts of data in locations such as hospitals and institutions. |
|---|---|
| AbstractList | Supply and demand increase in response to healthcare trends. Moreover, personal health records (PHRs) are being managed by individuals. Such records are collected using different avenues and vary considerably in terms of their type and scope depending on the particular circumstances. As a result, some data may be missing, which has a negative effect on the data analysis, and such data should, therefore, be replaced with appropriate values. In this study, a method for estimating missing data using a multi-modal autoencoder applied to the field of healthcare big data is proposed. The proposed method uses a stacked denoising autoencoder to estimate the missing data that occur during the data collection and processing stages. Autoencoders are neural networks that output value of x ^ similar to an input value of x. In the present study, data from the Korean National Health Nutrition Examination Survey (KNHNES), conducted by the Korea Centers for Disease Control and Prevention (KCDC), are used. As representative healthcare data from South Korea, they contain a large number of parameters identical to those used in the PHRs. Based on this, models can be generated to estimate missing data occurring in PHRs. Furthermore, PHRs involve a multi-modality that allows the data to be collected from multiple sources for a single object. Therefore, the stacked denoising autoencoder applied is configured under a multi-modal setting. Through pre-processing, a set of data without missing value in KNHNES is designed. In the data set based learning, a label is set as original data, and an autoencoder input is set as noised input that additionally has as many random zero numbers as noise factor. In this way, the autoencoder learns in the way of making the zero-based noise value similar to the original label value. When the amount of missing data in a dataset reaches approximately 25%, the accuracy of the proposed method using a multi-modal stacked denoising autoencoder is 0.9217, which is higher than that achieved by other ordinary methods. For a single-modal denoising autoencoder, the accuracy is 0.932, with a slight difference of approximately 0.01, which falls within the allowable limits in data analysis. In terms of computational performance, a single-modal autoencoder has 10,384 parameters, which is 5,594 more than those used in a multi-modal stacked autoencoder. These parameters affect the speed of the model. Both models exhibit a significant difference in the number of parameters but demonstrate a relatively small difference in accuracy, suggesting that the proposed multi-modal stacked denoising autoencoder is advantageous over a single-modal model when used on a personal device. Moreover, a multi-modal model can save additional time when processing large amounts of data in locations such as hospitals and institutions. |
| Author | Kim, Joo-Chang Chung, Kyungyong |
| Author_xml | – sequence: 1 givenname: Joo-Chang surname: Kim fullname: Kim, Joo-Chang organization: Department of Computer Science, Kyonggi University, Suwon-si, South Korea – sequence: 2 givenname: Kyungyong orcidid: 0000-0002-6439-9992 surname: Chung fullname: Chung, Kyungyong email: dragonhci@gmail.com organization: Division of Computer Science and Engineering, Kyonggi University, Suwon-si, South Korea |
| BookMark | eNqFkctOAyEYhYnRRK19gm4mcT2V2wywrPVSkzYuqhs3hAKj1BEqQxe-vbTTGONGNpDD-c5POOfg2AdvARghOEYIiqvJdHq7XI4xxHCMhWC4qo7AGUa1KElF6uNf51Mw7Lo1zItnqWJn4GWxbZMrF8Gotlgmpd-tKW6sD65z_rWYbFOwXgdjY9GEWMyUN-3uYuG6veFGJVU4X8ysatObVtEW166XL8BJo9rODg_7ADzf3T5NZ-X88f5hOpmXmkKeSs4Y0xgyRgzGWhNGG8qVqFeQaVIxBLng0FLdkFVtLMVGUEhXWiiiUV0bSAbgoc81Qa3lJroPFb9kUE7uhRBfpYrJ6dbKHIUoqnXdUErZinAKWZX_TCPKTGOanHXZZ21i-NzaLsl12Eafny8xrTKEBBfZRXqXjqHrom1-piIod53IvhO560QeOsmU-ENpl1RywaeoXPsPO-pZZ639mSagEJgj8g1MIpkv |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s00779_021_01602_8 crossref_primary_10_1145_3746456 crossref_primary_10_1109_ACCESS_2020_3037920 crossref_primary_10_1177_01445987231221877 crossref_primary_10_1016_j_jfca_2022_104638 crossref_primary_10_12688_f1000research_161477_2 crossref_primary_10_1109_ACCESS_2024_3357533 crossref_primary_10_12688_f1000research_161477_1 crossref_primary_10_1016_j_cosrev_2024_100720 crossref_primary_10_1016_j_jbi_2023_104295 crossref_primary_10_1007_s00500_022_07026_7 crossref_primary_10_1016_j_iot_2025_101642 crossref_primary_10_3390_s21227540 crossref_primary_10_1007_s00779_021_01558_9 crossref_primary_10_1142_S0219649224300018 crossref_primary_10_1371_journal_pcbi_1010718 crossref_primary_10_1007_s44163_025_00292_y crossref_primary_10_1109_ACCESS_2020_3031762 crossref_primary_10_1007_s00371_021_02166_7 crossref_primary_10_1007_s00779_021_01552_1 crossref_primary_10_1016_j_neunet_2025_108061 crossref_primary_10_1002_cpe_6986 crossref_primary_10_1016_j_artmed_2023_102587 crossref_primary_10_1109_ACCESS_2021_3086103 crossref_primary_10_3390_data5040087 crossref_primary_10_1080_07391102_2024_2310785 crossref_primary_10_1109_ACCESS_2022_3160841 crossref_primary_10_1007_s11042_021_10649_x crossref_primary_10_1109_ACCESS_2021_3102954 crossref_primary_10_1109_ACCESS_2021_3073775 crossref_primary_10_1109_ACCESS_2021_3068597 crossref_primary_10_3390_healthcare8030234 crossref_primary_10_1186_s13613_023_01154_5 |
| Cites_doi | 10.1016/j.neunet.2018.02.010 10.1007/978-3-319-10247-4_4 10.1007/s11277-018-5983-z 10.1002/sim.4780100410 10.1007/s10799-015-0241-5 10.1097/00002800-200611000-00005 10.1007/s10586-016-0531-7 10.1109/72.977258 10.1109/TII.2017.2766528 10.1007/s11277-016-3715-9 10.15607/RSS.2016.XII.041 10.1109/JAS.2017.7510583 10.1038/s41598-018-24271-9 10.1109/TAC.1997.633847 10.1109/TSC.2016.2597829 10.1109/JAS.2018.7511189 10.1007/s10586-013-0315-2 10.1177/1475921717699375 10.1016/j.csda.2009.11.023 10.1109/JIOT.2018.2823084 10.1109/TFUZZ.2017.2738605 10.2307/2346830 10.1007/s12083-017-0620-2 10.1056/NEJMp1500523 10.1145/1390156.1390294 10.1007/s12083-018-0631-7 10.3233/THC-191730 10.3233/THC-151118 10.1007/s10586-014-0376-x 10.1016/j.compbiomed.2009.06.004 10.3233/THC-191731 10.1109/TIM.2017.2698738 10.1109/ICDE.1995.380415 10.1007/s12652-018-0972-3 10.1007/s10799-015-0218-4 10.1007/s11042-012-1195-9 10.14778/2732296.2732301 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2020.2997255 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 104943 |
| ExternalDocumentID | oai_doaj_org_article_8981416c6f4447b384075299c147dfdf 10_1109_ACCESS_2020_2997255 9099281 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Land, Infrastructure, and Transport grantid: 20CTAP-C157011-01 funderid: 10.13039/501100003565 – fundername: Korea Agency for Infrastructure Technology Advancement (KAIA) funderid: 10.13039/501100007694 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-8777c20773d22cc374f48a96b07c357108980e4cf3b6de42d9404bc9a3c166d03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541044200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:17 EDT 2025 Sun Jun 29 16:05:46 EDT 2025 Sat Nov 29 04:13:45 EST 2025 Tue Nov 18 21:08:06 EST 2025 Wed Aug 27 02:38:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-8777c20773d22cc374f48a96b07c357108980e4cf3b6de42d9404bc9a3c166d03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6439-9992 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9099281 |
| PQID | 2454441989 |
| PQPubID | 4845423 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2020_2997255 crossref_citationtrail_10_1109_ACCESS_2020_2997255 doaj_primary_oai_doaj_org_article_8981416c6f4447b384075299c147dfdf proquest_journals_2454441989 ieee_primary_9099281 |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref11 krizhevsky (ref17) 2012 ref32 ref10 ref2 ref1 ref39 ref38 ref19 witten (ref29) 2016 kurucz (ref22) 2007; 12 ref18 garcía (ref24) 2015 kingma (ref27) 2014 benesty (ref34) 2009 glorot (ref26) 2011 ref45 ref23 ref25 ref20 ref42 ref41 ref44 ref21 ref43 ref28 ref8 (ref16) 2020 ref7 ref9 ref4 ref3 ref6 ref5 ref40 kim (ref33) 2019; 13 |
| References_xml | – ident: ref41 doi: 10.1016/j.neunet.2018.02.010 – start-page: 59 year: 2015 ident: ref24 publication-title: Data Preprocessing in Data Mining doi: 10.1007/978-3-319-10247-4_4 – ident: ref32 doi: 10.1007/s11277-018-5983-z – ident: ref19 doi: 10.1002/sim.4780100410 – start-page: 1 year: 2009 ident: ref34 article-title: Pearson correlation coefficient publication-title: Noise Reduction in Speech Processing – ident: ref11 doi: 10.1007/s10799-015-0241-5 – ident: ref18 doi: 10.1097/00002800-200611000-00005 – ident: ref28 doi: 10.1007/s10586-016-0531-7 – volume: 12 start-page: 31 year: 2007 ident: ref22 article-title: Methods for large scale SVD with missing values publication-title: Proc KDD Cup Workshop – ident: ref2 doi: 10.1109/72.977258 – start-page: 1097 year: 2012 ident: ref17 article-title: Imagenet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref40 doi: 10.1109/TII.2017.2766528 – ident: ref14 doi: 10.1007/s11277-016-3715-9 – ident: ref30 doi: 10.15607/RSS.2016.XII.041 – ident: ref45 doi: 10.1109/JAS.2017.7510583 – ident: ref20 doi: 10.1038/s41598-018-24271-9 – ident: ref1 doi: 10.1109/TAC.1997.633847 – ident: ref39 doi: 10.1109/TSC.2016.2597829 – ident: ref38 doi: 10.1109/JAS.2018.7511189 – year: 2014 ident: ref27 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref15 doi: 10.1007/s10586-013-0315-2 – ident: ref6 doi: 10.1177/1475921717699375 – year: 2016 ident: ref29 publication-title: Data Mining Practical Machine Learning Tools and Techniques – ident: ref21 doi: 10.1016/j.csda.2009.11.023 – ident: ref43 doi: 10.1109/JIOT.2018.2823084 – ident: ref44 doi: 10.1109/TFUZZ.2017.2738605 – ident: ref35 doi: 10.2307/2346830 – ident: ref12 doi: 10.1007/s12083-017-0620-2 – ident: ref3 doi: 10.1056/NEJMp1500523 – ident: ref25 doi: 10.1145/1390156.1390294 – ident: ref9 doi: 10.1007/s12083-018-0631-7 – ident: ref31 doi: 10.3233/THC-191730 – ident: ref13 doi: 10.3233/THC-151118 – ident: ref37 doi: 10.1007/s10586-014-0376-x – year: 2020 ident: ref16 publication-title: Korean National Health and Nutrition Examination Survey Korea Centers for Disease Control and Prevention – ident: ref5 doi: 10.1016/j.compbiomed.2009.06.004 – ident: ref36 doi: 10.3233/THC-191731 – ident: ref42 doi: 10.1109/TIM.2017.2698738 – volume: 13 start-page: 2060 year: 2019 ident: ref33 article-title: Prediction model of user physical activity using data characteristics-based long short-term memory recurrent neural networks publication-title: KSII Trans Internet Inf Syst – start-page: 315 year: 2011 ident: ref26 article-title: Deep sparse rectifier neural networks publication-title: Proc 14th Int Conf Artif Intell Statist – ident: ref10 doi: 10.1109/ICDE.1995.380415 – ident: ref23 doi: 10.1007/s12652-018-0972-3 – ident: ref8 doi: 10.1007/s10799-015-0218-4 – ident: ref4 doi: 10.1007/s11042-012-1195-9 – ident: ref7 doi: 10.14778/2732296.2732301 |
| SSID | ssj0000816957 |
| Score | 2.3333282 |
| Snippet | Supply and demand increase in response to healthcare trends. Moreover, personal health records (PHRs) are being managed by individuals. Such records are... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 104933 |
| SubjectTerms | Accuracy Autoencoder Big Data Computational modeling Data analysis Data collection data estimation data imputation Data models data pre-processing Disease control Estimation health big data Health care Machine learning Mathematical models Medical services Missing data multi-modal Neural networks Noise factor Noise reduction Nutrition Parameters |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqxKEcKgqt2EKRDxyb4tiT2D4uC6u9LOJAJdSL5fhDWgllqyXw-zuThNVKleiFUyTHceLn8fhNZL9h7KIBJRVYUegEUIANOOd8VEVdGx_ACyty7pNN6Ntb8_Bg73ZSfdGesEEeeADu0lhTImkIdQYA3SgMSHSFPjSUoGOOmbyv0HYnmOp9sClrW-lRZqgU9nI6m2GPMCCU4qek06J0uG9nKeoV-8cUK__45X6xmR-yTyNL5NPh6z6zD6k9Ygc72oHH7Hd_dLZYriNWRMqIszHy69SuVxT98-lztyaNypg2HHkpX5CaAt1YItJ0vfad56uWL7YbwPjVaij-wn7Nb-5ni2JMlFAEEKYrSNMvIApaRSlDUBoyGG_rRuigKuQQCKJIELJq6phARgsCmmC9CmVdR6G-sr123aYTxkU2KpaNp9ADfFbWRy8rkxJEiQzXT5h8xcyFUUWcklk8uj6aENYNQDsC2o1AT9iP7UN_BhGNt6tf0WBsq5ICdl-AduFGu3D_s4sJO6ah3DZikQpjDybs7HVo3Thbn5yEChuh3WPf3uPVp-wjdWf4UXPG9rrNc_rO9sNLt3ranPeG-heJTOWl priority: 102 providerName: Directory of Open Access Journals |
| Title | Multi-Modal Stacked Denoising Autoencoder for Handling Missing Data in Healthcare Big Data |
| URI | https://ieeexplore.ieee.org/document/9099281 https://www.proquest.com/docview/2454441989 https://doaj.org/article/8981416c6f4447b384075299c147dfdf |
| Volume | 8 |
| WOSCitedRecordID | wos000541044200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9wgEEVp1EN76Fdadds04tBjnGAYG3PcbBLtZaMeWinqBWHA0kqVHW28Pfa3dwYTK1KrSr3YFgYEPDAzY-YNY59bUFKBEYWOAAUYj2vOBVXUdeM8OGFE16VgE_rmprm9NV8O2OnsCxNjTIfP4hk9pn_5YfB7MpWdGxRnJPlZP9G6nny1ZnsKBZAwlc7EQqUw58vVCvuAKqAUZ5L8Q8md79Hmkzj6c1CVP77EaXu5fvl_DXvFXmQxki8n3F-zg9i_Yc8fkQsese_Jt7bYDAEzokyJyzXwy9gPWzIP8OV-HIjEMsQdR8GVr4lugV5sEAq6X7rR8W3P1_MJMX6xnZLfsm_XV19X6yJHUig8iGYsiPTPS6G1ClJ6rzR00DhTt0J7VaGQ0ZhGRPCdausQQQYDAlpvnPJlXQeh3rHDfujje8ZF16hQto50E3CdMi44WTUxQsARaN2CyYchtj7TjFO0ix82qRvC2AkXS7jYjMuCnc6F7iaWjX9nvyDs5qxEkZ0SEBSbV5zFLpUobfq6AwDdKtRkdYUV-BJ06EK3YEcE5FxJxnDBjh9mgs3L-d5KqLASOl724e-lPrJn1MDJNnPMDsfdPn5iT_3PcXu_O0mKPl43v65O0qz9DZ9l5ic |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYhLbQ5pI-0ZNO01aHHOJGlWcs6bjYNW5pdekgh9CJkPWAh2GXjze-PRlZMoKXQk40tCUmfxpoZa74h5EsDggtQrJAeoABlo8wZJ4qqqo0FwxQLISWbkKtVfXOjfuyQkzEWxnufDp_5U7xN__JdZ7foKjtTUZ3hGGf9DDNn5Wit0aOCKSTUVGZqoZKps9l8HkcRjUDOTjlGiGJA35PtJ7H057Qqf3yL0wZz-er_uvaa7GdFks4G5N-QHd--JXtP6AUPyK8UXVssOxcLRq0yCqyjF77t1uggoLNt3yGNpfMbGlVXukDCBXyxjGDg9cL0hq5buhjPiNHz9fD4Hfl5-fV6vihyLoXCAqv7Amn_LGdSCse5tUJCgNqoqmHSimlUM2pVMw82iKZyHrhTwKCxyghbVpVj4j3ZbbvWHxLKQi1c2Ri0TsAEoYwzfFp7Dy7OQGMmhD9OsbaZaBzzXdzqZHAwpQdcNOKiMy4TcjJW-j3wbPy7-DliNxZFkuz0IIKis8zpOKQy6pu2CgAgGxFtWTmNDdgSpAsuTMgBAjk2kjGckOPHlaCzQN9pDnHJAR4wO_p7rc_kxeJ6eaWvvq2-fyAvsbODp-aY7Pabrf9Intv7fn23-ZRW7QPqqudK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Modal+Stacked+Denoising+Autoencoder+for+Handling+Missing+Data+in+Healthcare+Big+Data&rft.jtitle=IEEE+access&rft.au=Kim%2C+Joo-Chang&rft.au=Chung%2C+Kyungyong&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=104933&rft.epage=104943&rft_id=info:doi/10.1109%2FACCESS.2020.2997255&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2997255 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |