Incremental Dual Heuristic Dynamic Programming Based Hybrid Approach for Multi-Channel Control of Unstable Tailless Aircraft

Actor-critic based online reinforcement learning control has been proved to be promising method for control of aerial vehicles. However, it is difficult to guarantee high-level success rate of initial training and to tune the large amount of parameters for actors and critics considering unstable mul...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 10; s. 31677 - 31691
Hlavní autori: Li, Hangxu, Sun, Liguo, Tan, Wenqian, Liu, Xiaoyu, Dang, Weigao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Actor-critic based online reinforcement learning control has been proved to be promising method for control of aerial vehicles. However, it is difficult to guarantee high-level success rate of initial training and to tune the large amount of parameters for actors and critics considering unstable multi-input and multi-output (MIMO) aircraft. In order to facilitate and simplify the training of the actor and critic for unstable aircraft, classic stability augmentation system (SAS) is designed for the open-loop aircraft first. Then the online incremental model based dual heuristic dynamic programming (IDHP) method, which has been proposed recently, is extended in application to design a multi-channel robust adaptive controller, and MIMO form network structures are designed and determined for the actors and critics considering the three-channel coupling issues. Consequently, the classic SAS and the IDHP controller make up a novel hybrid control framework. In this control framework, the SAS takes charge of counteracting the unstable eigenvalues of the open-loop aircraft system, and the IDHP takes charge on guaranteeing robust and adaptive performance for high-performance tailless aircraft equipped with the SAS. Specifically, the introduction of the classic control method decreases the difficulty of the initial training for multi-channel IDHP controller. The tuning process for initial parameters of actor and critic neural networks in multiple channels is greatly facilitated. Without the help of SAS, the initial training for multi-channel IDHP controllers of unstable plants is almost impossible to succeed. Finally, the novel hybrid control architecture and method are validated using the Innovative Control Effectors (ICE) model, which has unstable modes in the longitudinal dynamics. Typical aerodynamic model uncertainties are numerically simulated to demonstrate the effectiveness of the proposed control method.
AbstractList Actor-critic based online reinforcement learning control has been proved to be promising method for control of aerial vehicles. However, it is difficult to guarantee high-level success rate of initial training and to tune the large amount of parameters for actors and critics considering unstable multi-input and multi-output (MIMO) aircraft. In order to facilitate and simplify the training of the actor and critic for unstable aircraft, classic stability augmentation system (SAS) is designed for the open-loop aircraft first. Then the online incremental model based dual heuristic dynamic programming (IDHP) method, which has been proposed recently, is extended in application to design a multi-channel robust adaptive controller, and MIMO form network structures are designed and determined for the actors and critics considering the three-channel coupling issues. Consequently, the classic SAS and the IDHP controller make up a novel hybrid control framework. In this control framework, the SAS takes charge of counteracting the unstable eigenvalues of the open-loop aircraft system, and the IDHP takes charge on guaranteeing robust and adaptive performance for high-performance tailless aircraft equipped with the SAS. Specifically, the introduction of the classic control method decreases the difficulty of the initial training for multi-channel IDHP controller. The tuning process for initial parameters of actor and critic neural networks in multiple channels is greatly facilitated. Without the help of SAS, the initial training for multi-channel IDHP controllers of unstable plants is almost impossible to succeed. Finally, the novel hybrid control architecture and method are validated using the Innovative Control Effectors (ICE) model, which has unstable modes in the longitudinal dynamics. Typical aerodynamic model uncertainties are numerically simulated to demonstrate the effectiveness of the proposed control method.
Author Li, Hangxu
Sun, Liguo
Liu, Xiaoyu
Tan, Wenqian
Dang, Weigao
Author_xml – sequence: 1
  givenname: Hangxu
  orcidid: 0000-0003-3321-2248
  surname: Li
  fullname: Li, Hangxu
  organization: School of Aeronautic Science and Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Liguo
  orcidid: 0000-0002-5552-8289
  surname: Sun
  fullname: Sun, Liguo
  organization: School of Aeronautic Science and Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Wenqian
  orcidid: 0000-0002-8147-5731
  surname: Tan
  fullname: Tan, Wenqian
  email: tanwenqian@buaa.edu.cn
  organization: School of Aeronautic Science and Engineering, Beihang University, Beijing, China
– sequence: 4
  givenname: Xiaoyu
  orcidid: 0000-0002-5200-9563
  surname: Liu
  fullname: Liu, Xiaoyu
  organization: School of Aeronautic Science and Engineering, Beihang University, Beijing, China
– sequence: 5
  givenname: Weigao
  surname: Dang
  fullname: Dang, Weigao
  organization: School of Aeronautic Science and Engineering, Beihang University, Beijing, China
BookMark eNp9UU1r3DAQNSGFpEl-QS6Cnr3VlyXruHXS7kJKA0nOQpLljRZb2kryYaE_vto6LaWHzmFGesx7zMx7X5374G1V3SK4QgiKj-uuu396WmGI8Yqghre8PasuMWKiJg1h53-9L6qblPawRFughl9WP7beRDtZn9UI7uaSNnaOLmVnwN3Rq6nUxxh2UU2T8zvwSSXbg81RR9eD9eEQgzKvYAgRfJ3H7OruVXlvR9AFn2MYQRjAi09Z6dGCZ-XG0aYE1i6aqIZ8Xb0b1JjszVu9ql4-3z93m_rh25dtt36oDYVtrltGBwip0Aw1TDPKucG6UYpZjFtKyscO3GjKNWkY1HwQqsCsJxw3AglNrqrtotsHtZeH6CYVjzIoJ38BIe6kimXj0cq-pZoRLWzDB0pErzWllDFlWMst6mnR-rBoldW_zzZluQ9z9GV8iRklEDeIkNIlli4TQ0rRDtK4rLI7XaVcQSIoT97JxTt58k6-eVe45B_u74n_z7pdWM5a-4chOKGQYPITci2nOw
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_aerospace10030241
crossref_primary_10_3390_drones7050294
Cites_doi 10.1016/j.ast.2020.106013
10.1109/72.914523
10.1109/TSG.2014.2346740
10.1016/j.ast.2020.106233
10.2514/1.G003472
10.2514/6.2006-6429
10.1016/j.ast.2020.106126
10.1016/j.cja.2020.02.020
10.2514/6.2020-1844
10.1016/j.ast.2020.105986
10.2514/6.2019-2339
10.1016/j.conengprac.2017.12.011
10.1109/MCI.2009.932261
10.2514/6.2017-1757
10.2514/6.2021-0884
10.1016/j.ins.2012.07.014
10.1109/CDC.2002.1184694
10.1109/TNN.2003.813839
10.1109/TIE.2017.2653767
10.1109/72.623201
10.2514/1.G004519
10.1109/TNN.2002.1000146
10.1109/ICARES.2019.8914343
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3157878
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE/IET Electronic Library (IEL)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 31691
ExternalDocumentID oai_doaj_org_article_d84b63b9e57f439dbb44466ac687e1d4
10_1109_ACCESS_2022_3157878
9734032
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11502008
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities of China
  grantid: YWF-21-BJ-J-809
  funderid: 10.13039/501100012226
– fundername: Aeronautical Science Foundation of China
  grantid: 20185702003
  funderid: 10.13039/501100004750
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-864f0049b6156b6477c2b5aa6e22843c2bef7cb47b3560b7f9a8436d3725919b3
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000773237500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:44 EDT 2025
Mon Jun 30 03:13:52 EDT 2025
Sat Nov 29 06:31:59 EST 2025
Tue Nov 18 21:49:03 EST 2025
Wed Aug 27 02:40:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-864f0049b6156b6477c2b5aa6e22843c2bef7cb47b3560b7f9a8436d3725919b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5552-8289
0000-0003-3321-2248
0000-0002-8147-5731
0000-0002-5200-9563
OpenAccessLink https://doaj.org/article/d84b63b9e57f439dbb44466ac687e1d4
PQID 2643025133
PQPubID 4845423
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2022_3157878
doaj_primary_oai_doaj_org_article_d84b63b9e57f439dbb44466ac687e1d4
crossref_primary_10_1109_ACCESS_2022_3157878
proquest_journals_2643025133
ieee_primary_9734032
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
Kirk (ref20) 2012
ref2
ref1
ref17
ref16
ref19
ref18
ref26
ref25
ref22
ref21
ref8
ref7
ref9
Dorsett (ref23) 1996
Dorsett (ref24) 1997
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1016/j.ast.2020.106013
– ident: ref5
  doi: 10.1109/72.914523
– ident: ref8
  doi: 10.1109/TSG.2014.2346740
– ident: ref9
  doi: 10.1016/j.ast.2020.106233
– ident: ref12
  doi: 10.2514/1.G003472
– ident: ref21
  doi: 10.2514/6.2006-6429
– ident: ref18
  doi: 10.1016/j.ast.2020.106126
– ident: ref25
  doi: 10.1016/j.cja.2020.02.020
– ident: ref16
  doi: 10.2514/6.2020-1844
– ident: ref19
  doi: 10.1016/j.ast.2020.105986
– ident: ref15
  doi: 10.2514/6.2019-2339
– volume-title: Optimal Control Theory: An Introduction
  year: 2012
  ident: ref20
– ident: ref6
  doi: 10.1016/j.conengprac.2017.12.011
– ident: ref17
  doi: 10.1109/MCI.2009.932261
– year: 1997
  ident: ref24
  article-title: Innovative control effectors (ICE) phase III
– ident: ref22
  doi: 10.2514/6.2017-1757
– ident: ref10
  doi: 10.2514/6.2021-0884
– ident: ref2
  doi: 10.1016/j.ins.2012.07.014
– ident: ref26
  doi: 10.1109/CDC.2002.1184694
– ident: ref7
  doi: 10.1109/TNN.2003.813839
– year: 1996
  ident: ref23
  article-title: Innovative control effectors (ICE)
– ident: ref1
  doi: 10.1109/TIE.2017.2653767
– ident: ref3
  doi: 10.1109/72.623201
– ident: ref14
  doi: 10.2514/1.G004519
– ident: ref4
  doi: 10.1109/TNN.2002.1000146
– ident: ref11
  doi: 10.1109/ICARES.2019.8914343
SSID ssj0000816957
Score 2.249511
Snippet Actor-critic based online reinforcement learning control has been proved to be promising method for control of aerial vehicles. However, it is difficult to...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 31677
SubjectTerms actor and critic
Adaptation models
Adaptive control
Aerospace control
Aircraft
Aircraft control
Aircraft performance
Aircraft stability
Atmospheric modeling
Augmentation systems
Control methods
Controllers
Critics
Dynamic programming
Eigenvalues
Heuristic
Hybrid control
Incremental DHP
Mathematical models
MIMO communication
MIMO control
Neural networks
Process parameters
reinforcement learning
Robust control
Stability augmentation
Synthetic aperture sonar
Tailless aircraft
Training
unstable aircraft
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PSxwxFA4qPeihtbXitlZy6NHR2Uk2mRzXtbKHIh4UvIX8eAPCdlf2hyD0j-97SRxaWoRehpmQDBm-ZN77krzvMfY1SCNdFHXllI-VNMpVBoSo2oC-RduJoY9JZ_a7vr5u7-_NzRY77WNhACAdPoMzuk17-XERNrRUdm60kLXAH-621irHavXrKZRAwox0ERYa1uZ8PJngNyAFbBpkpjQy2z-MT9LoL0lV_voTJ_Ny9e7_OrbP3hY3ko8z7u_ZFsw_sL3fxAUP2E-c-nnxDytebvAyhU3WZeaXOQ89v8mns35gA36B9izy6TOFcPFxkRrn6NPyFKRbURzCHGZ8kg-380XH78i39DPgt45CClcrPn5YhqXr1h_Z3dW328m0KrkWqiDrdl21SnbEFjx6OMpTdGpo_Mg5BQ0aMIEP0OngpfYCfSSvO-OwWEWhkT8NjReHbGe-mMMR41FLV7ca0CYGJH_S1IBsNxgHjdPG6wFrXkCwoQiRUz6MmU2EpDY2I2cJOVuQG7DTvtFj1uF4vfoFodtXJRHtVICw2TInbWylV8IbGOkO_bLovaTdbRcU9T7KATsgqPuXFJQH7PhlrNgy4VcW_UpBdE2IT_9u9ZntUgfz6s0x21kvN_CFvQlP64fV8iSN5V_WC_Gu
  priority: 102
  providerName: IEEE
Title Incremental Dual Heuristic Dynamic Programming Based Hybrid Approach for Multi-Channel Control of Unstable Tailless Aircraft
URI https://ieeexplore.ieee.org/document/9734032
https://www.proquest.com/docview/2643025133
https://doaj.org/article/d84b63b9e57f439dbb44466ac687e1d4
Volume 10
WOSCitedRecordID wos000773237500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFA8iPeihtFVxWys59NjBmUk2H8fdVdmDXfag4C3ka0BY17IfBUH6t_e9JC4rBb14CcyQzEzyXvLeL5P3e4T88FxzG1hdWeFCxbWwlY6MVcqDb6E61riQeGav5GSibm_1dCvVF54Jy_TAeeDOguJOMKdjX3ZgPINzHH9BWi-UjE1ITKC11FtgKq3BqhG6LwvNUFPrs8FoBD0CQNi2gFNRT9ULU5QY-0uKlf_W5WRsLj-Rj8VLpIP8dZ_JTpx_Iftb3IEH5Almdt7bg4rnayjGcZ1pl-l5TjNPp_nw1T00oEMwV4GOHzFCiw4KkzgFl5WmGNwKwwzmcUZH-ew6fejoDbqObhbptcWIweWSDu4WfmG71SG5uby4Ho2rkkqh8rxWq0oJ3iEYcODACIfBp751fWtFbME-MbiInfSOS8fABXKy0xZui8AkwKNGO3ZEducP83hMaJDc1jj2LfOA7biuI4BZr21srdRO9kj7PKrGF55xTHcxMwlv1NpkURgUhSmi6JGfm0a_M83G69WHKK5NVeTITjdAc0zRHPOW5vTIAQp78xAtGa9Z2yMnz8I3ZT4vDbiNDNEYY1_f49XfyB52J2_lnJDd1WIdv5MP_s_qbrk4TaoM5a-_F6cpIPEfKRP3FA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PaxQxFH6UWtAetFrF1Vpz8Nixs5PsZHLcbi1bXJcettBbyK-Bwror-6NQ6B_ve0k6KIrgZZgJyZDhS-a9L8n7HsAnJ5QwnpeFqa0vhKpNoQLnRePQt2ha3rc-6sxO5HTa3Nyoqx046WJhQgjx8Fn4TLdxL98v3ZaWyk6V5KLk-MN9MhCiKlO0VreiQikk1EBmaaF-qU6HoxF-BZLAqkJuSmOz-c38RJX-nFblj39xNDAXL_6vawfwPDuSbJiQfwk7YfEK9n-RFzyEB5z8afkPK55v8TIO26TMzM5TJnp2lc5nfccG7AwtmmfjewriYsMsNs7Qq2UxTLegSIRFmLNROt7Oli27Ju_SzgObGQoqXK_Z8HblVqbdvIbriy-z0bjI2RYKJ8pmUzS1aIkvWPRxakvxqa6yA2PqUKEJ4_gQWumskJajl2RlqwwW155LZFB9Zfkb2F0sF-EtMC-FKRsZ0Co6pH9ClQH5rlMmVEYqK3tQPYKgXZYip4wYcx0pSal0Qk4Tcjoj14OTrtGPpMTx7-pnhG5XlWS0YwHCpvOs1L4RtuZWhYFs0TPz1gra3zaupt570YNDgrp7SUa5B0ePY0XnKb_W6FlyImycv_t7q4_wdDz7NtGTy-nX9_CMOpvWco5gd7Pahg-w5-42t-vVcRzXPwGJkPT1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incremental+Dual+Heuristic+Dynamic+Programming+Based+Hybrid+Approach+for+Multi-Channel+Control+of+Unstable+Tailless+Aircraft&rft.jtitle=IEEE+access&rft.au=Li%2C+Hangxu&rft.au=Sun%2C+Liguo&rft.au=Tan%2C+Wenqian&rft.au=Liu%2C+Xiaoyu&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=31677&rft.epage=31691&rft_id=info:doi/10.1109%2FACCESS.2022.3157878&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3157878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon