Multi-Layered Basis Pursuit Algorithms for Classification of MR Images of Knee ACL Tear

Deep learning architectures have been extensively used in recent years for the classification of biomedical images to assist clinicians for diagnosis and treatment management of patients with different health conditions. These architectures have demonstrated expert level diagnosis, and in some cases...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 8; S. 205424 - 205435
Hauptverfasser: Wahid, Abdul, Shah, Jawad Ali, Khan, Adnan Umar, Ullah, Mukhtar, Ayob, Mohd Zaki
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep learning architectures have been extensively used in recent years for the classification of biomedical images to assist clinicians for diagnosis and treatment management of patients with different health conditions. These architectures have demonstrated expert level diagnosis, and in some cases, surpassed human experts in diagnosing health conditions. The automation tools based on deep learning frameworks have the potential to transform all stages of medical imaging pipeline from image acquisition to interpretation and analysis. One of the most common areas where these techniques are applied is knee MR image classification for different types of Anterior Cruciate Ligament (ACL) tears. If properly and timely managed, the diagnosis and treatment of ACL tear can avoid further degradation of patients' knee joints and can also help slow the process of subsequent knee arthritis. In this work, we have implemented a novel classification framework based on multilayered basis pursuit algorithms inspired from recent research work in the area of the theoretical foundation of deep learning with the help of celebrated sparse coding theory. We implement an optimal multi-layered Convolutional Sparse Coding (ML-CSC) framework for classification of a labelled dataset of knee MR images with the coronal view and compare the results with traditional convolutional neural network (CNN) based classifiers. Empirical results demonstrate the effectiveness of the ML-CSC framework and show that the framework can successfully learn distinct features on a small dataset and achieve a good efficiency of more than 92% without employing regularization techniques and extensive training on large datasets. In addition to 95% average accuracy on the presence and absence of ACL tears, the framework also performs well on the imbalanced and challenging classification of partial ACL tear with 85% accuracy.
AbstractList Deep learning architectures have been extensively used in recent years for the classification of biomedical images to assist clinicians for diagnosis and treatment management of patients with different health conditions. These architectures have demonstrated expert level diagnosis, and in some cases, surpassed human experts in diagnosing health conditions. The automation tools based on deep learning frameworks have the potential to transform all stages of medical imaging pipeline from image acquisition to interpretation and analysis. One of the most common areas where these techniques are applied is knee MR image classification for different types of Anterior Cruciate Ligament (ACL) tears. If properly and timely managed, the diagnosis and treatment of ACL tear can avoid further degradation of patients' knee joints and can also help slow the process of subsequent knee arthritis. In this work, we have implemented a novel classification framework based on multilayered basis pursuit algorithms inspired from recent research work in the area of the theoretical foundation of deep learning with the help of celebrated sparse coding theory. We implement an optimal multi-layered Convolutional Sparse Coding (ML-CSC) framework for classification of a labelled dataset of knee MR images with the coronal view and compare the results with traditional convolutional neural network (CNN) based classifiers. Empirical results demonstrate the effectiveness of the ML-CSC framework and show that the framework can successfully learn distinct features on a small dataset and achieve a good efficiency of more than 92% without employing regularization techniques and extensive training on large datasets. In addition to 95% average accuracy on the presence and absence of ACL tears, the framework also performs well on the imbalanced and challenging classification of partial ACL tear with 85% accuracy.
Author Shah, Jawad Ali
Ayob, Mohd Zaki
Khan, Adnan Umar
Wahid, Abdul
Ullah, Mukhtar
Author_xml – sequence: 1
  givenname: Abdul
  orcidid: 0000-0003-3922-1591
  surname: Wahid
  fullname: Wahid, Abdul
  organization: Department of Electrical Engineering, International Islamic University, Islamabad, Pakistan
– sequence: 2
  givenname: Jawad Ali
  orcidid: 0000-0002-0339-4370
  surname: Shah
  fullname: Shah, Jawad Ali
  email: jawad@unikl.edu.my
  organization: Electronics Section, UniKL British Malaysian Institute, Selangor, Malaysia
– sequence: 3
  givenname: Adnan Umar
  surname: Khan
  fullname: Khan, Adnan Umar
  organization: Department of Electrical Engineering, International Islamic University, Islamabad, Pakistan
– sequence: 4
  givenname: Mukhtar
  surname: Ullah
  fullname: Ullah, Mukhtar
  organization: Electrical Engineering Department, National University of Computer and Emerging Sciences, Islamabad, Pakistan
– sequence: 5
  givenname: Mohd Zaki
  orcidid: 0000-0003-4814-521X
  surname: Ayob
  fullname: Ayob, Mohd Zaki
  organization: Electronics Section, UniKL British Malaysian Institute, Selangor, Malaysia
BookMark eNqFUUtv1DAQtqoiUUp_QS-WOGfxI06c4xKVsmIrUB_iaE2c8darbFxs59B_T7apKsSFuczz-2Y03wdyOoYRCbnkbMU5az6v2_bq7m4lmGAryWRdl-qEnAleNYVUsjr9K35PLlLas9n0XFL1Gfl1Mw3ZF1t4xog9_QLJJ_pzimnyma6HXYg-Px4SdSHSdoCUvPMWsg8jDY7e3NLNAXaYjsn3EZGu2y29R4gfyTsHQ8KLV39OHr5e3bffiu2P60273ha2ZDoXWtkOFdO2FoJJy61G0bhOoKxB9BrAOakFqKruJWtQd9JVou4Ug0przq08J5uFtw-wN0_RHyA-mwDevBRC3BmI2dsBDWs4WFWqTvC-lIyDVJ3lJcdeCVuWMHN9WrieYvg9YcpmH6Y4zucbUVZCiEpVep6Sy5SNIaWI7m0rZ-YoiFkEMUdBzKsgM6r5B2V9fvljjuCH_2AvF6xHxLdtjVBzk8k_tWqYkA
CODEN IAECCG
CitedBy_id crossref_primary_10_1055_s_0045_1811267
crossref_primary_10_1007_s41870_022_00859_3
crossref_primary_10_1007_s00521_023_08776_7
crossref_primary_10_1016_j_measurement_2024_115815
Cites_doi 10.1137/1.9781611974997
10.1177/0363546516629944
10.1002/jor.23632
10.1109/TPAMI.2008.79
10.1109/TPAMI.2019.2904255
10.1148/ryai.2019180091
10.1002/jor.23861
10.1109/CVPR.2018.00196
10.1109/TMI.2017.2760978
10.1109/MSP.2017.2739299
10.1137/080716542
10.1109/TPAMI.2015.2392779
10.1016/j.knee.2008.11.004
10.1007/s10278-019-00193-4
10.1109/CVPR.2019.00218
10.1109/MSP.2018.2820224
10.1109/TNNLS.2018.2876865
10.1007/978-1-4419-7011-4
10.1214/11-AOS878
10.1109/CVPR.2017.369
10.1302/0301-620X.68B3.3755441
10.1109/ACCESS.2018.2863606
10.1145/3362752.3365196
10.1038/s41568-018-0016-5
10.1137/18M1183352
10.1109/BIBE.2019.00182
10.1148/radiology.167.3.3363138
10.1109/ICASSP.2008.4518498
10.1002/cpa.20042
10.1007/978-3-030-01267-0_50
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.3037745
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 205435
ExternalDocumentID oai_doaj_org_article_091ac545b21d4301a35bc141ed52c44a
10_1109_ACCESS_2020_3037745
9257450
Genre orig-research
GrantInformation_xml – fundername: UniKL BMI Kuala Lumpur
  grantid: FRGS/1/2019/TK04/UNIKL/02/6
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-85cbe508c72203c1c8e29fb2e37a2d8aaff382a567d309e8b3f627b50a68811c3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000590433200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:08 EDT 2025
Mon Jun 30 03:08:17 EDT 2025
Sat Nov 29 04:14:28 EST 2025
Tue Nov 18 21:48:10 EST 2025
Wed Aug 27 02:27:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-85cbe508c72203c1c8e29fb2e37a2d8aaff382a567d309e8b3f627b50a68811c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0339-4370
0000-0003-3922-1591
0000-0003-4814-521X
OpenAccessLink https://ieeexplore.ieee.org/document/9257450
PQID 2462226568
PQPubID 4845423
PageCount 12
ParticipantIDs proquest_journals_2462226568
doaj_primary_oai_doaj_org_article_091ac545b21d4301a35bc141ed52c44a
crossref_citationtrail_10_1109_ACCESS_2020_3037745
ieee_primary_9257450
crossref_primary_10_1109_ACCESS_2020_3037745
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref12
rajpurkar (ref19) 2017
ref15
ref36
luo (ref13) 2018; 29
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
makhmalbaf (ref26) 2013; 1
ref39
ref18
krizhevsky (ref16) 2012
gregor (ref35) 2010
ref24
ref23
ref25
ref20
ref22
ref21
ref28
papyan (ref14) 2017; 18
ref27
ref29
ref8
chen (ref37) 2018
ref7
ref9
ref4
ref3
ref6
ref5
ablin (ref38) 2019
rajpurkar (ref17) 2017
References_xml – ident: ref28
  doi: 10.1137/1.9781611974997
– ident: ref1
  doi: 10.1177/0363546516629944
– ident: ref2
  doi: 10.1002/jor.23632
– ident: ref12
  doi: 10.1109/TPAMI.2008.79
– start-page: 13100
  year: 2019
  ident: ref38
  article-title: Learning step sizes for unfolded sparse coding
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref25
  doi: 10.1109/TPAMI.2019.2904255
– ident: ref20
  doi: 10.1148/ryai.2019180091
– ident: ref22
  doi: 10.1002/jor.23861
– volume: 18
  start-page: 2887
  year: 2017
  ident: ref14
  article-title: Convolutional neural networks analyzed via convolutional sparse coding
  publication-title: J Mach Learn Res
– ident: ref29
  doi: 10.1109/CVPR.2018.00196
– ident: ref8
  doi: 10.1109/TMI.2017.2760978
– volume: 1
  start-page: 94
  year: 2013
  ident: ref26
  article-title: Accuracy of Lachman and anterior drawer tests for anterior cruciate ligament injuries
  publication-title: Arch Bone Jt Surg
– ident: ref7
  doi: 10.1109/MSP.2017.2739299
– ident: ref32
  doi: 10.1137/080716542
– year: 2017
  ident: ref19
  article-title: Cardiologist-level arrhythmia detection with convolutional neural networks
  publication-title: arXiv 1707 01836
– ident: ref36
  doi: 10.1109/TPAMI.2015.2392779
– ident: ref3
  doi: 10.1016/j.knee.2008.11.004
– ident: ref21
  doi: 10.1007/s10278-019-00193-4
– ident: ref10
  doi: 10.1109/CVPR.2019.00218
– ident: ref15
  doi: 10.1109/MSP.2018.2820224
– volume: 29
  start-page: 3289
  year: 2018
  ident: ref13
  article-title: Convolutional sparse autoencoders for image classification
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref6
  doi: 10.1109/TNNLS.2018.2876865
– ident: ref11
  doi: 10.1007/978-1-4419-7011-4
– start-page: 399
  year: 2010
  ident: ref35
  article-title: Learning fast approximations of sparse coding
  publication-title: Proc 27th Int Conf Int Conf Mach Learn
– ident: ref33
  doi: 10.1214/11-AOS878
– ident: ref18
  doi: 10.1109/CVPR.2017.369
– ident: ref4
  doi: 10.1302/0301-620X.68B3.3755441
– ident: ref23
  doi: 10.1109/ACCESS.2018.2863606
– ident: ref39
  doi: 10.1145/3362752.3365196
– ident: ref27
  doi: 10.1038/s41568-018-0016-5
– start-page: 1097
  year: 2012
  ident: ref16
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref24
  doi: 10.1137/18M1183352
– start-page: 9061
  year: 2018
  ident: ref37
  article-title: Theoretical linear convergence of unfolded ISTA and its practical weights and thresholds
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2017
  ident: ref17
  article-title: CheXNet: Radiologist-level pneumonia detection on chest X-Rays with deep learning
  publication-title: arXiv 1711 05225
– ident: ref9
  doi: 10.1109/BIBE.2019.00182
– ident: ref5
  doi: 10.1148/radiology.167.3.3363138
– ident: ref34
  doi: 10.1109/ICASSP.2008.4518498
– ident: ref31
  doi: 10.1002/cpa.20042
– ident: ref30
  doi: 10.1007/978-3-030-01267-0_50
SSID ssj0000816957
Score 2.1888762
Snippet Deep learning architectures have been extensively used in recent years for the classification of biomedical images to assist clinicians for diagnosis and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 205424
SubjectTerms Algorithms
Arthritis
Artificial neural networks
Basis pursuit
Classification
Classification algorithms
Coding
Datasets
Deep learning
Diagnosis
Dictionaries
Empirical analysis
Image acquisition
Image classification
Injuries
Iterative algorithms
iterative shrinkage algorithms
Knee
knee MR image classification
Machine learning
Medical diagnosis
Medical imaging
multi-layer convolutional sparse coding
Multilayers
Pursuit algorithms
Regularization
Surgical implants
Task analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYmxGEcJliZ6CjIhx0X4Z-xfSwVFWisqqZOcLNsx2GVoJ1IQeK_59kJVSckuOyYyHHi7728973IeR9C36DiCrT0uiA1EYXgoSq0YKowRAuwctQuhiw2oSYTfX1tphtSX2lPWNseuAXuBPKZC5DmPaOVAG90XPpABY2VZEGITI2IMhvFVI7BmpZGqq7NECXmZDgawYqgIGRQpxIOrEf-k4pyx_5OYuVVXM7JZryLPnUsEQ_bp9tDH-LiM9rZ6B3YQ1f519ni0j0ltU186pp5g6dQ-z_MV3h4e7OEqv_PXYOBlOKsfJn2BGUz4GWNf_7CF3cQSpp08AMmxcPRJZ6B2--j3-Oz2ei86FQSiiCIXhVaBh-BZgXFGOGBBh2ZqT2LXDlWaefqmmvmZKkqTkzUntclU14SV2pNaeBf0NZiuYgHCFPvfKm8ryJg7SU30scyAvqQyIPivI_YC2A2dC3Ek5LFrc2lBDG2RdkmlG2Hch99X1_0t-2g8fbw02SJ9dDU_jqfAKewnVPY95yij3rJjutJDAQmIUkfDV7sartXtbFMlMCRgNbqr__j1ofoY1pO-5VmgLZW9w_xCG2Hx9W8uT_OXvoMFXblsA
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-Layered Basis Pursuit Algorithms for Classification of MR Images of Knee ACL Tear
URI https://ieeexplore.ieee.org/document/9257450
https://www.proquest.com/docview/2462226568
https://doaj.org/article/091ac545b21d4301a35bc141ed52c44a
Volume 8
WOSCitedRecordID wos000590433200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLVKxQIWtFAQU9rKC5YN9TO2l9NRKxBtVaEiurNsx4GR2hk0yVRiw7dz7bgRFQiJTZREtnWT48e5ftyD0FvwuAKtva5IS0QleGgqLZiqDNECUI7axZDFJtTFhb6-Npcb6HA8CxNjzJvP4rt0m9fym2VYp6myIwP1SyQH_ZFS9XBWa5xPSQISRqoSWIgSczSdzeAbwAVk4JkSDjxHPhh8coz-IqryR0-ch5fTrf8zbBs9KzQSTwfcn6ONuHiBnv4WXHAHfclna6sz9yPJceJj1807fLledet5j6c3X5eref_ttsPAWnGWxkybhjJOeNni80_4wy30NV16-AiF4unsDF9Bu3iJPp-eXM3eV0VGoQqC6L7SMvgIPCwoxggPNOjITOtZ5MqxRjvXtlwzJ2vVcGKi9rytmfKSuFprSgN_hTYXy0V8jTD1ztfK-ybSRnjJjfSxjgFYHxNBcT5B7P7_2lBijCepixubfQ1i7ACKTaDYAsoEHY6Zvg8hNv6d_DgBNyZN8bHzC0DEluZmgQU5MEt6BoZCH-a49IEKGhvJghBugnYSimMhBcAJ2ruvBra05c4yUQOJAt6rd_-e6w16kgwcJmb20Ga_Wsd99Djc9fNudZC9fLie_zw5yFX2F_gs5Xw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLamgQQ8cBuIwgA_8LgwX2P7sauYNq2rJlTE3izbcaDS1qImnbR_z7HrRSAQEm9JZFsn-Xz5zol9PoQ-gMcVaO11RVoiKsFDU2nBVGWIFoBy1C6GLDahZjN9eWkudtDBcBYmxpg3n8WP6TL_y29WYZNCZYcG-pdIDvq9pJxVTmsNEZUkIWGkKqmFKDGH48kE3gKcQAa-KeHAdORvy0_O0l9kVf6Yi_MCc_zk_0x7ih4XIonHW-SfoZ24fI4e_ZJecA99zadrq6m7TYKc-Mh1iw5fbNbdZtHj8dW31XrRf7_uMPBWnMUx07ahjBRetfj8Mz69htmmSzdn0CgeT6Z4DiPjBfpy_Gk-OamKkEIVBNF9pWXwEZhYUIwRHmjQkZnWs8iVY412rm25Zk7WquHERO15WzPlJXG11pQG_hLtLlfL-Aph6p2vlfdNpI3wkhvpYx0D8D4mguJ8hNjd97WhZBlPYhdXNnsbxNgtKDaBYgsoI3QwVPqxTbLx7-JHCbihaMqQnR8AIrYMOAs8yIFZ0jMwFGYxx6UPVNDYSBaEcCO0l1AcGikAjtD-XTewZTR3lokaaBQwX_3677Xeowcn8_OpnZ7Ozt6gh8nYbZhmH-326018i-6Hm37Rrd_lLvsTQlPmnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Layered+Basis+Pursuit+Algorithms+for+Classification+of+MR+Images+of+Knee+ACL+Tear&rft.jtitle=IEEE+access&rft.au=Wahid%2C+Abdul&rft.au=Shah%2C+Jawad+Ali&rft.au=Khan%2C+Adnan+Umar&rft.au=Ullah%2C+Mukhtar&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=205424&rft.epage=205435&rft_id=info:doi/10.1109%2FACCESS.2020.3037745&rft.externalDocID=9257450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon