Multi-Layered Basis Pursuit Algorithms for Classification of MR Images of Knee ACL Tear
Deep learning architectures have been extensively used in recent years for the classification of biomedical images to assist clinicians for diagnosis and treatment management of patients with different health conditions. These architectures have demonstrated expert level diagnosis, and in some cases...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 8; S. 205424 - 205435 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Deep learning architectures have been extensively used in recent years for the classification of biomedical images to assist clinicians for diagnosis and treatment management of patients with different health conditions. These architectures have demonstrated expert level diagnosis, and in some cases, surpassed human experts in diagnosing health conditions. The automation tools based on deep learning frameworks have the potential to transform all stages of medical imaging pipeline from image acquisition to interpretation and analysis. One of the most common areas where these techniques are applied is knee MR image classification for different types of Anterior Cruciate Ligament (ACL) tears. If properly and timely managed, the diagnosis and treatment of ACL tear can avoid further degradation of patients' knee joints and can also help slow the process of subsequent knee arthritis. In this work, we have implemented a novel classification framework based on multilayered basis pursuit algorithms inspired from recent research work in the area of the theoretical foundation of deep learning with the help of celebrated sparse coding theory. We implement an optimal multi-layered Convolutional Sparse Coding (ML-CSC) framework for classification of a labelled dataset of knee MR images with the coronal view and compare the results with traditional convolutional neural network (CNN) based classifiers. Empirical results demonstrate the effectiveness of the ML-CSC framework and show that the framework can successfully learn distinct features on a small dataset and achieve a good efficiency of more than 92% without employing regularization techniques and extensive training on large datasets. In addition to 95% average accuracy on the presence and absence of ACL tears, the framework also performs well on the imbalanced and challenging classification of partial ACL tear with 85% accuracy. |
|---|---|
| AbstractList | Deep learning architectures have been extensively used in recent years for the classification of biomedical images to assist clinicians for diagnosis and treatment management of patients with different health conditions. These architectures have demonstrated expert level diagnosis, and in some cases, surpassed human experts in diagnosing health conditions. The automation tools based on deep learning frameworks have the potential to transform all stages of medical imaging pipeline from image acquisition to interpretation and analysis. One of the most common areas where these techniques are applied is knee MR image classification for different types of Anterior Cruciate Ligament (ACL) tears. If properly and timely managed, the diagnosis and treatment of ACL tear can avoid further degradation of patients' knee joints and can also help slow the process of subsequent knee arthritis. In this work, we have implemented a novel classification framework based on multilayered basis pursuit algorithms inspired from recent research work in the area of the theoretical foundation of deep learning with the help of celebrated sparse coding theory. We implement an optimal multi-layered Convolutional Sparse Coding (ML-CSC) framework for classification of a labelled dataset of knee MR images with the coronal view and compare the results with traditional convolutional neural network (CNN) based classifiers. Empirical results demonstrate the effectiveness of the ML-CSC framework and show that the framework can successfully learn distinct features on a small dataset and achieve a good efficiency of more than 92% without employing regularization techniques and extensive training on large datasets. In addition to 95% average accuracy on the presence and absence of ACL tears, the framework also performs well on the imbalanced and challenging classification of partial ACL tear with 85% accuracy. |
| Author | Shah, Jawad Ali Ayob, Mohd Zaki Khan, Adnan Umar Wahid, Abdul Ullah, Mukhtar |
| Author_xml | – sequence: 1 givenname: Abdul orcidid: 0000-0003-3922-1591 surname: Wahid fullname: Wahid, Abdul organization: Department of Electrical Engineering, International Islamic University, Islamabad, Pakistan – sequence: 2 givenname: Jawad Ali orcidid: 0000-0002-0339-4370 surname: Shah fullname: Shah, Jawad Ali email: jawad@unikl.edu.my organization: Electronics Section, UniKL British Malaysian Institute, Selangor, Malaysia – sequence: 3 givenname: Adnan Umar surname: Khan fullname: Khan, Adnan Umar organization: Department of Electrical Engineering, International Islamic University, Islamabad, Pakistan – sequence: 4 givenname: Mukhtar surname: Ullah fullname: Ullah, Mukhtar organization: Electrical Engineering Department, National University of Computer and Emerging Sciences, Islamabad, Pakistan – sequence: 5 givenname: Mohd Zaki orcidid: 0000-0003-4814-521X surname: Ayob fullname: Ayob, Mohd Zaki organization: Electronics Section, UniKL British Malaysian Institute, Selangor, Malaysia |
| BookMark | eNqFUUtv1DAQtqoiUUp_QS-WOGfxI06c4xKVsmIrUB_iaE2c8darbFxs59B_T7apKsSFuczz-2Y03wdyOoYRCbnkbMU5az6v2_bq7m4lmGAryWRdl-qEnAleNYVUsjr9K35PLlLas9n0XFL1Gfl1Mw3ZF1t4xog9_QLJJ_pzimnyma6HXYg-Px4SdSHSdoCUvPMWsg8jDY7e3NLNAXaYjsn3EZGu2y29R4gfyTsHQ8KLV39OHr5e3bffiu2P60273ha2ZDoXWtkOFdO2FoJJy61G0bhOoKxB9BrAOakFqKruJWtQd9JVou4Ug0przq08J5uFtw-wN0_RHyA-mwDevBRC3BmI2dsBDWs4WFWqTvC-lIyDVJ3lJcdeCVuWMHN9WrieYvg9YcpmH6Y4zucbUVZCiEpVep6Sy5SNIaWI7m0rZ-YoiFkEMUdBzKsgM6r5B2V9fvljjuCH_2AvF6xHxLdtjVBzk8k_tWqYkA |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1055_s_0045_1811267 crossref_primary_10_1007_s41870_022_00859_3 crossref_primary_10_1007_s00521_023_08776_7 crossref_primary_10_1016_j_measurement_2024_115815 |
| Cites_doi | 10.1137/1.9781611974997 10.1177/0363546516629944 10.1002/jor.23632 10.1109/TPAMI.2008.79 10.1109/TPAMI.2019.2904255 10.1148/ryai.2019180091 10.1002/jor.23861 10.1109/CVPR.2018.00196 10.1109/TMI.2017.2760978 10.1109/MSP.2017.2739299 10.1137/080716542 10.1109/TPAMI.2015.2392779 10.1016/j.knee.2008.11.004 10.1007/s10278-019-00193-4 10.1109/CVPR.2019.00218 10.1109/MSP.2018.2820224 10.1109/TNNLS.2018.2876865 10.1007/978-1-4419-7011-4 10.1214/11-AOS878 10.1109/CVPR.2017.369 10.1302/0301-620X.68B3.3755441 10.1109/ACCESS.2018.2863606 10.1145/3362752.3365196 10.1038/s41568-018-0016-5 10.1137/18M1183352 10.1109/BIBE.2019.00182 10.1148/radiology.167.3.3363138 10.1109/ICASSP.2008.4518498 10.1002/cpa.20042 10.1007/978-3-030-01267-0_50 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2020.3037745 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 205435 |
| ExternalDocumentID | oai_doaj_org_article_091ac545b21d4301a35bc141ed52c44a 10_1109_ACCESS_2020_3037745 9257450 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: UniKL BMI Kuala Lumpur grantid: FRGS/1/2019/TK04/UNIKL/02/6 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-85cbe508c72203c1c8e29fb2e37a2d8aaff382a567d309e8b3f627b50a68811c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000590433200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:08 EDT 2025 Mon Jun 30 03:08:17 EDT 2025 Sat Nov 29 04:14:28 EST 2025 Tue Nov 18 21:48:10 EST 2025 Wed Aug 27 02:27:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-85cbe508c72203c1c8e29fb2e37a2d8aaff382a567d309e8b3f627b50a68811c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0339-4370 0000-0003-3922-1591 0000-0003-4814-521X |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9257450 |
| PQID | 2462226568 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2462226568 doaj_primary_oai_doaj_org_article_091ac545b21d4301a35bc141ed52c44a crossref_citationtrail_10_1109_ACCESS_2020_3037745 ieee_primary_9257450 crossref_primary_10_1109_ACCESS_2020_3037745 |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref34 ref12 rajpurkar (ref19) 2017 ref15 ref36 luo (ref13) 2018; 29 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 makhmalbaf (ref26) 2013; 1 ref39 ref18 krizhevsky (ref16) 2012 gregor (ref35) 2010 ref24 ref23 ref25 ref20 ref22 ref21 ref28 papyan (ref14) 2017; 18 ref27 ref29 ref8 chen (ref37) 2018 ref7 ref9 ref4 ref3 ref6 ref5 ablin (ref38) 2019 rajpurkar (ref17) 2017 |
| References_xml | – ident: ref28 doi: 10.1137/1.9781611974997 – ident: ref1 doi: 10.1177/0363546516629944 – ident: ref2 doi: 10.1002/jor.23632 – ident: ref12 doi: 10.1109/TPAMI.2008.79 – start-page: 13100 year: 2019 ident: ref38 article-title: Learning step sizes for unfolded sparse coding publication-title: Proc Adv Neural Inf Process Syst – ident: ref25 doi: 10.1109/TPAMI.2019.2904255 – ident: ref20 doi: 10.1148/ryai.2019180091 – ident: ref22 doi: 10.1002/jor.23861 – volume: 18 start-page: 2887 year: 2017 ident: ref14 article-title: Convolutional neural networks analyzed via convolutional sparse coding publication-title: J Mach Learn Res – ident: ref29 doi: 10.1109/CVPR.2018.00196 – ident: ref8 doi: 10.1109/TMI.2017.2760978 – volume: 1 start-page: 94 year: 2013 ident: ref26 article-title: Accuracy of Lachman and anterior drawer tests for anterior cruciate ligament injuries publication-title: Arch Bone Jt Surg – ident: ref7 doi: 10.1109/MSP.2017.2739299 – ident: ref32 doi: 10.1137/080716542 – year: 2017 ident: ref19 article-title: Cardiologist-level arrhythmia detection with convolutional neural networks publication-title: arXiv 1707 01836 – ident: ref36 doi: 10.1109/TPAMI.2015.2392779 – ident: ref3 doi: 10.1016/j.knee.2008.11.004 – ident: ref21 doi: 10.1007/s10278-019-00193-4 – ident: ref10 doi: 10.1109/CVPR.2019.00218 – ident: ref15 doi: 10.1109/MSP.2018.2820224 – volume: 29 start-page: 3289 year: 2018 ident: ref13 article-title: Convolutional sparse autoencoders for image classification publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref6 doi: 10.1109/TNNLS.2018.2876865 – ident: ref11 doi: 10.1007/978-1-4419-7011-4 – start-page: 399 year: 2010 ident: ref35 article-title: Learning fast approximations of sparse coding publication-title: Proc 27th Int Conf Int Conf Mach Learn – ident: ref33 doi: 10.1214/11-AOS878 – ident: ref18 doi: 10.1109/CVPR.2017.369 – ident: ref4 doi: 10.1302/0301-620X.68B3.3755441 – ident: ref23 doi: 10.1109/ACCESS.2018.2863606 – ident: ref39 doi: 10.1145/3362752.3365196 – ident: ref27 doi: 10.1038/s41568-018-0016-5 – start-page: 1097 year: 2012 ident: ref16 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref24 doi: 10.1137/18M1183352 – start-page: 9061 year: 2018 ident: ref37 article-title: Theoretical linear convergence of unfolded ISTA and its practical weights and thresholds publication-title: Proc Adv Neural Inf Process Syst – year: 2017 ident: ref17 article-title: CheXNet: Radiologist-level pneumonia detection on chest X-Rays with deep learning publication-title: arXiv 1711 05225 – ident: ref9 doi: 10.1109/BIBE.2019.00182 – ident: ref5 doi: 10.1148/radiology.167.3.3363138 – ident: ref34 doi: 10.1109/ICASSP.2008.4518498 – ident: ref31 doi: 10.1002/cpa.20042 – ident: ref30 doi: 10.1007/978-3-030-01267-0_50 |
| SSID | ssj0000816957 |
| Score | 2.1888762 |
| Snippet | Deep learning architectures have been extensively used in recent years for the classification of biomedical images to assist clinicians for diagnosis and... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 205424 |
| SubjectTerms | Algorithms Arthritis Artificial neural networks Basis pursuit Classification Classification algorithms Coding Datasets Deep learning Diagnosis Dictionaries Empirical analysis Image acquisition Image classification Injuries Iterative algorithms iterative shrinkage algorithms Knee knee MR image classification Machine learning Medical diagnosis Medical imaging multi-layer convolutional sparse coding Multilayers Pursuit algorithms Regularization Surgical implants Task analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYmxGEcJliZ6CjIhx0X4Z-xfSwVFWisqqZOcLNsx2GVoJ1IQeK_59kJVSckuOyYyHHi7728973IeR9C36DiCrT0uiA1EYXgoSq0YKowRAuwctQuhiw2oSYTfX1tphtSX2lPWNseuAXuBPKZC5DmPaOVAG90XPpABY2VZEGITI2IMhvFVI7BmpZGqq7NECXmZDgawYqgIGRQpxIOrEf-k4pyx_5OYuVVXM7JZryLPnUsEQ_bp9tDH-LiM9rZ6B3YQ1f519ni0j0ltU186pp5g6dQ-z_MV3h4e7OEqv_PXYOBlOKsfJn2BGUz4GWNf_7CF3cQSpp08AMmxcPRJZ6B2--j3-Oz2ei86FQSiiCIXhVaBh-BZgXFGOGBBh2ZqT2LXDlWaefqmmvmZKkqTkzUntclU14SV2pNaeBf0NZiuYgHCFPvfKm8ryJg7SU30scyAvqQyIPivI_YC2A2dC3Ek5LFrc2lBDG2RdkmlG2Hch99X1_0t-2g8fbw02SJ9dDU_jqfAKewnVPY95yij3rJjutJDAQmIUkfDV7sartXtbFMlMCRgNbqr__j1ofoY1pO-5VmgLZW9w_xCG2Hx9W8uT_OXvoMFXblsA priority: 102 providerName: Directory of Open Access Journals |
| Title | Multi-Layered Basis Pursuit Algorithms for Classification of MR Images of Knee ACL Tear |
| URI | https://ieeexplore.ieee.org/document/9257450 https://www.proquest.com/docview/2462226568 https://doaj.org/article/091ac545b21d4301a35bc141ed52c44a |
| Volume | 8 |
| WOSCitedRecordID | wos000590433200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLVKxQIWtFAQU9rKC5YN9TO2l9NRKxBtVaEiurNsx4GR2hk0yVRiw7dz7bgRFQiJTZREtnWT48e5ftyD0FvwuAKtva5IS0QleGgqLZiqDNECUI7axZDFJtTFhb6-Npcb6HA8CxNjzJvP4rt0m9fym2VYp6myIwP1SyQH_ZFS9XBWa5xPSQISRqoSWIgSczSdzeAbwAVk4JkSDjxHPhh8coz-IqryR0-ch5fTrf8zbBs9KzQSTwfcn6ONuHiBnv4WXHAHfclna6sz9yPJceJj1807fLledet5j6c3X5eref_ttsPAWnGWxkybhjJOeNni80_4wy30NV16-AiF4unsDF9Bu3iJPp-eXM3eV0VGoQqC6L7SMvgIPCwoxggPNOjITOtZ5MqxRjvXtlwzJ2vVcGKi9rytmfKSuFprSgN_hTYXy0V8jTD1ztfK-ybSRnjJjfSxjgFYHxNBcT5B7P7_2lBijCepixubfQ1i7ACKTaDYAsoEHY6Zvg8hNv6d_DgBNyZN8bHzC0DEluZmgQU5MEt6BoZCH-a49IEKGhvJghBugnYSimMhBcAJ2ruvBra05c4yUQOJAt6rd_-e6w16kgwcJmb20Ga_Wsd99Djc9fNudZC9fLie_zw5yFX2F_gs5Xw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLamgQQ8cBuIwgA_8LgwX2P7sauYNq2rJlTE3izbcaDS1qImnbR_z7HrRSAQEm9JZFsn-Xz5zol9PoQ-gMcVaO11RVoiKsFDU2nBVGWIFoBy1C6GLDahZjN9eWkudtDBcBYmxpg3n8WP6TL_y29WYZNCZYcG-pdIDvq9pJxVTmsNEZUkIWGkKqmFKDGH48kE3gKcQAa-KeHAdORvy0_O0l9kVf6Yi_MCc_zk_0x7ih4XIonHW-SfoZ24fI4e_ZJecA99zadrq6m7TYKc-Mh1iw5fbNbdZtHj8dW31XrRf7_uMPBWnMUx07ahjBRetfj8Mz69htmmSzdn0CgeT6Z4DiPjBfpy_Gk-OamKkEIVBNF9pWXwEZhYUIwRHmjQkZnWs8iVY412rm25Zk7WquHERO15WzPlJXG11pQG_hLtLlfL-Aph6p2vlfdNpI3wkhvpYx0D8D4mguJ8hNjd97WhZBlPYhdXNnsbxNgtKDaBYgsoI3QwVPqxTbLx7-JHCbihaMqQnR8AIrYMOAs8yIFZ0jMwFGYxx6UPVNDYSBaEcCO0l1AcGikAjtD-XTewZTR3lokaaBQwX_3677Xeowcn8_OpnZ7Ozt6gh8nYbZhmH-326018i-6Hm37Rrd_lLvsTQlPmnw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Layered+Basis+Pursuit+Algorithms+for+Classification+of+MR+Images+of+Knee+ACL+Tear&rft.jtitle=IEEE+access&rft.au=Wahid%2C+Abdul&rft.au=Shah%2C+Jawad+Ali&rft.au=Khan%2C+Adnan+Umar&rft.au=Ullah%2C+Mukhtar&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=205424&rft.epage=205435&rft_id=info:doi/10.1109%2FACCESS.2020.3037745&rft.externalDocID=9257450 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |