A Review on Advanced CRISPR-Based Genome-Editing Tools: Base Editing and Prime Editing

In the field of medicine, it is axiomatic that the need of a precise gene-editing tool is critical to employ therapeutic approaches toward pathogenic mutations, occurring in human genome. Today we know that most of genetic defects are caused by single-base pair substitutions in genomic DNA. The abil...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Molecular biotechnology Ročník 65; číslo 6; s. 849 - 860
Hlavní autoři: Saber Sichani, Ali, Ranjbar, Maryam, Baneshi, Maryam, Torabi Zadeh, Farid, Fallahi, Jafar
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2023
Springer Nature B.V
Témata:
ISSN:1073-6085, 1559-0305, 1559-0305
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the field of medicine, it is axiomatic that the need of a precise gene-editing tool is critical to employ therapeutic approaches toward pathogenic mutations, occurring in human genome. Today we know that most of genetic defects are caused by single-base pair substitutions in genomic DNA. The ability to make practically any targeted substitutions of DNA sequences at specified regions in the human genome gives us the chance to employ gene therapy in most known diseases associated with genetic variants. In this regard, CRISPR/Cas9 applications is becoming more and more popular along with the significant advancements of life sciences, by employing this technology in genome-editing and high-throughput screenings. Several CRISPR/Cas-based mammalian cell gene-editing techniques have been developed during the last decade, including nucleases, base editors, and prime editors, all of which have the exact mechanism at first glance. However, they address a subset of known pathogenic sequence mutations using different methods. First, we highlight the development of CRISPR-based gene-editing tools. Then we describe their functions and summarize the conducted research studies, which are increasing the reliability of these strategies to better efficiencies for prospective gene therapies in the near future. Lastly, we compare the capabilities of all these platforms together besides their probable limitations. Graphical Abstract
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:1073-6085
1559-0305
1559-0305
DOI:10.1007/s12033-022-00639-1