A Hybrid Optimization Technique Using Exchange Market and Genetic Algorithms

This paper proposes a hybrid optimization technique combining genetic and exchange market algorithms. These algorithms are two evolutionary algorithms that facilitate finding optimal solutions for different optimization problems. The genetic algorithm's high execution time decreases its efficie...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 8; s. 2417 - 2427
Hlavní autori: Jafari, Amirreza, Khalili, Tohid, Babaei, Ebrahim, Bidram, Ali
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes a hybrid optimization technique combining genetic and exchange market algorithms. These algorithms are two evolutionary algorithms that facilitate finding optimal solutions for different optimization problems. The genetic algorithm's high execution time decreases its efficiency. Because of the genetic algorithm's strength in surveying solution space, it can be combined with a proper exploitation-based algorithm to improve the optimization efficiency. The exchange market algorithm is an optimization algorithm that can effectively find the global optimum of the objective functions in an efficient manner. According to the trade's inherent situation, the stock market works under unbalanced and balanced modes. In order to gain maximum profit, shareholders take specific decisions based on the existing conditions. The exchange market algorithm has two searching and two absorbent operators for acquiring the best-simulated form of the stock market. Simulations on twelve benchmarks with the different dimensions and variables prove the effectiveness of this algorithm compared to eight optimization algorithms.
AbstractList This paper proposes a hybrid optimization technique combining genetic and exchange market algorithms. These algorithms are two evolutionary algorithms that facilitate finding optimal solutions for different optimization problems. The genetic algorithm's high execution time decreases its efficiency. Because of the genetic algorithm's strength in surveying solution space, it can be combined with a proper exploitation-based algorithm to improve the optimization efficiency. The exchange market algorithm is an optimization algorithm that can effectively find the global optimum of the objective functions in an efficient manner. According to the trade's inherent situation, the stock market works under unbalanced and balanced modes. In order to gain maximum profit, shareholders take specific decisions based on the existing conditions. The exchange market algorithm has two searching and two absorbent operators for acquiring the best-simulated form of the stock market. Simulations on twelve benchmarks with the different dimensions and variables prove the effectiveness of this algorithm compared to eight optimization algorithms.
Author Babaei, Ebrahim
Khalili, Tohid
Bidram, Ali
Jafari, Amirreza
Author_xml – sequence: 1
  givenname: Amirreza
  orcidid: 0000-0002-9710-7685
  surname: Jafari
  fullname: Jafari, Amirreza
  organization: Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
– sequence: 2
  givenname: Tohid
  orcidid: 0000-0001-5888-1195
  surname: Khalili
  fullname: Khalili, Tohid
  email: khalili@unm.edu
  organization: Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM, USA
– sequence: 3
  givenname: Ebrahim
  orcidid: 0000-0003-1460-5177
  surname: Babaei
  fullname: Babaei, Ebrahim
  organization: Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
– sequence: 4
  givenname: Ali
  orcidid: 0000-0003-4722-4346
  surname: Bidram
  fullname: Bidram, Ali
  organization: Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM, USA
BookMark eNp9kctOIzEQRa0RSDyGL2BjadYJfrUfyyjKAFIQC8jacrsriTOJnXEbCfh6DB1GiMXUxqVSnavrumfoKKYICF1SMqaUmKvJdDp7eBgzQs2YGclow3-gU0alGfGGy6Mv_Qm66PsNqaXrqFGnaD7BNy9tDh2-35ewC6-uhBTxI_h1DH-fAC_6EFd49uzXLq4A37n8Bwp2scPXEKEEjyfbVcqhrHf9T3S8dNseLg7vOVr8nj1Ob0bz--vb6WQ-8oLoMtJENq1wUquWGvCsY0rLjosl5VoIxZhhqtPCE28EJ8Y1RnEmnHeSKbpsPT9Ht4Nul9zG7nPYufxikwv2Y5DyyrpcrW3BKgG6BaeUUF40SjowrfS-lYIKBV1TtX4NWvuc6n_7YjfpKcdq3zLRCM2ooKZumWHL59T3GZbWh_JxqpJd2FpK7HsWdsjCvmdhD1lUln9jPx3_n7ocqAAA_whdL8IY42_sJpUr
CODEN IAECCG
CitedBy_id crossref_primary_10_1049_iet_gtd_2020_0068
crossref_primary_10_1007_s11042_020_10139_6
crossref_primary_10_1007_s11831_023_10060_9
crossref_primary_10_1109_ACCESS_2021_3076670
crossref_primary_10_3390_en16073180
crossref_primary_10_3390_s22166174
crossref_primary_10_1109_ACCESS_2022_3153042
crossref_primary_10_1109_ACCESS_2022_3218467
crossref_primary_10_1109_ACCESS_2020_3006102
crossref_primary_10_1109_ACCESS_2020_2989795
crossref_primary_10_1109_JSYST_2021_3132300
crossref_primary_10_1109_JSYST_2020_3010565
crossref_primary_10_1016_j_enbuild_2023_113434
crossref_primary_10_1016_j_enbuild_2021_111571
crossref_primary_10_1109_ACCESS_2021_3058128
crossref_primary_10_1109_ACCESS_2020_2988710
crossref_primary_10_1109_ACCESS_2022_3183281
crossref_primary_10_1016_j_cosrev_2024_100652
crossref_primary_10_1016_j_energy_2020_118874
crossref_primary_10_1109_TIA_2020_3004746
crossref_primary_10_1109_ACCESS_2020_3014351
crossref_primary_10_1016_j_jclepro_2021_127853
crossref_primary_10_1109_JSEN_2022_3217826
crossref_primary_10_1016_j_rser_2020_110248
crossref_primary_10_1016_j_isatra_2022_03_031
crossref_primary_10_1016_j_jestch_2025_102077
crossref_primary_10_1109_JSYST_2020_3003255
crossref_primary_10_1088_1757_899X_1152_1_012017
crossref_primary_10_1109_ACCESS_2024_3432639
crossref_primary_10_1016_j_est_2024_113098
crossref_primary_10_3390_en15186718
crossref_primary_10_1016_j_apenergy_2020_115170
crossref_primary_10_1088_1361_6501_ad627f
crossref_primary_10_1080_15325008_2023_2239217
Cites_doi 10.1016/j.apor.2017.09.006
10.1016/j.asoc.2014.02.006
10.1016/j.ijepes.2007.06.006
10.3390/w9090634
10.1007/s00521-013-1354-6
10.1016/j.amc.2010.03.123
10.1109/TPWRS.2009.2034525
10.1007/978-3-662-05094-1
10.1016/j.asoc.2012.11.023
10.1093/oso/9780195099713.001.0001
10.7551/mitpress/1090.001.0001
10.1016/j.asoc.2013.11.012
10.1037/0033-295X.115.2.463
10.1016/j.energy.2018.01.176
10.2469/faj.v55.n2.2255
10.1016/j.asoc.2013.09.015
10.3390/w10010020
10.1007/978-3-319-11680-8_29
10.1016/j.ijepes.2013.04.014
10.1016/j.ijepes.2015.08.013
10.1109/4235.585893
10.1155/2012/638275
10.1016/j.asoc.2012.10.009
10.1109/SGC.2017.8308887
10.1109/TAAI.2015.7407102
10.1109/TPWRS.2009.2030293
10.1007/0-306-48056-5_9
10.1049/iet-rpg.2018.6222
10.1016/j.asoc.2012.11.011
10.1016/j.asoc.2013.05.022
10.1016/j.ins.2009.03.004
10.1016/j.cor.2012.12.006
10.1016/S0378-7796(02)00028-7
10.1093/0198292279.001.0001
10.1016/j.asoc.2013.03.013
10.1007/978-3-642-28487-8_37
10.3233/FI-1998-35123403
10.1016/j.energy.2018.12.024
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2962153
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 2427
ExternalDocumentID oai_doaj_org_article_74e8bea7747c4576ae9b6ccb64147ed5
10_1109_ACCESS_2019_2962153
8943222
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: OIA-1757207
  funderid: 10.13039/100000001
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-8065b4a687b19ec2d2786d34f13844722927d84c0c94309a597324aca6271fbc3
IEDL.DBID DOA
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549755900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:05 EDT 2025
Sun Jun 29 16:38:51 EDT 2025
Sat Nov 29 02:41:43 EST 2025
Tue Nov 18 21:08:06 EST 2025
Wed Aug 27 02:35:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-8065b4a687b19ec2d2786d34f13844722927d84c0c94309a597324aca6271fbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1460-5177
0000-0003-4722-4346
0000-0001-5888-1195
0000-0002-9710-7685
OpenAccessLink https://doaj.org/article/74e8bea7747c4576ae9b6ccb64147ed5
PQID 2454821419
PQPubID 4845423
PageCount 11
ParticipantIDs crossref_primary_10_1109_ACCESS_2019_2962153
ieee_primary_8943222
doaj_primary_oai_doaj_org_article_74e8bea7747c4576ae9b6ccb64147ed5
proquest_journals_2454821419
crossref_citationtrail_10_1109_ACCESS_2019_2962153
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
mohebifar (ref26) 2006
ref34
ref12
ref15
ref36
ref14
back (ref24) 1996
ref31
ref30
ref33
ref11
ref32
ref10
ref2
haupt (ref1) 2004
ref39
dorigo (ref17) 2003
ref38
ref16
ref19
ref18
jafari (ref23) 2019
ref25
ref20
ref42
ref41
ref22
ref21
ref43
worasucheep (ref37) 2011; 4
ref28
sinha (ref29) 2003
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref14
  doi: 10.1016/j.apor.2017.09.006
– ident: ref18
  doi: 10.1016/j.asoc.2014.02.006
– ident: ref9
  doi: 10.1016/j.ijepes.2007.06.006
– ident: ref32
  doi: 10.3390/w9090634
– ident: ref34
  doi: 10.1007/s00521-013-1354-6
– ident: ref38
  doi: 10.1016/j.amc.2010.03.123
– ident: ref19
  doi: 10.1109/TPWRS.2009.2034525
– ident: ref25
  doi: 10.1007/978-3-662-05094-1
– year: 2003
  ident: ref29
  publication-title: A Survey of Hybrid Genetic and Evolutionary Algorithms
– ident: ref12
  doi: 10.1016/j.asoc.2012.11.023
– year: 1996
  ident: ref24
  publication-title: Evolutionary Algorithms in Theory and Practice Evolution Strategies Evolutionary Programming Genetic Algorithms
  doi: 10.1093/oso/9780195099713.001.0001
– ident: ref28
  doi: 10.7551/mitpress/1090.001.0001
– ident: ref6
  doi: 10.1016/j.asoc.2013.11.012
– ident: ref41
  doi: 10.1037/0033-295X.115.2.463
– ident: ref33
  doi: 10.1016/j.energy.2018.01.176
– year: 2004
  ident: ref1
  publication-title: Practical Genetic Algorithms
– ident: ref40
  doi: 10.2469/faj.v55.n2.2255
– year: 2006
  ident: ref26
  article-title: New binary representation in genetic algorithms for solving TSP by mapping permutations to a list of ordered numbers
  publication-title: Proc Int Conf Comput Intell Man-Mach Syst Cybern
– ident: ref13
  doi: 10.1016/j.asoc.2013.09.015
– volume: 4
  start-page: 13
  year: 2011
  ident: ref37
  article-title: A harmony search with adaptive pitch adjustment for continuous optimization
  publication-title: Int J Hybrid Inf Technol
– ident: ref31
  doi: 10.3390/w10010020
– ident: ref27
  doi: 10.1007/978-3-319-11680-8_29
– ident: ref3
  doi: 10.1016/j.ijepes.2013.04.014
– ident: ref43
  doi: 10.1016/j.ijepes.2015.08.013
– ident: ref16
  doi: 10.1109/4235.585893
– ident: ref39
  doi: 10.1155/2012/638275
– ident: ref11
  doi: 10.1016/j.asoc.2012.10.009
– ident: ref21
  doi: 10.1109/SGC.2017.8308887
– ident: ref30
  doi: 10.1109/TAAI.2015.7407102
– ident: ref2
  doi: 10.1109/TPWRS.2009.2030293
– start-page: 250
  year: 2003
  ident: ref17
  article-title: The ant colony optimization metaheuristic: Algorithms, applications, and advances
  publication-title: Handbook of Metaheuristics
  doi: 10.1007/0-306-48056-5_9
– ident: ref22
  doi: 10.1049/iet-rpg.2018.6222
– year: 2019
  ident: ref23
  article-title: Optimal integration of renewable energy sources, diesel generators, and demand response program from pollution, financial, and reliability viewpoints: A multi-objective approach
  publication-title: J Cleaner Prod
– ident: ref7
  doi: 10.1016/j.asoc.2012.11.011
– ident: ref5
  doi: 10.1016/j.asoc.2013.05.022
– ident: ref36
  doi: 10.1016/j.ins.2009.03.004
– ident: ref35
  doi: 10.1016/j.cor.2012.12.006
– ident: ref4
  doi: 10.1016/S0378-7796(02)00028-7
– ident: ref42
  doi: 10.1093/0198292279.001.0001
– ident: ref8
  doi: 10.1016/j.asoc.2013.03.013
– ident: ref10
  doi: 10.1007/978-3-642-28487-8_37
– ident: ref15
  doi: 10.3233/FI-1998-35123403
– ident: ref20
  doi: 10.1016/j.energy.2018.12.024
SSID ssj0000816957
Score 2.4080086
Snippet This paper proposes a hybrid optimization technique combining genetic and exchange market algorithms. These algorithms are two evolutionary algorithms that...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2417
SubjectTerms Approximation algorithms
Evolutionary algorithm
Evolutionary algorithms
Evolutionary computation
exchange market algorithm (EMA)
Exchanging
genetic algorithm (GA)
Genetic algorithms
Heuristic algorithms
hybrid algorithm
Linear programming
objective function
Optimization
optimization algorithm
Optimization techniques
Search algorithms
Securities markets
Solution space
Stock markets
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4kAPlEcrlpd84EggcSaxfdyuQBx4HajEzYofaZHYXbS7VO2_r8fxRq1aIXGLIs8oyRd7POOZbwBO6rx1LeU8OSxdhoW1mazy4KWUwgSDwysjbGw2IW5v5eOjul-B074Wxnsfk8_8GV3Gs3w3ta8UKjsnrvBgz1ZhVQjR1Wr18RRqIKEqkYiFilydD0ej8A6UvaXOuKqDbSv_Mj6Roz81VflnJY7m5fLj-x5sCzbTNpINO9y3YcVPduDDH-SCu3A9ZFe_qB6L3YVlYZzqLdnDkrSVxWwBdvGzq_1lN7H-mTUTx4iLOihmw-dv09nT4vt4_gm-Xl48jK6y1Dshs5jLRUbnpQabWgpTKG-540LWrsS2KCUSQaTiwkm0uSX-ddVUxNqDjW1qLorW2PIzrE2mE78HrGycoI1VUIZEdaNKjzbIOFSyNS0OgC8_qraJWJz6Wzzr6GDkSndIaEJCJyQGcNoLvXS8Gm8P_0Jo9UOJFDveCDDoNMe0QC-Nb8KGVlgMflTjlamtNTUWKLyrBrBL0PVKEmoDOFxir9MEnmuOwZXjBRZq__9SB7DByfWO0ZhDWFvMXv0RrNsfi6f57Dj-m78BeenfBA
  priority: 102
  providerName: IEEE
Title A Hybrid Optimization Technique Using Exchange Market and Genetic Algorithms
URI https://ieeexplore.ieee.org/document/8943222
https://www.proquest.com/docview/2454821419
https://doaj.org/article/74e8bea7747c4576ae9b6ccb64147ed5
Volume 8
WOSCitedRecordID wos000549755900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEIAthBhgQDxFeckDI4HYucb2WKoiBl4DSGxW_AggQYvagmDht-Nz3KoICRaWDFHsJOezfZfcfUfIQZnXrsaYJweFy4BZm8l2HryUQpiw4fC2ETYWmxCXl_LuTl3PlPrCmLAGD9wI7liAl8ZXwUoRFoJxXHllSmtNCQyEd5FeGqyeGWcqrsGSlaotEmaI5eq40-2GN8JYLnXEVRl2uuLbVhSJ_anEyo91OW42pytkOVmJtNM83SqZ8_01sjTDDlwn5x169oHpVvQqzPrnlE5JbyZMVhqDAWjvvUntpRcxvZlWfUcRNR06pp2n-8HwcfzwPNogt6e9m-5ZlkojZBZyOc7wd6iBqpTCMOUtd1zI0hVQs0IC8h8VF06CzS3i1VXVRigPVLYquWC1scUmme8P-n6L0KJyAu2m0BkgyUYVHmxo40DJ2tTQInwiJW0TNxzLVzzp6D_kSjei1ShanUTbIofTRi8NNuP3y09Q_NNLkXkdTwRN0EkT9F-a0CLrOHjTTpAsH6yfFtmdDKZO83OkOQRPjTNgavs_br1DFjn64fHTzC6ZHw9f_R5ZsG_jx9FwP6pmOF589vZjguEXeWjkvQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgQQ8jB8bWmGAH3hctti5xPZjqTYV0RUeirQ3K7GdbdLWTm2H4L_H57gREwiJtyjynZJ8sc93vvsO4EOVt66lnCeHhcuQW5upMg9eSiGbYHBE2Ugbm03I6VSdn-uvW3DY18J472PymT-iy3iW7xb2jkJlx8QVHuzZA3hYIgreVWv1ERVqIaFLmaiFeK6Ph6NReAvK39JHQlfBuhX3zE9k6U9tVf5Yi6OBOX32f4_2HHbSRpINO-RfwJafv4Snv9EL7sJkyMY_qSKLfQkLw02quGSzDW0ri_kC7ORHV_3LzmIFNKvnjhEbdVDMhtcXi-XV-vJmtQffTk9mo3GWuidkFnO1zujEtMG6UrLh2lvhhFSVK7DlhUKiiNRCOoU2t8TAruuSeHuwtnUlJG8bW7yC7fli7veBFbWTtLUKypDIbnTh0QYZh1q1TYsDEJuPamyiFqcOF9cmuhi5Nh0ShpAwCYkBHPZCtx2zxr-HfyS0-qFEix1vBBhMmmVGoleNr8OWVloMnlTtdVNZ21TIUXpXDmCXoOuVJNQGcLDB3qQpvDICgzMnOHL9-u9S7-HxeHY2MZNP089v4IkgRzzGZg5ge72882_hkf2-vlot38X_9Bc7JeJL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Optimization+Technique+Using+Exchange+Market+and+Genetic+Algorithms&rft.jtitle=IEEE+access&rft.au=Jafari%2C+Amirreza&rft.au=Khalili%2C+Tohid&rft.au=Babaei%2C+Ebrahim&rft.au=Bidram%2C+Ali&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=2417&rft.epage=2427&rft_id=info:doi/10.1109%2FACCESS.2019.2962153&rft.externalDocID=8943222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon