A Hybrid Optimization Technique Using Exchange Market and Genetic Algorithms
This paper proposes a hybrid optimization technique combining genetic and exchange market algorithms. These algorithms are two evolutionary algorithms that facilitate finding optimal solutions for different optimization problems. The genetic algorithm's high execution time decreases its efficie...
Uložené v:
| Vydané v: | IEEE access Ročník 8; s. 2417 - 2427 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper proposes a hybrid optimization technique combining genetic and exchange market algorithms. These algorithms are two evolutionary algorithms that facilitate finding optimal solutions for different optimization problems. The genetic algorithm's high execution time decreases its efficiency. Because of the genetic algorithm's strength in surveying solution space, it can be combined with a proper exploitation-based algorithm to improve the optimization efficiency. The exchange market algorithm is an optimization algorithm that can effectively find the global optimum of the objective functions in an efficient manner. According to the trade's inherent situation, the stock market works under unbalanced and balanced modes. In order to gain maximum profit, shareholders take specific decisions based on the existing conditions. The exchange market algorithm has two searching and two absorbent operators for acquiring the best-simulated form of the stock market. Simulations on twelve benchmarks with the different dimensions and variables prove the effectiveness of this algorithm compared to eight optimization algorithms. |
|---|---|
| AbstractList | This paper proposes a hybrid optimization technique combining genetic and exchange market algorithms. These algorithms are two evolutionary algorithms that facilitate finding optimal solutions for different optimization problems. The genetic algorithm's high execution time decreases its efficiency. Because of the genetic algorithm's strength in surveying solution space, it can be combined with a proper exploitation-based algorithm to improve the optimization efficiency. The exchange market algorithm is an optimization algorithm that can effectively find the global optimum of the objective functions in an efficient manner. According to the trade's inherent situation, the stock market works under unbalanced and balanced modes. In order to gain maximum profit, shareholders take specific decisions based on the existing conditions. The exchange market algorithm has two searching and two absorbent operators for acquiring the best-simulated form of the stock market. Simulations on twelve benchmarks with the different dimensions and variables prove the effectiveness of this algorithm compared to eight optimization algorithms. |
| Author | Babaei, Ebrahim Khalili, Tohid Bidram, Ali Jafari, Amirreza |
| Author_xml | – sequence: 1 givenname: Amirreza orcidid: 0000-0002-9710-7685 surname: Jafari fullname: Jafari, Amirreza organization: Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran – sequence: 2 givenname: Tohid orcidid: 0000-0001-5888-1195 surname: Khalili fullname: Khalili, Tohid email: khalili@unm.edu organization: Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM, USA – sequence: 3 givenname: Ebrahim orcidid: 0000-0003-1460-5177 surname: Babaei fullname: Babaei, Ebrahim organization: Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran – sequence: 4 givenname: Ali orcidid: 0000-0003-4722-4346 surname: Bidram fullname: Bidram, Ali organization: Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM, USA |
| BookMark | eNp9kctOIzEQRa0RSDyGL2BjadYJfrUfyyjKAFIQC8jacrsriTOJnXEbCfh6DB1GiMXUxqVSnavrumfoKKYICF1SMqaUmKvJdDp7eBgzQs2YGclow3-gU0alGfGGy6Mv_Qm66PsNqaXrqFGnaD7BNy9tDh2-35ewC6-uhBTxI_h1DH-fAC_6EFd49uzXLq4A37n8Bwp2scPXEKEEjyfbVcqhrHf9T3S8dNseLg7vOVr8nj1Ob0bz--vb6WQ-8oLoMtJENq1wUquWGvCsY0rLjosl5VoIxZhhqtPCE28EJ8Y1RnEmnHeSKbpsPT9Ht4Nul9zG7nPYufxikwv2Y5DyyrpcrW3BKgG6BaeUUF40SjowrfS-lYIKBV1TtX4NWvuc6n_7YjfpKcdq3zLRCM2ooKZumWHL59T3GZbWh_JxqpJd2FpK7HsWdsjCvmdhD1lUln9jPx3_n7ocqAAA_whdL8IY42_sJpUr |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1049_iet_gtd_2020_0068 crossref_primary_10_1007_s11042_020_10139_6 crossref_primary_10_1007_s11831_023_10060_9 crossref_primary_10_1109_ACCESS_2021_3076670 crossref_primary_10_3390_en16073180 crossref_primary_10_3390_s22166174 crossref_primary_10_1109_ACCESS_2022_3153042 crossref_primary_10_1109_ACCESS_2022_3218467 crossref_primary_10_1109_ACCESS_2020_3006102 crossref_primary_10_1109_ACCESS_2020_2989795 crossref_primary_10_1109_JSYST_2021_3132300 crossref_primary_10_1109_JSYST_2020_3010565 crossref_primary_10_1016_j_enbuild_2023_113434 crossref_primary_10_1016_j_enbuild_2021_111571 crossref_primary_10_1109_ACCESS_2021_3058128 crossref_primary_10_1109_ACCESS_2020_2988710 crossref_primary_10_1109_ACCESS_2022_3183281 crossref_primary_10_1016_j_cosrev_2024_100652 crossref_primary_10_1016_j_energy_2020_118874 crossref_primary_10_1109_TIA_2020_3004746 crossref_primary_10_1109_ACCESS_2020_3014351 crossref_primary_10_1016_j_jclepro_2021_127853 crossref_primary_10_1109_JSEN_2022_3217826 crossref_primary_10_1016_j_rser_2020_110248 crossref_primary_10_1016_j_isatra_2022_03_031 crossref_primary_10_1016_j_jestch_2025_102077 crossref_primary_10_1109_JSYST_2020_3003255 crossref_primary_10_1088_1757_899X_1152_1_012017 crossref_primary_10_1109_ACCESS_2024_3432639 crossref_primary_10_1016_j_est_2024_113098 crossref_primary_10_3390_en15186718 crossref_primary_10_1016_j_apenergy_2020_115170 crossref_primary_10_1088_1361_6501_ad627f crossref_primary_10_1080_15325008_2023_2239217 |
| Cites_doi | 10.1016/j.apor.2017.09.006 10.1016/j.asoc.2014.02.006 10.1016/j.ijepes.2007.06.006 10.3390/w9090634 10.1007/s00521-013-1354-6 10.1016/j.amc.2010.03.123 10.1109/TPWRS.2009.2034525 10.1007/978-3-662-05094-1 10.1016/j.asoc.2012.11.023 10.1093/oso/9780195099713.001.0001 10.7551/mitpress/1090.001.0001 10.1016/j.asoc.2013.11.012 10.1037/0033-295X.115.2.463 10.1016/j.energy.2018.01.176 10.2469/faj.v55.n2.2255 10.1016/j.asoc.2013.09.015 10.3390/w10010020 10.1007/978-3-319-11680-8_29 10.1016/j.ijepes.2013.04.014 10.1016/j.ijepes.2015.08.013 10.1109/4235.585893 10.1155/2012/638275 10.1016/j.asoc.2012.10.009 10.1109/SGC.2017.8308887 10.1109/TAAI.2015.7407102 10.1109/TPWRS.2009.2030293 10.1007/0-306-48056-5_9 10.1049/iet-rpg.2018.6222 10.1016/j.asoc.2012.11.011 10.1016/j.asoc.2013.05.022 10.1016/j.ins.2009.03.004 10.1016/j.cor.2012.12.006 10.1016/S0378-7796(02)00028-7 10.1093/0198292279.001.0001 10.1016/j.asoc.2013.03.013 10.1007/978-3-642-28487-8_37 10.3233/FI-1998-35123403 10.1016/j.energy.2018.12.024 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2019.2962153 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 2427 |
| ExternalDocumentID | oai_doaj_org_article_74e8bea7747c4576ae9b6ccb64147ed5 10_1109_ACCESS_2019_2962153 8943222 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: OIA-1757207 funderid: 10.13039/100000001 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-8065b4a687b19ec2d2786d34f13844722927d84c0c94309a597324aca6271fbc3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549755900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:05 EDT 2025 Sun Jun 29 16:38:51 EDT 2025 Sat Nov 29 02:41:43 EST 2025 Tue Nov 18 21:08:06 EST 2025 Wed Aug 27 02:35:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-8065b4a687b19ec2d2786d34f13844722927d84c0c94309a597324aca6271fbc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1460-5177 0000-0003-4722-4346 0000-0001-5888-1195 0000-0002-9710-7685 |
| OpenAccessLink | https://doaj.org/article/74e8bea7747c4576ae9b6ccb64147ed5 |
| PQID | 2454821419 |
| PQPubID | 4845423 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2019_2962153 ieee_primary_8943222 doaj_primary_oai_doaj_org_article_74e8bea7747c4576ae9b6ccb64147ed5 proquest_journals_2454821419 crossref_citationtrail_10_1109_ACCESS_2019_2962153 |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 mohebifar (ref26) 2006 ref34 ref12 ref15 ref36 ref14 back (ref24) 1996 ref31 ref30 ref33 ref11 ref32 ref10 ref2 haupt (ref1) 2004 ref39 dorigo (ref17) 2003 ref38 ref16 ref19 ref18 jafari (ref23) 2019 ref25 ref20 ref42 ref41 ref22 ref21 ref43 worasucheep (ref37) 2011; 4 ref28 sinha (ref29) 2003 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref14 doi: 10.1016/j.apor.2017.09.006 – ident: ref18 doi: 10.1016/j.asoc.2014.02.006 – ident: ref9 doi: 10.1016/j.ijepes.2007.06.006 – ident: ref32 doi: 10.3390/w9090634 – ident: ref34 doi: 10.1007/s00521-013-1354-6 – ident: ref38 doi: 10.1016/j.amc.2010.03.123 – ident: ref19 doi: 10.1109/TPWRS.2009.2034525 – ident: ref25 doi: 10.1007/978-3-662-05094-1 – year: 2003 ident: ref29 publication-title: A Survey of Hybrid Genetic and Evolutionary Algorithms – ident: ref12 doi: 10.1016/j.asoc.2012.11.023 – year: 1996 ident: ref24 publication-title: Evolutionary Algorithms in Theory and Practice Evolution Strategies Evolutionary Programming Genetic Algorithms doi: 10.1093/oso/9780195099713.001.0001 – ident: ref28 doi: 10.7551/mitpress/1090.001.0001 – ident: ref6 doi: 10.1016/j.asoc.2013.11.012 – ident: ref41 doi: 10.1037/0033-295X.115.2.463 – ident: ref33 doi: 10.1016/j.energy.2018.01.176 – year: 2004 ident: ref1 publication-title: Practical Genetic Algorithms – ident: ref40 doi: 10.2469/faj.v55.n2.2255 – year: 2006 ident: ref26 article-title: New binary representation in genetic algorithms for solving TSP by mapping permutations to a list of ordered numbers publication-title: Proc Int Conf Comput Intell Man-Mach Syst Cybern – ident: ref13 doi: 10.1016/j.asoc.2013.09.015 – volume: 4 start-page: 13 year: 2011 ident: ref37 article-title: A harmony search with adaptive pitch adjustment for continuous optimization publication-title: Int J Hybrid Inf Technol – ident: ref31 doi: 10.3390/w10010020 – ident: ref27 doi: 10.1007/978-3-319-11680-8_29 – ident: ref3 doi: 10.1016/j.ijepes.2013.04.014 – ident: ref43 doi: 10.1016/j.ijepes.2015.08.013 – ident: ref16 doi: 10.1109/4235.585893 – ident: ref39 doi: 10.1155/2012/638275 – ident: ref11 doi: 10.1016/j.asoc.2012.10.009 – ident: ref21 doi: 10.1109/SGC.2017.8308887 – ident: ref30 doi: 10.1109/TAAI.2015.7407102 – ident: ref2 doi: 10.1109/TPWRS.2009.2030293 – start-page: 250 year: 2003 ident: ref17 article-title: The ant colony optimization metaheuristic: Algorithms, applications, and advances publication-title: Handbook of Metaheuristics doi: 10.1007/0-306-48056-5_9 – ident: ref22 doi: 10.1049/iet-rpg.2018.6222 – year: 2019 ident: ref23 article-title: Optimal integration of renewable energy sources, diesel generators, and demand response program from pollution, financial, and reliability viewpoints: A multi-objective approach publication-title: J Cleaner Prod – ident: ref7 doi: 10.1016/j.asoc.2012.11.011 – ident: ref5 doi: 10.1016/j.asoc.2013.05.022 – ident: ref36 doi: 10.1016/j.ins.2009.03.004 – ident: ref35 doi: 10.1016/j.cor.2012.12.006 – ident: ref4 doi: 10.1016/S0378-7796(02)00028-7 – ident: ref42 doi: 10.1093/0198292279.001.0001 – ident: ref8 doi: 10.1016/j.asoc.2013.03.013 – ident: ref10 doi: 10.1007/978-3-642-28487-8_37 – ident: ref15 doi: 10.3233/FI-1998-35123403 – ident: ref20 doi: 10.1016/j.energy.2018.12.024 |
| SSID | ssj0000816957 |
| Score | 2.4080086 |
| Snippet | This paper proposes a hybrid optimization technique combining genetic and exchange market algorithms. These algorithms are two evolutionary algorithms that... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2417 |
| SubjectTerms | Approximation algorithms Evolutionary algorithm Evolutionary algorithms Evolutionary computation exchange market algorithm (EMA) Exchanging genetic algorithm (GA) Genetic algorithms Heuristic algorithms hybrid algorithm Linear programming objective function Optimization optimization algorithm Optimization techniques Search algorithms Securities markets Solution space Stock markets |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4kAPlEcrlpd84EggcSaxfdyuQBx4HajEzYofaZHYXbS7VO2_r8fxRq1aIXGLIs8oyRd7POOZbwBO6rx1LeU8OSxdhoW1mazy4KWUwgSDwysjbGw2IW5v5eOjul-B074Wxnsfk8_8GV3Gs3w3ta8UKjsnrvBgz1ZhVQjR1Wr18RRqIKEqkYiFilydD0ej8A6UvaXOuKqDbSv_Mj6Roz81VflnJY7m5fLj-x5sCzbTNpINO9y3YcVPduDDH-SCu3A9ZFe_qB6L3YVlYZzqLdnDkrSVxWwBdvGzq_1lN7H-mTUTx4iLOihmw-dv09nT4vt4_gm-Xl48jK6y1Dshs5jLRUbnpQabWgpTKG-540LWrsS2KCUSQaTiwkm0uSX-ddVUxNqDjW1qLorW2PIzrE2mE78HrGycoI1VUIZEdaNKjzbIOFSyNS0OgC8_qraJWJz6Wzzr6GDkSndIaEJCJyQGcNoLvXS8Gm8P_0Jo9UOJFDveCDDoNMe0QC-Nb8KGVlgMflTjlamtNTUWKLyrBrBL0PVKEmoDOFxir9MEnmuOwZXjBRZq__9SB7DByfWO0ZhDWFvMXv0RrNsfi6f57Dj-m78BeenfBA priority: 102 providerName: IEEE |
| Title | A Hybrid Optimization Technique Using Exchange Market and Genetic Algorithms |
| URI | https://ieeexplore.ieee.org/document/8943222 https://www.proquest.com/docview/2454821419 https://doaj.org/article/74e8bea7747c4576ae9b6ccb64147ed5 |
| Volume | 8 |
| WOSCitedRecordID | wos000549755900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEIAthBhgQDxFeckDI4HYucb2WKoiBl4DSGxW_AggQYvagmDht-Nz3KoICRaWDFHsJOezfZfcfUfIQZnXrsaYJweFy4BZm8l2HryUQpiw4fC2ETYWmxCXl_LuTl3PlPrCmLAGD9wI7liAl8ZXwUoRFoJxXHllSmtNCQyEd5FeGqyeGWcqrsGSlaotEmaI5eq40-2GN8JYLnXEVRl2uuLbVhSJ_anEyo91OW42pytkOVmJtNM83SqZ8_01sjTDDlwn5x169oHpVvQqzPrnlE5JbyZMVhqDAWjvvUntpRcxvZlWfUcRNR06pp2n-8HwcfzwPNogt6e9m-5ZlkojZBZyOc7wd6iBqpTCMOUtd1zI0hVQs0IC8h8VF06CzS3i1VXVRigPVLYquWC1scUmme8P-n6L0KJyAu2m0BkgyUYVHmxo40DJ2tTQInwiJW0TNxzLVzzp6D_kSjei1ShanUTbIofTRi8NNuP3y09Q_NNLkXkdTwRN0EkT9F-a0CLrOHjTTpAsH6yfFtmdDKZO83OkOQRPjTNgavs_br1DFjn64fHTzC6ZHw9f_R5ZsG_jx9FwP6pmOF589vZjguEXeWjkvQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgQQ8jB8bWmGAH3hctti5xPZjqTYV0RUeirQ3K7GdbdLWTm2H4L_H57gREwiJtyjynZJ8sc93vvsO4EOVt66lnCeHhcuQW5upMg9eSiGbYHBE2Ugbm03I6VSdn-uvW3DY18J472PymT-iy3iW7xb2jkJlx8QVHuzZA3hYIgreVWv1ERVqIaFLmaiFeK6Ph6NReAvK39JHQlfBuhX3zE9k6U9tVf5Yi6OBOX32f4_2HHbSRpINO-RfwJafv4Snv9EL7sJkyMY_qSKLfQkLw02quGSzDW0ri_kC7ORHV_3LzmIFNKvnjhEbdVDMhtcXi-XV-vJmtQffTk9mo3GWuidkFnO1zujEtMG6UrLh2lvhhFSVK7DlhUKiiNRCOoU2t8TAruuSeHuwtnUlJG8bW7yC7fli7veBFbWTtLUKypDIbnTh0QYZh1q1TYsDEJuPamyiFqcOF9cmuhi5Nh0ShpAwCYkBHPZCtx2zxr-HfyS0-qFEix1vBBhMmmVGoleNr8OWVloMnlTtdVNZ21TIUXpXDmCXoOuVJNQGcLDB3qQpvDICgzMnOHL9-u9S7-HxeHY2MZNP089v4IkgRzzGZg5ge72882_hkf2-vlot38X_9Bc7JeJL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Optimization+Technique+Using+Exchange+Market+and+Genetic+Algorithms&rft.jtitle=IEEE+access&rft.au=Jafari%2C+Amirreza&rft.au=Khalili%2C+Tohid&rft.au=Babaei%2C+Ebrahim&rft.au=Bidram%2C+Ali&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=2417&rft.epage=2427&rft_id=info:doi/10.1109%2FACCESS.2019.2962153&rft.externalDocID=8943222 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |