Applications of Stochastic Mixed-Integer Second-Order Cone Optimization
Second-order cone programming problems are a tractable subclass of convex optimization problems that can be solved using polynomial algorithms. In the last decade, stochastic second-order cone programming problems have been studied, and efficient algorithms for solving them have been developed. The...
Uložené v:
| Vydané v: | IEEE access Ročník 10; s. 3522 - 3547 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Second-order cone programming problems are a tractable subclass of convex optimization problems that can be solved using polynomial algorithms. In the last decade, stochastic second-order cone programming problems have been studied, and efficient algorithms for solving them have been developed. The mixed-integer version of these problems is a new class of interest to the optimization community and practitioners, in which certain variables are required to be integers. In this paper, we describe five applications that lead to stochastic mixed-integer second-order cone programming problems. Additionally, we present solution algorithms for solving stochastic mixed-integer second-order cone programming using cuts and relaxations by combining existing algorithms for stochastic second-order cone programming with extensions of mixed-integer second-order cone programming. The applications, which are the focus of this paper, include facility location, portfolio optimization, uncapacitated inventory, battery swapping stations, and berth allocation planning. Considering the fact that mixed-integer programs are usually known to be NP-hard, bringing applications to the surface can detect tractable special cases and inspire for further algorithmic improvements in the future. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2021.3139915 |