Unsupervised Anomaly Detection of Industrial Robots using Sliding-Window Convolutional Variational Autoencoder
With growing dependence of industrial robots, a failure of an industrial robot may interrupt current operation or even overall manufacturing workflows in the entire production line, which can cause significant economic losses. Hence, it is very essential to maintain industrial robots to ensure high-...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 8; S. 1 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!