Unsupervised Anomaly Detection of Industrial Robots using Sliding-Window Convolutional Variational Autoencoder
With growing dependence of industrial robots, a failure of an industrial robot may interrupt current operation or even overall manufacturing workflows in the entire production line, which can cause significant economic losses. Hence, it is very essential to maintain industrial robots to ensure high-...
Uloženo v:
| Vydáno v: | IEEE access Ročník 8; s. 1 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!