Parallel Data Partitioning Algorithms for Optimization of Data-Parallel Applications on Modern Extreme-Scale Multicore Platforms for Performance and Energy
Data partitioning algorithms aiming to minimize the execution time and the energy of computations in self-adaptable data-parallel applications on modern extreme-scale multicore platforms must address two critical challenges. First, they must take into account the new complexities inherent in these p...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 6; S. 69075 - 69106 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Data partitioning algorithms aiming to minimize the execution time and the energy of computations in self-adaptable data-parallel applications on modern extreme-scale multicore platforms must address two critical challenges. First, they must take into account the new complexities inherent in these platforms such as severe resource contention and non-uniform memory access. Second, they must have low practical runtime and memory costs. The sequential data partitioning algorithms addressing the first challenge have a theoretical time complexity of O(<inline-formula> <tex-math notation="LaTeX">m * m * p * p </tex-math></inline-formula>) where <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> is the number of points in the discrete speed/energy function and <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> is the number of available processors. They, however, exhibit high practical runtime cost and excessive memory footprint, therefore, rendering them impracticable for employment in self-adaptable applications executing on extreme-scale multicore platforms. We present, in this paper, the parallel data partitioning algorithms that address both the challenges. They take as input the functional models of performance and energy consumption against problem size and output workload distributions, which are globally optimal solutions. They have a low time complexity of O(<inline-formula> <tex-math notation="LaTeX">m * m * p </tex-math></inline-formula>) thereby providing a linear speedup of O(<inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>) and low memory complexity of O(<inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>) where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the workload size expressed as a multiple of granularity. They employ dynamic programming approach, which also facilitates the easier integration of performance and energy models of communications. We experimentally study the practical cost of application of our algorithms in two data-parallel applications, matrix multiplication and fast Fourier transform, on a cluster in Grid'5000 platform. We demonstrate that their practical runtime and memory costs are low making them ideal for employment in self-adaptable applications. We also show that the parallel algorithms exhibit tremendous speedups over the sequential algorithms. Finally, using theoretical analysis for a forecast exascale platform, we demonstrate that the parallel algorithms have negligible execution times compared to the matrix multiplication application executing on the platform. |
|---|---|
| AbstractList | Data partitioning algorithms aiming to minimize the execution time and the energy of computations in self-adaptable data-parallel applications on modern extreme-scale multicore platforms must address two critical challenges. First, they must take into account the new complexities inherent in these platforms such as severe resource contention and non-uniform memory access. Second, they must have low practical runtime and memory costs. The sequential data partitioning algorithms addressing the first challenge have a theoretical time complexity of O(m*m*p*p) where mis the number of points in the discrete speed/energy function and p is the number of available processors. They, however, exhibit high practical runtime cost and excessive memory footprint, therefore, rendering them impracticable for employment in self-adaptable applications executing on extreme-scale multicore platforms. We present, in this paper, the parallel data partitioning algorithms that address both the challenges. They take as input the functional models of performance and energy consumption against problem size and output workload distributions, which are globally optimal solutions. They have a low time complexity of O(m * m * p) thereby providing a linear speedup of O(p) and low memory complexity of O(n) where n is the workload size expressed as a multiple of granularity. They employ dynamic programming approach, which also facilitates the easier integration of performance and energy models of communications. We experimentally study the practical cost of application of our algorithms in two data-parallel applications, matrix multiplication and fast Fourier transform, on a cluster in Grid'5000 platform. We demonstrate that their practical runtime and memory costs are low making them ideal for employment in self-adaptable applications. We also show that the parallel algorithms exhibit tremendous speedups over the sequential algorithms. Finally, using theoretical analysis for a forecast exascale platform, we demonstrate that the parallel algorithms have negligible execution times compared to the matrix multiplication application executing on the platform. Data partitioning algorithms aiming to minimize the execution time and the energy of computations in self-adaptable data-parallel applications on modern extreme-scale multicore platforms must address two critical challenges. First, they must take into account the new complexities inherent in these platforms such as severe resource contention and non-uniform memory access. Second, they must have low practical runtime and memory costs. The sequential data partitioning algorithms addressing the first challenge have a theoretical time complexity of O(<inline-formula> <tex-math notation="LaTeX">m * m * p * p </tex-math></inline-formula>) where <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> is the number of points in the discrete speed/energy function and <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> is the number of available processors. They, however, exhibit high practical runtime cost and excessive memory footprint, therefore, rendering them impracticable for employment in self-adaptable applications executing on extreme-scale multicore platforms. We present, in this paper, the parallel data partitioning algorithms that address both the challenges. They take as input the functional models of performance and energy consumption against problem size and output workload distributions, which are globally optimal solutions. They have a low time complexity of O(<inline-formula> <tex-math notation="LaTeX">m * m * p </tex-math></inline-formula>) thereby providing a linear speedup of O(<inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>) and low memory complexity of O(<inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>) where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the workload size expressed as a multiple of granularity. They employ dynamic programming approach, which also facilitates the easier integration of performance and energy models of communications. We experimentally study the practical cost of application of our algorithms in two data-parallel applications, matrix multiplication and fast Fourier transform, on a cluster in Grid'5000 platform. We demonstrate that their practical runtime and memory costs are low making them ideal for employment in self-adaptable applications. We also show that the parallel algorithms exhibit tremendous speedups over the sequential algorithms. Finally, using theoretical analysis for a forecast exascale platform, we demonstrate that the parallel algorithms have negligible execution times compared to the matrix multiplication application executing on the platform. |
| Author | Manumachu, Ravi Reddy Lastovetsky, Alexey |
| Author_xml | – sequence: 1 givenname: Ravi Reddy orcidid: 0000-0001-9181-3290 surname: Manumachu fullname: Manumachu, Ravi Reddy email: ravi.manumachu@ucd.ie organization: School of Computer Science, University College Dublin, Dublin 4, Ireland – sequence: 2 givenname: Alexey surname: Lastovetsky fullname: Lastovetsky, Alexey organization: School of Computer Science, University College Dublin, Dublin 4, Ireland |
| BookMark | eNp9kV1r2zAUhsXoYF3XX9Abwa6d6dOWL0OWbYWWBrJdC1k-yhQUy5MVWPtX9mdnx1kpvZhujs7H83I473t00cUOELqhZEEpqT8tV6v1drtghKoFU1XNmHqDLhkt64JLXl68-L9D18OwJ-NTY0lWl-jPxiQTAgT82WSDxyz77GPnux1ehl1MPv88DNjFhB_67A_-yUxtHN0JKJ7xZd8Hb0_NAY8D97GF1OH175zgAMXWmgD4_hiytzEB3gSTR9Gz9AbSlJjOAjZdi9cdpN3jB_TWmTDA9TleoR9f1t9X34q7h6-3q-VdYQVRuSitkFXdOgpS8oYZ4ThpjGtZC1UpZU1EIySR3EnrXOnqsuJWKcsq5qgyQvArdDvrttHsdZ_8waRHHY3Xp0JMOz2dxQbQLbBWiLKVDBpRlaWpHa2M4I0lEoizo9bHWatP8dcRhqz38Zi6cX3NhJRKyZrycaqep2yKw5DAaevz6XY5GR80JXqyVs_W6slafbZ2ZPkr9t_G_6duZsoDwDOhJJ-a_C_jcrRS |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1002_cpe_5928 crossref_primary_10_1134_S1995080222050262 crossref_primary_10_1109_ACCESS_2019_2959905 crossref_primary_10_1109_ACCESS_2023_3258684 |
| Cites_doi | 10.1016/j.parco.2003.05.014 10.1109/ISPA.2012.96 10.1002/cpe.1631 10.1109/MSP.2009.934155 10.1145/2581122.2544141 10.1109/IPDPS.2011.231 10.1007/s11227-011-0648-7 10.1109/TPDS.2017.2715809 10.1007/s11227-014-1133-x 10.1016/j.jpdc.2004.07.005 10.1109/ISPA.2012.101 10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2 10.1177/1094342006074864 10.1109/CLUSTER.2010.12 10.1002/cpe.4330030502 10.1145/1594835.1504196 10.1109/TPDS.2016.2613524 10.1109/TC.2017.2742513 10.1142/S0129626411000163 10.1016/j.parco.2004.07.007 10.1145/1278177.1278182 10.1007/s11227-011-0595-3 10.1016/0021-9991(90)90105-A 10.1109/TPDS.2006.88 10.1109/I-SPAN.2009.22 10.1006/jpdc.1997.1407 10.1007/s11227-011-0594-4 10.1109/TPDS.2005.45 10.1016/0743-7315(89)90021-X 10.1109/IPDPS.2011.281 10.1109/TPDS.2004.10 10.1016/S0045-7825(99)00241-8 10.1007/s11227-009-0350-1 10.1109/SC.2012.30 10.1016/j.future.2015.08.002 10.1016/j.future.2013.06.028 10.1109/TPDS.2016.2608824 10.1145/2076021.2048104 10.1145/1353535.1346318 10.1007/s11227-007-0148-y |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2018.2879228 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 69106 |
| ExternalDocumentID | oai_doaj_org_article_de2d446d52eb4766a9f17a43bc05e0fc 10_1109_ACCESS_2018_2879228 8532283 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Science Foundation Ireland grantid: 14/IA/2474 funderid: 10.13039/501100001602 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-6c4579df1e553b2a4f30bafd2de7655904b45053f5cff6f9673c88c272f18a443 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452596700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:43:58 EDT 2025 Sun Nov 30 05:19:48 EST 2025 Tue Nov 18 22:21:01 EST 2025 Sat Nov 29 03:33:30 EST 2025 Wed Aug 27 02:50:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-6c4579df1e553b2a4f30bafd2de7655904b45053f5cff6f9673c88c272f18a443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9181-3290 |
| OpenAccessLink | https://doaj.org/article/de2d446d52eb4766a9f17a43bc05e0fc |
| PQID | 2455885913 |
| PQPubID | 4845423 |
| PageCount | 32 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_de2d446d52eb4766a9f17a43bc05e0fc crossref_primary_10_1109_ACCESS_2018_2879228 crossref_citationtrail_10_1109_ACCESS_2018_2879228 ieee_primary_8532283 proquest_journals_2455885913 |
| PublicationCentury | 2000 |
| PublicationDate | 20180000 2018-00-00 20180101 2018-01-01 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – year: 2018 text: 20180000 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref58 ref14 ref53 ref52 ref55 radmanovi? (ref23) 2016; 26 ref54 kondo (ref56) 2012 ogata (ref28) 2008 ref19 augonnet (ref32) 2009 ref18 (ref16) 2016 bash (ref11) 2007 ref51 ref50 reddy (ref57) 2016 ref45 arulananthan (ref5) 1998 ref48 ref47 ref42 ref41 ref44 ref43 ref49 galindo (ref46) 2008 ref8 ref7 cardellini (ref26) 2013 (ref17) 2016 ref4 ref3 ref6 ref40 patel (ref10) 2003; 2 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ilic (ref20) 2010 ref2 ref39 ref38 reddy (ref1) 2017 ref24 reddy (ref9) 2009; 10 (ref15) 2016 ref22 clarke (ref21) 2012; 7155 ref27 ref29 colaço (ref25) 2013 |
| References_xml | – year: 2016 ident: ref17 publication-title: Parallel FFTW – ident: ref7 doi: 10.1016/j.parco.2003.05.014 – ident: ref50 doi: 10.1109/ISPA.2012.96 – ident: ref39 doi: 10.1002/cpe.1631 – ident: ref8 doi: 10.1109/MSP.2009.934155 – volume: 26 year: 2016 ident: ref23 article-title: Efficient computation of galois field expressions on hybrid CPU-GPU platforms publication-title: J Multiple-Valued Logic Soft Comput – year: 2016 ident: ref15 publication-title: OpenBLAS An Optimized BLAS Library – ident: ref44 doi: 10.1145/2581122.2544141 – ident: ref13 doi: 10.1109/IPDPS.2011.231 – ident: ref49 doi: 10.1007/s11227-011-0648-7 – ident: ref52 doi: 10.1109/TPDS.2017.2715809 – year: 2012 ident: ref56 article-title: Report on exascale architecture roadmap in Japan – start-page: 64 year: 2008 ident: ref46 article-title: Dynamic load balancing on dedicated heterogeneous systems publication-title: Proc Eur Parallel Virtual Mach /Message Passing Interface Users' Group Meeting – ident: ref54 doi: 10.1007/s11227-014-1133-x – start-page: 43 year: 1998 ident: ref5 article-title: A generic strategy for dynamic load balancing of distributed memory parallel computational mechanics using unstructured meshed publication-title: Parallel Computational Fluid Dynamics Development and Applications of Parallel Technology – ident: ref45 doi: 10.1016/j.jpdc.2004.07.005 – ident: ref24 doi: 10.1109/ISPA.2012.101 – ident: ref53 doi: 10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2 – ident: ref19 doi: 10.1177/1094342006074864 – ident: ref29 doi: 10.1109/CLUSTER.2010.12 – volume: 7155 start-page: 450 year: 2012 ident: ref21 article-title: Column-based matrix partitioning for parallel matrix multiplication on heterogeneous processors based on functional performance models publication-title: Proc Eur Conf Parallel Process – ident: ref3 doi: 10.1002/cpe.4330030502 – ident: ref31 doi: 10.1145/1594835.1504196 – ident: ref51 doi: 10.1109/TPDS.2016.2613524 – start-page: 693 year: 2013 ident: ref25 article-title: Transparent application acceleration by intelligent scheduling of shared library calls on heterogeneous systems publication-title: Parallel Processing and Applied Mathematics – ident: ref27 doi: 10.1109/TC.2017.2742513 – ident: ref2 doi: 10.1142/S0129626411000163 – ident: ref55 doi: 10.1016/j.parco.2004.07.007 – ident: ref38 doi: 10.1145/1278177.1278182 – ident: ref47 doi: 10.1007/s11227-011-0595-3 – ident: ref58 doi: 10.1016/0021-9991(90)90105-A – ident: ref41 doi: 10.1109/TPDS.2006.88 – ident: ref12 doi: 10.1109/I-SPAN.2009.22 – start-page: 203 year: 2013 ident: ref26 article-title: Heterogeneous sparse matrix computations on hybrid GPU/CPU platforms publication-title: Proc PARCO – ident: ref4 doi: 10.1006/jpdc.1997.1407 – ident: ref48 doi: 10.1007/s11227-011-0594-4 – year: 2016 ident: ref57 publication-title: HCLWattsUp API for Power and Energy Measurements Using WattsUp Pro Meter – ident: ref34 doi: 10.1109/TPDS.2005.45 – ident: ref33 doi: 10.1016/0743-7315(89)90021-X – volume: 10 start-page: 201 year: 2009 ident: ref9 article-title: HeteroPBLAS: A set of parallel basic linear algebra subprograms optimized for heterogeneous computational clusters publication-title: Scalable Comput Pract Exp – start-page: 56 year: 2009 ident: ref32 article-title: Automatic calibration of performance models on heterogeneous multicore architectures publication-title: Proc 3rd Workshop Highly Parallel Process Chip (HPPC) – ident: ref40 doi: 10.1109/IPDPS.2011.281 – ident: ref35 doi: 10.1109/TPDS.2004.10 – ident: ref6 doi: 10.1016/S0045-7825(99)00241-8 – ident: ref37 doi: 10.1007/s11227-009-0350-1 – start-page: 29:1 year: 2007 ident: ref11 article-title: Cool job allocation: Measuring the power savings of placing jobs at cooling-efficient locations in the data center publication-title: Proc USENIX Annu Tech Conf – ident: ref43 doi: 10.1109/SC.2012.30 – volume: 2 start-page: 129 year: 2003 ident: ref10 article-title: Smart cooling of data centers publication-title: Proc of Int Electron Pack Tech L Conf Exhib – start-page: 202 year: 2010 ident: ref20 article-title: High-performance computing on heterogeneous systems: Database queries on CPU and GPU publication-title: High Performance Scientific Computing with Special Emphasis on Current Capabilities and Future Perspectives – year: 2017 ident: ref1 publication-title: PARALEPH Parallel Data Partitioning Algorithms for Optimization of Data-Parallel Applications on Modern Extreme-Scale Multicore Platforms for Performance and Energy – ident: ref22 doi: 10.1016/j.future.2015.08.002 – start-page: 1 year: 2008 ident: ref28 article-title: An efficient, model-based CPU-GPU heterogeneous FFT library publication-title: Proc IEEE Int Symp Parallel Distrib Process (IPDPS) – ident: ref14 doi: 10.1016/j.future.2013.06.028 – ident: ref18 doi: 10.1109/TPDS.2016.2608824 – year: 2016 ident: ref16 publication-title: FFTW A Fast Free C FFT Library – ident: ref42 doi: 10.1145/2076021.2048104 – ident: ref30 doi: 10.1145/1353535.1346318 – ident: ref36 doi: 10.1007/s11227-007-0148-y |
| SSID | ssj0000816957 |
| Score | 2.1198838 |
| Snippet | Data partitioning algorithms aiming to minimize the execution time and the energy of computations in self-adaptable data-parallel applications on modern... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 69075 |
| SubjectTerms | Algorithms Complexity Data parallelism data partitioning Dynamic programming energy Energy consumption energy optimization Fast Fourier transformations Fourier transforms homogeneous multicore CPU clusters load balancing Matrices (mathematics) Multicore processing Multiplication Optimization parallel algorithms Partitioning Partitioning algorithms performance optimization Platforms Run time (computers) Runtime Servers Shape Workload Workloads |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXaigMc-CqIbQvygWPdOrEd28dluxWnEgmQerMcf0Cl7W61myL-S_9sPY6brgRC4hZFHsvRm9jjsec9hD5aWrngZEcCt5EkD2mIiswT13nPaSdSyOCy2IS8uFCXl7rdQcdjLUwIIV8-CyfwmM_y_crdQqrsNC0twNayi3albIZarTGfAgISWshCLFRRfTqdzdI3wO0tdZL2BboGxfWtxSdz9BdRlT9m4ry8nL_4v4G9RM9LGImnA-6v0E5YvkbPtsgF99Fda9cglLLAZ7a3uAUfKdlXPF38WK2v-p_XG5yCVvwlzRvXpSATr2I2IKP5dOuMG6cGg3wanv_uIbdIviaUA86FvECJiduF7SESHrpuHwsTsF16PM-1hm_Q9_P5t9lnUqQYiONU9aRxXEjtYxWEYF1teWS0s9HXPsgmbUoo73iKpVgULsYm6kYyp5SrZR0rZTlnb9HecrUM7xCmQsloUyDjoCwXNG-65EdWhsg4C1pPUP2AkXGFpxzkMhYm71eoNgOwBoA1BdgJOh6Nbgaajn83_wTgj02BYzu_SKia8ssaH2qfNste1KHjsmmsjpW0nHWOikCjm6B98ISxk-IEE3T04EqmzAcbU3MhFFAFsoO_Wx2ipzDAIblzhPb69W14j564X_3VZv0hu_o93Ur_vQ priority: 102 providerName: IEEE |
| Title | Parallel Data Partitioning Algorithms for Optimization of Data-Parallel Applications on Modern Extreme-Scale Multicore Platforms for Performance and Energy |
| URI | https://ieeexplore.ieee.org/document/8532283 https://www.proquest.com/docview/2455885913 https://doaj.org/article/de2d446d52eb4766a9f17a43bc05e0fc |
| Volume | 6 |
| WOSCitedRecordID | wos000452596700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOCCiIhbbygSOmTmzH9nG73YoLJRIg9Wb5E5C2u2g3IE78Ef4sHsfdRkKCC5ccItuJPS_2jON5D6GXljY-eulI5DaRjJCOqMQC8S4ETp3ILoMvYhPy8lJdXel-IvUFZ8JGeuBx4E5DbEMOWYJoo-Oy66xOjbScOU9FpMnD7EulngRTZQ5WTaeFrDRDDdWn88Ui9wjOcqnXOUrQLeivT5aiwthfJVb-mJfLYnPxED2oXiKej2_3CN2J68fo_oQ78BD96u0WdFBW-NwOFvfQk7q5iuerT5sc9H--3uHsk-J3eVq4rvmWeJNKBbKvPp_8wsa5wKiOhpc_Btg6JO-zESMuebrAeIn7lR3A0R2b7m_zDrBdB7wsqYRP0MeL5YfFG1KVFojnVA2k81xIHVIThWCutTwx6mwKbYiyyzEH5Y5nV4kl4VPqku4k80r5VrapUZZz9hQdrDfr-AxhKpRMNvspHrJuQdLGZZhYGRPjLGo9Q-3NoBtfachBDWNlSjhCtRktZcBSplpqhl7tK30dWTj-XvwMrLkvChTa5UYGlqnAMv8C1gwdAhb2jWS_BqiCZujoBhumfu4703IhFDABsuf_49Ev0D3ozrjTc4QOhu23eIzu-u_Dl932pCA9X9_-XJ6UfMXflx8FvQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VggQc-CqIhQI-cGxaJ7bj-LgsWxVRlpUoUm-W4w-otN1Fuyniv_Bn8ThuWAmExC2KPJajN7HHY897AK8NLa23si08N6GIHlIXTWCusK1znLYihgw2iU3I2aw5P1fzHTgYamG89-nymT_Ex3SW71b2ClNlR3FpQbaWG3ATlbNytdaQUUEJCSVkphYqqToaTybxK_D-VnMYdwaqQs31reUnsfRnWZU_5uK0wBzf_7-hPYB7OZAk4x75h7Djl4_g7ha94B78nJs1SqUsyFvTGTJHL8n5VzJefFmtL7qvlxsSw1byMc4cl7kkk6xCMigG8_HWKTeJDXoBNTL90WF2sfgUcfYklfIiKSaZL0yHsXDf9fx3aQIxS0emqdrwMXw-np5NToosxlBYTpuuqC0XUrlQeiFYWxkeGG1NcJXzso7bEspbHqMpFoQNoQ6qlsw2ja1kFcrGcM6ewO5ytfRPgVDRyGBiKGOxMBdVb9roSUb6wDjzSo2gusZI28xUjoIZC512LFTpHliNwOoM7AgOBqNvPVHHv5u_QfCHpsiynV5EVHX-abXzlYvbZScq33JZ10aFUhrOWkuFp8GOYA89YegkO8EI9q9dSecZYaMrLkSDZIHs2d-tXsHtk7MPp_r03ez9c7iDg-1TPfuw262v_Au4Zb93F5v1y-T2vwBMCgMV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Data+Partitioning+Algorithms+for+Optimization+of+Data-Parallel+Applications+on+Modern+Extreme-Scale+Multicore+Platforms+for+Performance+and+Energy&rft.jtitle=IEEE+access&rft.au=Manumachu%2C+Ravi+Reddy&rft.au=Lastovetsky%2C+Alexey&rft.date=2018&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=6&rft.spage=69075&rft.epage=69106&rft_id=info:doi/10.1109%2FACCESS.2018.2879228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2018_2879228 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |