Parallel Data Partitioning Algorithms for Optimization of Data-Parallel Applications on Modern Extreme-Scale Multicore Platforms for Performance and Energy

Data partitioning algorithms aiming to minimize the execution time and the energy of computations in self-adaptable data-parallel applications on modern extreme-scale multicore platforms must address two critical challenges. First, they must take into account the new complexities inherent in these p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 6; S. 69075 - 69106
Hauptverfasser: Manumachu, Ravi Reddy, Lastovetsky, Alexey
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Data partitioning algorithms aiming to minimize the execution time and the energy of computations in self-adaptable data-parallel applications on modern extreme-scale multicore platforms must address two critical challenges. First, they must take into account the new complexities inherent in these platforms such as severe resource contention and non-uniform memory access. Second, they must have low practical runtime and memory costs. The sequential data partitioning algorithms addressing the first challenge have a theoretical time complexity of O(<inline-formula> <tex-math notation="LaTeX">m * m * p * p </tex-math></inline-formula>) where <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> is the number of points in the discrete speed/energy function and <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> is the number of available processors. They, however, exhibit high practical runtime cost and excessive memory footprint, therefore, rendering them impracticable for employment in self-adaptable applications executing on extreme-scale multicore platforms. We present, in this paper, the parallel data partitioning algorithms that address both the challenges. They take as input the functional models of performance and energy consumption against problem size and output workload distributions, which are globally optimal solutions. They have a low time complexity of O(<inline-formula> <tex-math notation="LaTeX">m * m * p </tex-math></inline-formula>) thereby providing a linear speedup of O(<inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>) and low memory complexity of O(<inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>) where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the workload size expressed as a multiple of granularity. They employ dynamic programming approach, which also facilitates the easier integration of performance and energy models of communications. We experimentally study the practical cost of application of our algorithms in two data-parallel applications, matrix multiplication and fast Fourier transform, on a cluster in Grid'5000 platform. We demonstrate that their practical runtime and memory costs are low making them ideal for employment in self-adaptable applications. We also show that the parallel algorithms exhibit tremendous speedups over the sequential algorithms. Finally, using theoretical analysis for a forecast exascale platform, we demonstrate that the parallel algorithms have negligible execution times compared to the matrix multiplication application executing on the platform.
AbstractList Data partitioning algorithms aiming to minimize the execution time and the energy of computations in self-adaptable data-parallel applications on modern extreme-scale multicore platforms must address two critical challenges. First, they must take into account the new complexities inherent in these platforms such as severe resource contention and non-uniform memory access. Second, they must have low practical runtime and memory costs. The sequential data partitioning algorithms addressing the first challenge have a theoretical time complexity of O(m*m*p*p) where mis the number of points in the discrete speed/energy function and p is the number of available processors. They, however, exhibit high practical runtime cost and excessive memory footprint, therefore, rendering them impracticable for employment in self-adaptable applications executing on extreme-scale multicore platforms. We present, in this paper, the parallel data partitioning algorithms that address both the challenges. They take as input the functional models of performance and energy consumption against problem size and output workload distributions, which are globally optimal solutions. They have a low time complexity of O(m * m * p) thereby providing a linear speedup of O(p) and low memory complexity of O(n) where n is the workload size expressed as a multiple of granularity. They employ dynamic programming approach, which also facilitates the easier integration of performance and energy models of communications. We experimentally study the practical cost of application of our algorithms in two data-parallel applications, matrix multiplication and fast Fourier transform, on a cluster in Grid'5000 platform. We demonstrate that their practical runtime and memory costs are low making them ideal for employment in self-adaptable applications. We also show that the parallel algorithms exhibit tremendous speedups over the sequential algorithms. Finally, using theoretical analysis for a forecast exascale platform, we demonstrate that the parallel algorithms have negligible execution times compared to the matrix multiplication application executing on the platform.
Data partitioning algorithms aiming to minimize the execution time and the energy of computations in self-adaptable data-parallel applications on modern extreme-scale multicore platforms must address two critical challenges. First, they must take into account the new complexities inherent in these platforms such as severe resource contention and non-uniform memory access. Second, they must have low practical runtime and memory costs. The sequential data partitioning algorithms addressing the first challenge have a theoretical time complexity of O(<inline-formula> <tex-math notation="LaTeX">m * m * p * p </tex-math></inline-formula>) where <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> is the number of points in the discrete speed/energy function and <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> is the number of available processors. They, however, exhibit high practical runtime cost and excessive memory footprint, therefore, rendering them impracticable for employment in self-adaptable applications executing on extreme-scale multicore platforms. We present, in this paper, the parallel data partitioning algorithms that address both the challenges. They take as input the functional models of performance and energy consumption against problem size and output workload distributions, which are globally optimal solutions. They have a low time complexity of O(<inline-formula> <tex-math notation="LaTeX">m * m * p </tex-math></inline-formula>) thereby providing a linear speedup of O(<inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>) and low memory complexity of O(<inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>) where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the workload size expressed as a multiple of granularity. They employ dynamic programming approach, which also facilitates the easier integration of performance and energy models of communications. We experimentally study the practical cost of application of our algorithms in two data-parallel applications, matrix multiplication and fast Fourier transform, on a cluster in Grid'5000 platform. We demonstrate that their practical runtime and memory costs are low making them ideal for employment in self-adaptable applications. We also show that the parallel algorithms exhibit tremendous speedups over the sequential algorithms. Finally, using theoretical analysis for a forecast exascale platform, we demonstrate that the parallel algorithms have negligible execution times compared to the matrix multiplication application executing on the platform.
Author Manumachu, Ravi Reddy
Lastovetsky, Alexey
Author_xml – sequence: 1
  givenname: Ravi Reddy
  orcidid: 0000-0001-9181-3290
  surname: Manumachu
  fullname: Manumachu, Ravi Reddy
  email: ravi.manumachu@ucd.ie
  organization: School of Computer Science, University College Dublin, Dublin 4, Ireland
– sequence: 2
  givenname: Alexey
  surname: Lastovetsky
  fullname: Lastovetsky, Alexey
  organization: School of Computer Science, University College Dublin, Dublin 4, Ireland
BookMark eNp9kV1r2zAUhsXoYF3XX9Abwa6d6dOWL0OWbYWWBrJdC1k-yhQUy5MVWPtX9mdnx1kpvZhujs7H83I473t00cUOELqhZEEpqT8tV6v1drtghKoFU1XNmHqDLhkt64JLXl68-L9D18OwJ-NTY0lWl-jPxiQTAgT82WSDxyz77GPnux1ehl1MPv88DNjFhB_67A_-yUxtHN0JKJ7xZd8Hb0_NAY8D97GF1OH175zgAMXWmgD4_hiytzEB3gSTR9Gz9AbSlJjOAjZdi9cdpN3jB_TWmTDA9TleoR9f1t9X34q7h6-3q-VdYQVRuSitkFXdOgpS8oYZ4ThpjGtZC1UpZU1EIySR3EnrXOnqsuJWKcsq5qgyQvArdDvrttHsdZ_8waRHHY3Xp0JMOz2dxQbQLbBWiLKVDBpRlaWpHa2M4I0lEoizo9bHWatP8dcRhqz38Zi6cX3NhJRKyZrycaqep2yKw5DAaevz6XY5GR80JXqyVs_W6slafbZ2ZPkr9t_G_6duZsoDwDOhJJ-a_C_jcrRS
CODEN IAECCG
CitedBy_id crossref_primary_10_1002_cpe_5928
crossref_primary_10_1134_S1995080222050262
crossref_primary_10_1109_ACCESS_2019_2959905
crossref_primary_10_1109_ACCESS_2023_3258684
Cites_doi 10.1016/j.parco.2003.05.014
10.1109/ISPA.2012.96
10.1002/cpe.1631
10.1109/MSP.2009.934155
10.1145/2581122.2544141
10.1109/IPDPS.2011.231
10.1007/s11227-011-0648-7
10.1109/TPDS.2017.2715809
10.1007/s11227-014-1133-x
10.1016/j.jpdc.2004.07.005
10.1109/ISPA.2012.101
10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
10.1177/1094342006074864
10.1109/CLUSTER.2010.12
10.1002/cpe.4330030502
10.1145/1594835.1504196
10.1109/TPDS.2016.2613524
10.1109/TC.2017.2742513
10.1142/S0129626411000163
10.1016/j.parco.2004.07.007
10.1145/1278177.1278182
10.1007/s11227-011-0595-3
10.1016/0021-9991(90)90105-A
10.1109/TPDS.2006.88
10.1109/I-SPAN.2009.22
10.1006/jpdc.1997.1407
10.1007/s11227-011-0594-4
10.1109/TPDS.2005.45
10.1016/0743-7315(89)90021-X
10.1109/IPDPS.2011.281
10.1109/TPDS.2004.10
10.1016/S0045-7825(99)00241-8
10.1007/s11227-009-0350-1
10.1109/SC.2012.30
10.1016/j.future.2015.08.002
10.1016/j.future.2013.06.028
10.1109/TPDS.2016.2608824
10.1145/2076021.2048104
10.1145/1353535.1346318
10.1007/s11227-007-0148-y
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2018.2879228
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 69106
ExternalDocumentID oai_doaj_org_article_de2d446d52eb4766a9f17a43bc05e0fc
10_1109_ACCESS_2018_2879228
8532283
Genre orig-research
GrantInformation_xml – fundername: Science Foundation Ireland
  grantid: 14/IA/2474
  funderid: 10.13039/501100001602
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-6c4579df1e553b2a4f30bafd2de7655904b45053f5cff6f9673c88c272f18a443
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452596700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:43:58 EDT 2025
Sun Nov 30 05:19:48 EST 2025
Tue Nov 18 22:21:01 EST 2025
Sat Nov 29 03:33:30 EST 2025
Wed Aug 27 02:50:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-6c4579df1e553b2a4f30bafd2de7655904b45053f5cff6f9673c88c272f18a443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9181-3290
OpenAccessLink https://doaj.org/article/de2d446d52eb4766a9f17a43bc05e0fc
PQID 2455885913
PQPubID 4845423
PageCount 32
ParticipantIDs doaj_primary_oai_doaj_org_article_de2d446d52eb4766a9f17a43bc05e0fc
crossref_primary_10_1109_ACCESS_2018_2879228
crossref_citationtrail_10_1109_ACCESS_2018_2879228
ieee_primary_8532283
proquest_journals_2455885913
PublicationCentury 2000
PublicationDate 20180000
2018-00-00
20180101
2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 20180000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref58
ref14
ref53
ref52
ref55
radmanovi? (ref23) 2016; 26
ref54
kondo (ref56) 2012
ogata (ref28) 2008
ref19
augonnet (ref32) 2009
ref18
(ref16) 2016
bash (ref11) 2007
ref51
ref50
reddy (ref57) 2016
ref45
arulananthan (ref5) 1998
ref48
ref47
ref42
ref41
ref44
ref43
ref49
galindo (ref46) 2008
ref8
ref7
cardellini (ref26) 2013
(ref17) 2016
ref4
ref3
ref6
ref40
patel (ref10) 2003; 2
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ilic (ref20) 2010
ref2
ref39
ref38
reddy (ref1) 2017
ref24
reddy (ref9) 2009; 10
(ref15) 2016
ref22
clarke (ref21) 2012; 7155
ref27
ref29
colaço (ref25) 2013
References_xml – year: 2016
  ident: ref17
  publication-title: Parallel FFTW
– ident: ref7
  doi: 10.1016/j.parco.2003.05.014
– ident: ref50
  doi: 10.1109/ISPA.2012.96
– ident: ref39
  doi: 10.1002/cpe.1631
– ident: ref8
  doi: 10.1109/MSP.2009.934155
– volume: 26
  year: 2016
  ident: ref23
  article-title: Efficient computation of galois field expressions on hybrid CPU-GPU platforms
  publication-title: J Multiple-Valued Logic Soft Comput
– year: 2016
  ident: ref15
  publication-title: OpenBLAS An Optimized BLAS Library
– ident: ref44
  doi: 10.1145/2581122.2544141
– ident: ref13
  doi: 10.1109/IPDPS.2011.231
– ident: ref49
  doi: 10.1007/s11227-011-0648-7
– ident: ref52
  doi: 10.1109/TPDS.2017.2715809
– year: 2012
  ident: ref56
  article-title: Report on exascale architecture roadmap in Japan
– start-page: 64
  year: 2008
  ident: ref46
  article-title: Dynamic load balancing on dedicated heterogeneous systems
  publication-title: Proc Eur Parallel Virtual Mach /Message Passing Interface Users' Group Meeting
– ident: ref54
  doi: 10.1007/s11227-014-1133-x
– start-page: 43
  year: 1998
  ident: ref5
  article-title: A generic strategy for dynamic load balancing of distributed memory parallel computational mechanics using unstructured meshed
  publication-title: Parallel Computational Fluid Dynamics Development and Applications of Parallel Technology
– ident: ref45
  doi: 10.1016/j.jpdc.2004.07.005
– ident: ref24
  doi: 10.1109/ISPA.2012.101
– ident: ref53
  doi: 10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
– ident: ref19
  doi: 10.1177/1094342006074864
– ident: ref29
  doi: 10.1109/CLUSTER.2010.12
– volume: 7155
  start-page: 450
  year: 2012
  ident: ref21
  article-title: Column-based matrix partitioning for parallel matrix multiplication on heterogeneous processors based on functional performance models
  publication-title: Proc Eur Conf Parallel Process
– ident: ref3
  doi: 10.1002/cpe.4330030502
– ident: ref31
  doi: 10.1145/1594835.1504196
– ident: ref51
  doi: 10.1109/TPDS.2016.2613524
– start-page: 693
  year: 2013
  ident: ref25
  article-title: Transparent application acceleration by intelligent scheduling of shared library calls on heterogeneous systems
  publication-title: Parallel Processing and Applied Mathematics
– ident: ref27
  doi: 10.1109/TC.2017.2742513
– ident: ref2
  doi: 10.1142/S0129626411000163
– ident: ref55
  doi: 10.1016/j.parco.2004.07.007
– ident: ref38
  doi: 10.1145/1278177.1278182
– ident: ref47
  doi: 10.1007/s11227-011-0595-3
– ident: ref58
  doi: 10.1016/0021-9991(90)90105-A
– ident: ref41
  doi: 10.1109/TPDS.2006.88
– ident: ref12
  doi: 10.1109/I-SPAN.2009.22
– start-page: 203
  year: 2013
  ident: ref26
  article-title: Heterogeneous sparse matrix computations on hybrid GPU/CPU platforms
  publication-title: Proc PARCO
– ident: ref4
  doi: 10.1006/jpdc.1997.1407
– ident: ref48
  doi: 10.1007/s11227-011-0594-4
– year: 2016
  ident: ref57
  publication-title: HCLWattsUp API for Power and Energy Measurements Using WattsUp Pro Meter
– ident: ref34
  doi: 10.1109/TPDS.2005.45
– ident: ref33
  doi: 10.1016/0743-7315(89)90021-X
– volume: 10
  start-page: 201
  year: 2009
  ident: ref9
  article-title: HeteroPBLAS: A set of parallel basic linear algebra subprograms optimized for heterogeneous computational clusters
  publication-title: Scalable Comput Pract Exp
– start-page: 56
  year: 2009
  ident: ref32
  article-title: Automatic calibration of performance models on heterogeneous multicore architectures
  publication-title: Proc 3rd Workshop Highly Parallel Process Chip (HPPC)
– ident: ref40
  doi: 10.1109/IPDPS.2011.281
– ident: ref35
  doi: 10.1109/TPDS.2004.10
– ident: ref6
  doi: 10.1016/S0045-7825(99)00241-8
– ident: ref37
  doi: 10.1007/s11227-009-0350-1
– start-page: 29:1
  year: 2007
  ident: ref11
  article-title: Cool job allocation: Measuring the power savings of placing jobs at cooling-efficient locations in the data center
  publication-title: Proc USENIX Annu Tech Conf
– ident: ref43
  doi: 10.1109/SC.2012.30
– volume: 2
  start-page: 129
  year: 2003
  ident: ref10
  article-title: Smart cooling of data centers
  publication-title: Proc of Int Electron Pack Tech L Conf Exhib
– start-page: 202
  year: 2010
  ident: ref20
  article-title: High-performance computing on heterogeneous systems: Database queries on CPU and GPU
  publication-title: High Performance Scientific Computing with Special Emphasis on Current Capabilities and Future Perspectives
– year: 2017
  ident: ref1
  publication-title: PARALEPH Parallel Data Partitioning Algorithms for Optimization of Data-Parallel Applications on Modern Extreme-Scale Multicore Platforms for Performance and Energy
– ident: ref22
  doi: 10.1016/j.future.2015.08.002
– start-page: 1
  year: 2008
  ident: ref28
  article-title: An efficient, model-based CPU-GPU heterogeneous FFT library
  publication-title: Proc IEEE Int Symp Parallel Distrib Process (IPDPS)
– ident: ref14
  doi: 10.1016/j.future.2013.06.028
– ident: ref18
  doi: 10.1109/TPDS.2016.2608824
– year: 2016
  ident: ref16
  publication-title: FFTW A Fast Free C FFT Library
– ident: ref42
  doi: 10.1145/2076021.2048104
– ident: ref30
  doi: 10.1145/1353535.1346318
– ident: ref36
  doi: 10.1007/s11227-007-0148-y
SSID ssj0000816957
Score 2.1198838
Snippet Data partitioning algorithms aiming to minimize the execution time and the energy of computations in self-adaptable data-parallel applications on modern...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 69075
SubjectTerms Algorithms
Complexity
Data parallelism
data partitioning
Dynamic programming
energy
Energy consumption
energy optimization
Fast Fourier transformations
Fourier transforms
homogeneous multicore CPU clusters
load balancing
Matrices (mathematics)
Multicore processing
Multiplication
Optimization
parallel algorithms
Partitioning
Partitioning algorithms
performance optimization
Platforms
Run time (computers)
Runtime
Servers
Shape
Workload
Workloads
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXaigMc-CqIbQvygWPdOrEd28dluxWnEgmQerMcf0Cl7W61myL-S_9sPY6brgRC4hZFHsvRm9jjsec9hD5aWrngZEcCt5EkD2mIiswT13nPaSdSyOCy2IS8uFCXl7rdQcdjLUwIIV8-CyfwmM_y_crdQqrsNC0twNayi3albIZarTGfAgISWshCLFRRfTqdzdI3wO0tdZL2BboGxfWtxSdz9BdRlT9m4ry8nL_4v4G9RM9LGImnA-6v0E5YvkbPtsgF99Fda9cglLLAZ7a3uAUfKdlXPF38WK2v-p_XG5yCVvwlzRvXpSATr2I2IKP5dOuMG6cGg3wanv_uIbdIviaUA86FvECJiduF7SESHrpuHwsTsF16PM-1hm_Q9_P5t9lnUqQYiONU9aRxXEjtYxWEYF1teWS0s9HXPsgmbUoo73iKpVgULsYm6kYyp5SrZR0rZTlnb9HecrUM7xCmQsloUyDjoCwXNG-65EdWhsg4C1pPUP2AkXGFpxzkMhYm71eoNgOwBoA1BdgJOh6Nbgaajn83_wTgj02BYzu_SKia8ssaH2qfNste1KHjsmmsjpW0nHWOikCjm6B98ISxk-IEE3T04EqmzAcbU3MhFFAFsoO_Wx2ipzDAIblzhPb69W14j564X_3VZv0hu_o93Ur_vQ
  priority: 102
  providerName: IEEE
Title Parallel Data Partitioning Algorithms for Optimization of Data-Parallel Applications on Modern Extreme-Scale Multicore Platforms for Performance and Energy
URI https://ieeexplore.ieee.org/document/8532283
https://www.proquest.com/docview/2455885913
https://doaj.org/article/de2d446d52eb4766a9f17a43bc05e0fc
Volume 6
WOSCitedRecordID wos000452596700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOCCiIhbbygSOmTmzH9nG73YoLJRIg9Wb5E5C2u2g3IE78Ef4sHsfdRkKCC5ccItuJPS_2jON5D6GXljY-eulI5DaRjJCOqMQC8S4ETp3ILoMvYhPy8lJdXel-IvUFZ8JGeuBx4E5DbEMOWYJoo-Oy66xOjbScOU9FpMnD7EulngRTZQ5WTaeFrDRDDdWn88Ui9wjOcqnXOUrQLeivT5aiwthfJVb-mJfLYnPxED2oXiKej2_3CN2J68fo_oQ78BD96u0WdFBW-NwOFvfQk7q5iuerT5sc9H--3uHsk-J3eVq4rvmWeJNKBbKvPp_8wsa5wKiOhpc_Btg6JO-zESMuebrAeIn7lR3A0R2b7m_zDrBdB7wsqYRP0MeL5YfFG1KVFojnVA2k81xIHVIThWCutTwx6mwKbYiyyzEH5Y5nV4kl4VPqku4k80r5VrapUZZz9hQdrDfr-AxhKpRMNvspHrJuQdLGZZhYGRPjLGo9Q-3NoBtfachBDWNlSjhCtRktZcBSplpqhl7tK30dWTj-XvwMrLkvChTa5UYGlqnAMv8C1gwdAhb2jWS_BqiCZujoBhumfu4703IhFDABsuf_49Ev0D3ozrjTc4QOhu23eIzu-u_Dl932pCA9X9_-XJ6UfMXflx8FvQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VggQc-CqIhQI-cGxaJ7bj-LgsWxVRlpUoUm-W4w-otN1Fuyniv_Bn8ThuWAmExC2KPJajN7HHY897AK8NLa23si08N6GIHlIXTWCusK1znLYihgw2iU3I2aw5P1fzHTgYamG89-nymT_Ex3SW71b2ClNlR3FpQbaWG3ATlbNytdaQUUEJCSVkphYqqToaTybxK_D-VnMYdwaqQs31reUnsfRnWZU_5uK0wBzf_7-hPYB7OZAk4x75h7Djl4_g7ha94B78nJs1SqUsyFvTGTJHL8n5VzJefFmtL7qvlxsSw1byMc4cl7kkk6xCMigG8_HWKTeJDXoBNTL90WF2sfgUcfYklfIiKSaZL0yHsXDf9fx3aQIxS0emqdrwMXw-np5NToosxlBYTpuuqC0XUrlQeiFYWxkeGG1NcJXzso7bEspbHqMpFoQNoQ6qlsw2ja1kFcrGcM6ewO5ytfRPgVDRyGBiKGOxMBdVb9roSUb6wDjzSo2gusZI28xUjoIZC512LFTpHliNwOoM7AgOBqNvPVHHv5u_QfCHpsiynV5EVHX-abXzlYvbZScq33JZ10aFUhrOWkuFp8GOYA89YegkO8EI9q9dSecZYaMrLkSDZIHs2d-tXsHtk7MPp_r03ez9c7iDg-1TPfuw262v_Au4Zb93F5v1y-T2vwBMCgMV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Data+Partitioning+Algorithms+for+Optimization+of+Data-Parallel+Applications+on+Modern+Extreme-Scale+Multicore+Platforms+for+Performance+and+Energy&rft.jtitle=IEEE+access&rft.au=Manumachu%2C+Ravi+Reddy&rft.au=Lastovetsky%2C+Alexey&rft.date=2018&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=6&rft.spage=69075&rft.epage=69106&rft_id=info:doi/10.1109%2FACCESS.2018.2879228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2018_2879228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon