Convergence properties of the expected improvement algorithm with fixed mean and covariance functions

This paper deals with the convergence of the expected improvement algorithm, a popular global optimization algorithm based on a Gaussian process model of the function to be optimized. The first result is that under some mild hypotheses on the covariance function k of the Gaussian process, the expect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical planning and inference Jg. 140; H. 11; S. 3088 - 3095
Hauptverfasser: Vazquez, Emmanuel, Bect, Julien
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier B.V 01.11.2010
Elsevier
Schlagworte:
ISSN:0378-3758, 1873-1171
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the convergence of the expected improvement algorithm, a popular global optimization algorithm based on a Gaussian process model of the function to be optimized. The first result is that under some mild hypotheses on the covariance function k of the Gaussian process, the expected improvement algorithm produces a dense sequence of evaluation points in the search domain, when the function to be optimized is in the reproducing kernel Hilbert space generated by k. The second result states that the density property also holds for P -almost all continuous functions, where P is the (prior) probability distribution induced by the Gaussian process.
ISSN:0378-3758
1873-1171
DOI:10.1016/j.jspi.2010.04.018