Convergence properties of the expected improvement algorithm with fixed mean and covariance functions

This paper deals with the convergence of the expected improvement algorithm, a popular global optimization algorithm based on a Gaussian process model of the function to be optimized. The first result is that under some mild hypotheses on the covariance function k of the Gaussian process, the expect...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of statistical planning and inference Ročník 140; číslo 11; s. 3088 - 3095
Hlavní autoři: Vazquez, Emmanuel, Bect, Julien
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier B.V 01.11.2010
Elsevier
Témata:
ISSN:0378-3758, 1873-1171
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper deals with the convergence of the expected improvement algorithm, a popular global optimization algorithm based on a Gaussian process model of the function to be optimized. The first result is that under some mild hypotheses on the covariance function k of the Gaussian process, the expected improvement algorithm produces a dense sequence of evaluation points in the search domain, when the function to be optimized is in the reproducing kernel Hilbert space generated by k. The second result states that the density property also holds for P -almost all continuous functions, where P is the (prior) probability distribution induced by the Gaussian process.
ISSN:0378-3758
1873-1171
DOI:10.1016/j.jspi.2010.04.018