An Improved Tunicate Swarm Algorithm for Global Optimization and Image Segmentation
This study integrates a tunicate swarm algorithm (TSA) with a local escaping operator (LEO) for overcoming the weaknesses of the original TSA. The LEO strategy in TSA-LEO prevents searching deflation in TSA and improves the convergence rate and local search efficiency of swarm agents. The efficiency...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 9; S. 56066 - 56092 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This study integrates a tunicate swarm algorithm (TSA) with a local escaping operator (LEO) for overcoming the weaknesses of the original TSA. The LEO strategy in TSA-LEO prevents searching deflation in TSA and improves the convergence rate and local search efficiency of swarm agents. The efficiency of the proposed TSA-LEO was verified on the CEC'2017 test suite, and its performance was compared with seven metaheuristic algorithms (MAs). The comparisons revealed that LEO significantly helps TSA by improving the quality of its solutions and accelerating the convergence rate. TSA-LEO was further tested on a real-world problem, namely, segmentation based on the objective functions of Otsu and Kapur. A set of well-known evaluation metrics was used to validate the performance and segmentation quality of the proposed TSA-LEO. The proposed TSA-LEO outperforms other MA algorithms in terms of fitness, peak signal-to-noise ratio, structural similarity, feature similarity, and segmentation findings. |
|---|---|
| AbstractList | This study integrates a tunicate swarm algorithm (TSA) with a local escaping operator (LEO) for overcoming the weaknesses of the original TSA. The LEO strategy in TSA–LEO prevents searching deflation in TSA and improves the convergence rate and local search efficiency of swarm agents. The efficiency of the proposed TSA–LEO was verified on the CEC’2017 test suite, and its performance was compared with seven metaheuristic algorithms (MAs). The comparisons revealed that LEO significantly helps TSA by improving the quality of its solutions and accelerating the convergence rate. TSA–LEO was further tested on a real-world problem, namely, segmentation based on the objective functions of Otsu and Kapur. A set of well-known evaluation metrics was used to validate the performance and segmentation quality of the proposed TSA–LEO. The proposed TSA-LEO outperforms other MA algorithms in terms of fitness, peak signal-to-noise ratio, structural similarity, feature similarity, and segmentation findings. |
| Author | Elngar, Ahmed A. Helmy, Bahaa El-Din Shaban, Hassan Houssein, Essam H. Abdelminaam, Diaa Salama |
| Author_xml | – sequence: 1 givenname: Essam H. orcidid: 0000-0002-8127-7233 surname: Houssein fullname: Houssein, Essam H. email: essam.halim@mu.edu.eg organization: Faculty of Computers and Information, Minia University, Minia, Egypt – sequence: 2 givenname: Bahaa El-Din orcidid: 0000-0002-1254-0456 surname: Helmy fullname: Helmy, Bahaa El-Din organization: Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni Suef, Egypt – sequence: 3 givenname: Ahmed A. orcidid: 0000-0001-6124-7152 surname: Elngar fullname: Elngar, Ahmed A. organization: Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni Suef, Egypt – sequence: 4 givenname: Diaa Salama orcidid: 0000-0002-1544-9906 surname: Abdelminaam fullname: Abdelminaam, Diaa Salama organization: Faculty of Computers and Artificial Intelligence, Benha University, Benha, Egypt – sequence: 5 givenname: Hassan surname: Shaban fullname: Shaban, Hassan organization: Faculty of Computers and Information, Minia University, Minia, Egypt |
| BookMark | eNp9kV9PwyAUxYnRRJ37BL408XkTSoHy2Cz-WWLiQ-czuaV0srRlUqbRTy-z0xgf5OWSy_2dHO45R8e96w1ClwTPCcHyulgsbspynuKUzCkWKaX8CJ2lhMsZZZQf_7qfoukwbHA8eWwxcYbKok-W3da7V1Mnq11vNQSTlG_gu6Ro187b8NwljfPJXesqaJPHbbCd_YBgXZ9AX0ca1pEw68704at9gU4aaAczPdQJerq9WS3uZw-Pd8tF8TDTGc7DjJMsrxmjlY6VpLXkqWlYUwmBBcfAmIhPFKocY4YNIzgHTaSJhRrMK0knaDnq1g42auttB_5dObDqq-H8WoEPVrdGNayWkpNKC8gzwVhOoIIm4xnDnORcR62rUSuu4mVnhqA2buf7aF-ljDDBSNxrnJLjlPZuGLxplLbjn4MH2yqC1T4SNUai9pGoQySRpX_Yb8f_U5cjZY0xP4SkUmbR0ScRzJez |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2023_111109 crossref_primary_10_1109_ACCESS_2025_3567556 crossref_primary_10_1007_s42235_024_00493_8 crossref_primary_10_1007_s00500_023_08513_1 crossref_primary_10_1007_s42979_023_01915_w crossref_primary_10_3390_math11153400 crossref_primary_10_1007_s00500_022_07794_2 crossref_primary_10_1007_s12530_023_09518_9 crossref_primary_10_1155_2021_1431491 crossref_primary_10_1007_s00521_024_09565_6 crossref_primary_10_1016_j_energy_2022_124363 crossref_primary_10_1007_s11831_025_10228_5 crossref_primary_10_1007_s11831_025_10287_8 crossref_primary_10_1007_s13369_022_07285_4 crossref_primary_10_1016_j_knosys_2022_110146 crossref_primary_10_1007_s11276_024_03886_z crossref_primary_10_1371_journal_pone_0290117 crossref_primary_10_1007_s00521_022_07391_2 crossref_primary_10_3390_sym13122388 crossref_primary_10_1007_s10489_021_03037_3 crossref_primary_10_1016_j_eswa_2021_115651 crossref_primary_10_1109_ACCESS_2022_3143802 crossref_primary_10_3389_fphys_2024_1380459 crossref_primary_10_3390_math10183405 crossref_primary_10_1109_ACCESS_2021_3102277 crossref_primary_10_3233_JIFS_237994 crossref_primary_10_3233_AIC_220093 crossref_primary_10_3389_fmech_2024_1336828 crossref_primary_10_1016_j_asoc_2025_112947 crossref_primary_10_1080_21681163_2023_2199891 crossref_primary_10_1016_j_oceaneng_2023_114219 crossref_primary_10_1109_ACCESS_2022_3164734 crossref_primary_10_1007_s42235_023_00391_5 crossref_primary_10_1111_exsy_13198 crossref_primary_10_3390_computation12100205 crossref_primary_10_1007_s11277_022_10099_0 crossref_primary_10_1007_s10115_023_02030_1 crossref_primary_10_1109_ACCESS_2025_3601091 crossref_primary_10_1016_j_energy_2023_128668 crossref_primary_10_1016_j_tust_2022_104979 crossref_primary_10_1007_s00500_021_06620_5 crossref_primary_10_1007_s10489_022_04059_1 crossref_primary_10_1007_s00521_024_09524_1 crossref_primary_10_3390_app12168203 crossref_primary_10_1007_s11227_024_06498_8 crossref_primary_10_1016_j_compgeo_2023_105557 crossref_primary_10_1109_ACCESS_2022_3202894 crossref_primary_10_1109_ACCESS_2021_3083531 crossref_primary_10_1109_ACCESS_2022_3226879 crossref_primary_10_1155_2022_4302666 crossref_primary_10_1007_s41660_022_00227_5 crossref_primary_10_1007_s41870_024_01831_z crossref_primary_10_1016_j_heliyon_2023_e23012 crossref_primary_10_1080_15440478_2025_2509123 crossref_primary_10_1007_s12597_024_00828_3 crossref_primary_10_3390_app122211697 crossref_primary_10_1016_j_heliyon_2024_e30757 crossref_primary_10_1002_ett_4925 crossref_primary_10_1109_ACCESS_2021_3088783 crossref_primary_10_1109_ACCESS_2024_3359587 crossref_primary_10_1080_1448837X_2025_2544435 crossref_primary_10_3390_math9182335 crossref_primary_10_1007_s10462_021_10086_0 |
| Cites_doi | 10.1109/TIP.2003.819861 10.1007/978-3-030-12931-6_6 10.1016/j.bspc.2018.05.039 10.1007/s11235-019-00559-7 10.1145/2501654.2501658 10.4236/jcc.2019.73002 10.1109/TIP.2020.2990346 10.1007/978-3-030-10674-4 10.1016/j.eswa.2017.04.029 10.1049/el:20080522 10.1109/ACCESS.2019.2891673 10.1016/j.compchemeng.2019.106656 10.1016/j.eswa.2020.113428 10.1016/j.apm.2019.03.046 10.1016/j.eswa.2020.113364 10.1016/j.engappai.2020.103731 10.1007/s10489-013-0458-0 10.1016/j.eswa.2017.07.043 10.1016/B978-0-12-804753-8.00008-7 10.1016/j.asoc.2012.03.072 10.1016/j.knosys.2015.07.006 10.1007/s11042-015-3237-6 10.1109/ACCESS.2020.2968981 10.1016/j.future.2019.07.015 10.1016/j.eswa.2018.01.019 10.1016/j.advengsoft.2016.01.008 10.1016/j.engappai.2020.103541 10.1016/j.engappai.2019.103330 10.1007/s11042-020-09664-1 10.1016/j.knosys.2015.12.022 10.1016/j.asoc.2019.105522 10.1016/j.asoc.2016.10.034 10.1016/j.jocs.2020.101104 10.1109/4235.585893 10.1007/s00521-019-04611-0 10.1038/s41598-020-71502-z 10.1007/978-3-319-63754-9_3 10.1016/j.asoc.2017.03.018 10.1016/j.compeleceng.2017.12.037 10.1007/s11831-019-09334-y 10.1016/j.eswa.2020.114159 10.1016/j.enconman.2020.112764 10.1016/j.eswa.2020.113917 10.1016/j.infrared.2018.08.007 10.1016/j.knosys.2018.11.024 10.1007/s00521-020-05368-7 10.1007/s10489-018-1190-6 10.1109/TSMC.1979.4310076 10.1016/j.swevo.2020.100671 10.1016/j.eswa.2015.11.016 10.1016/j.eswa.2020.113201 10.1016/j.ins.2020.06.037 10.1016/j.asoc.2017.06.059 10.1007/s11042-018-5637-x 10.1016/j.eij.2015.01.003 10.1016/S0734-189X(85)90156-2 10.1109/ICCIAS.2006.294156 10.1117/1.2177638 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2021.3072336 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 56092 |
| ExternalDocumentID | oai_doaj_org_article_f5d9961bc7a8475581abaf464506186c 10_1109_ACCESS_2021_3072336 9399412 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-6148d553bc48d12d962ef5fb770760a5573bc3ab80050e5108ac19e08a3e06b93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 73 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000641958100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:50:41 EDT 2025 Sun Nov 30 04:10:56 EST 2025 Sat Nov 29 06:12:09 EST 2025 Tue Nov 18 20:56:27 EST 2025 Wed Aug 27 02:30:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-6148d553bc48d12d962ef5fb770760a5573bc3ab80050e5108ac19e08a3e06b93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6124-7152 0000-0002-8127-7233 0000-0002-1544-9906 0000-0002-1254-0456 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9399412 |
| PQID | 2515751233 |
| PQPubID | 4845423 |
| PageCount | 27 |
| ParticipantIDs | proquest_journals_2515751233 crossref_citationtrail_10_1109_ACCESS_2021_3072336 ieee_primary_9399412 doaj_primary_oai_doaj_org_article_f5d9961bc7a8475581abaf464506186c crossref_primary_10_1109_ACCESS_2021_3072336 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref12 ref59 ref15 ref58 ref53 ref52 ref55 ref11 ref54 ref17 ref18 ref50 morales-castañeda (ref25) 2020; 54 ref46 ref45 ref48 ref47 ref42 abdel-basset (ref56) 2020; 16 ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 said (ref10) 2017; 639 hashim (ref16) 2021; 51 ref35 ref34 ref37 ref36 awad (ref51) 2017 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 houssein (ref14) 2020; 10 abualigah (ref20) 2019; 816 ref24 ref23 ref26 ref63 ref22 ref21 ref28 ref27 kapur (ref43) 1985; 29 ref29 oliva navarro (ref19) 2017 ref60 ref62 ref61 |
| References_xml | – ident: ref60 doi: 10.1109/TIP.2003.819861 – ident: ref52 doi: 10.1007/978-3-030-12931-6_6 – ident: ref12 doi: 10.1016/j.bspc.2018.05.039 – ident: ref22 doi: 10.1007/s11235-019-00559-7 – ident: ref24 doi: 10.1145/2501654.2501658 – volume: 51 start-page: 1531 year: 2021 ident: ref16 article-title: Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems publication-title: Int J Speech Technol – ident: ref61 doi: 10.4236/jcc.2019.73002 – ident: ref33 doi: 10.1109/TIP.2020.2990346 – volume: 816 year: 2019 ident: ref20 publication-title: Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering doi: 10.1007/978-3-030-10674-4 – ident: ref54 doi: 10.1016/j.eswa.2017.04.029 – ident: ref59 doi: 10.1049/el:20080522 – ident: ref55 doi: 10.1109/ACCESS.2019.2891673 – ident: ref13 doi: 10.1016/j.compchemeng.2019.106656 – ident: ref57 doi: 10.1016/j.eswa.2020.113428 – ident: ref27 doi: 10.1016/j.apm.2019.03.046 – year: 2017 ident: ref51 article-title: Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization – ident: ref15 doi: 10.1016/j.eswa.2020.113364 – ident: ref18 doi: 10.1016/j.engappai.2020.103731 – ident: ref49 doi: 10.1007/s10489-013-0458-0 – ident: ref29 doi: 10.1016/j.eswa.2017.07.043 – volume: 16 start-page: 1 year: 2020 ident: ref56 article-title: A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems publication-title: Neural Comput Appl – ident: ref63 doi: 10.1016/B978-0-12-804753-8.00008-7 – ident: ref37 doi: 10.1016/j.asoc.2012.03.072 – ident: ref2 doi: 10.1016/j.knosys.2015.07.006 – year: 2017 ident: ref19 article-title: Engineering applications of metaheuristics: An introduction publication-title: J Phys Conf Ser Inf Technol Bus Ind – ident: ref31 doi: 10.1007/s11042-015-3237-6 – ident: ref23 doi: 10.1109/ACCESS.2020.2968981 – ident: ref17 doi: 10.1016/j.future.2019.07.015 – ident: ref28 doi: 10.1016/j.eswa.2018.01.019 – ident: ref3 doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref48 doi: 10.1016/j.engappai.2020.103541 – ident: ref7 doi: 10.1016/j.engappai.2019.103330 – ident: ref32 doi: 10.1007/s11042-020-09664-1 – ident: ref4 doi: 10.1016/j.knosys.2015.12.022 – ident: ref53 doi: 10.1016/j.asoc.2019.105522 – ident: ref39 doi: 10.1016/j.asoc.2016.10.034 – ident: ref1 doi: 10.1016/j.jocs.2020.101104 – ident: ref8 doi: 10.1109/4235.585893 – ident: ref11 doi: 10.1007/s00521-019-04611-0 – volume: 10 year: 2020 ident: ref14 article-title: Hybrid harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics publication-title: Sci Rep doi: 10.1038/s41598-020-71502-z – ident: ref9 doi: 10.1007/978-3-319-63754-9_3 – ident: ref46 doi: 10.1016/j.asoc.2017.03.018 – ident: ref38 doi: 10.1016/j.compeleceng.2017.12.037 – ident: ref35 doi: 10.1007/s11831-019-09334-y – ident: ref47 doi: 10.1016/j.eswa.2020.114159 – ident: ref30 doi: 10.1016/j.enconman.2020.112764 – ident: ref26 doi: 10.1016/j.eswa.2020.113917 – ident: ref58 doi: 10.1016/j.infrared.2018.08.007 – ident: ref5 doi: 10.1016/j.knosys.2018.11.024 – ident: ref34 doi: 10.1007/s00521-020-05368-7 – ident: ref21 doi: 10.1007/s10489-018-1190-6 – ident: ref42 doi: 10.1109/TSMC.1979.4310076 – volume: 54 year: 2020 ident: ref25 article-title: A better balance in Metaheuristic algorithms: Does it exist? publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100671 – ident: ref40 doi: 10.1016/j.eswa.2015.11.016 – ident: ref41 doi: 10.1016/j.eswa.2020.113201 – ident: ref50 doi: 10.1016/j.ins.2020.06.037 – ident: ref6 doi: 10.1016/j.asoc.2017.06.059 – ident: ref45 doi: 10.1007/s11042-018-5637-x – ident: ref36 doi: 10.1016/j.eij.2015.01.003 – volume: 29 start-page: 140 year: 1985 ident: ref43 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Comput Vis Graph Image Process doi: 10.1016/S0734-189X(85)90156-2 – ident: ref62 doi: 10.1109/ICCIAS.2006.294156 – volume: 639 start-page: 320 year: 2017 ident: ref10 article-title: Moth-flame optimization based segmentation for mri liver images publication-title: Proc Int Conf Adv Intell Syst Inform – ident: ref44 doi: 10.1117/1.2177638 |
| SSID | ssj0000816957 |
| Score | 2.5173283 |
| Snippet | This study integrates a tunicate swarm algorithm (TSA) with a local escaping operator (LEO) for overcoming the weaknesses of the original TSA. The LEO strategy... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 56066 |
| SubjectTerms | Algorithms Benchmark testing Convergence Entropy Global optimization Heuristic methods Image segmentation Kapur’s entropy Linear programming local escaping operator (LEO) Metaheuristic algorithms multilevel thresholding Optimization Otsu method Search problems Signal to noise ratio Similarity tunicate swarm algorithm (TSA) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOhB1ClOp-Tg0bqmbdrmWIfDg0xhU3YL-eoUtk62qf--L002B4JePAXapEl_eXl5Lx-_h9ClKLNIpgacHENYkGi70BTKOKCpMDo0TOma8eb5Puv389GIPW6E-rJnwhw9sAOuU1INJjmRKhOgSCnNiZCitPtxoaV6V1b7gtWz4UzVOjgnKaOZpxkiIesU3S78ETiEEbkGuY7impT5eyqqGft9iJUfermebHr7aM9bibhwrTtAW6Y6RLsb3IFNNCgq7FYEjMZDd8fD4MGnmE9xMRnPwOl_mWIwSbGj9ccPoBym_tYlFpWG0qBL8MCMp_7-UXWEnnq3w-5d4CMkBCoJ82VgWTw1pbFUkJJIszQyJS1lltkNN0FpBq9iIXNL82Jg-OVCEWYgiU2YShYfo0Y1q8wJwgxAUYmkSQkmUqolYA6uVJkxQyNtWNlC0Qosrjx9uI1iMeG1GxEy7hDmFmHuEW6hq3WhN8ee8Xv2G9sL66yW-rp-AALBvUDwvwSihZq2D9cfYWCCJSRqofaqT7kfpgsOxp3dd4K6T_-j6jO0Y9dw3BG0Nmos5-_mHG2rj-XrYn5RS-gXH_fk6Q priority: 102 providerName: Directory of Open Access Journals |
| Title | An Improved Tunicate Swarm Algorithm for Global Optimization and Image Segmentation |
| URI | https://ieeexplore.ieee.org/document/9399412 https://www.proquest.com/docview/2515751233 https://doaj.org/article/f5d9961bc7a8475581abaf464506186c |
| Volume | 9 |
| WOSCitedRecordID | wos000641958100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VigMceBXEllL5wLFp83IcH7erVhygIG1BvVl-TEqlbhZtt_TW394Zx02RQEhc4iixE8dje16ZbwA-2E6VrkFScrDQWR3Y0JS7KpONxZCj9iEi3nz_pE5O2rMz_XUD9sZYGESMP5_hPp9GX35Y-ms2lR1o4qY1pxR-pJQaYrVGewonkNBSJWChItcH09mMvoFUwLLYp5lcVhGG-YH5RIz-lFTlj504spfj5__XsRfwLImRYjrQ_SVsYP8Knv4GLrgF82kvBpMBBnE6BIGgmN_Y1UJML8-Xq4v1j4UgmVUMuP_iC-0eixSWKWwfqDVtNmKO54sUoNS_hm_HR6ezj1lKoZD5Om_XGcN8Bikr56ksyqCbEjvZOaXYI2elVHSrsq5lHBik9dlaX2ikosK8cbp6A5v9sse3IDSNoa-drDuSoZrgdMNIO53SKMuAuptAeT-2xid8cU5zcWminpFrMxDEMEFMIsgE9sZGPwd4jX9XP2SijVUZGzteIGqYtNRMJwMpcYXzyhLrlbItrLMde3BzTg7gJ7DFFBwfkog3gZ37KWDSOr4yJP2xY4revf33Vu_gCXdwMMrswOZ6dY3v4bH_tb64Wu1GDZ-On2-PduN0vQMUb-Sr |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQk4lEdBbGnBB45Nm5eT-LisqIpYFqRdUG-WH5O2UjeLtlv4-8w4bkCiQuKUKLETx58f88h8A_DWtHVuKyQlBzOVlJ4NTaktElkZ9Ckq5wPjzbdpPZs1Z2fqyxYcDrEwiBh-PsMjPg2-fL9yN2wqO1a0m5acUvieLMs866O1BosKp5BQso7UQlmqjseTCX0FKYF5dkRjOS8CEfPv7Sew9Me0Kn-txWGDOXn8f017AjtRkBTjHvmnsIXdM3j0B73gLszHneiNBujFog8DQTH_adZLMb46X60vNxdLQVKr6Jn_xWdaP5YxMFOYzlNtWm7EHM-XMUSpew5fT94vJqdJTKKQuDJtNgkTfXopC-vomOVeVTm2srV1zT45I2VNtwpjG2aCQZqhjXGZQjoUmFZWFS9gu1t1-BKEoj50pZVlS1JU5a2qmGunrRXK3KNqR5Df9q12kWGcE11c6aBppEr3gGgGREdARnA4VPreE2z8u_g7Bm0oyuzY4QKhoeNk0630pMZl1tWGNl8pm8xY07IPN-X0AG4Eu4zg8JAI3gj2b4eAjjP5WpP8x64pevfe3bXewIPTxaepnn6YfXwFD7mxvYlmH7Y36xs8gPvux-byev06DNdfWMjlzA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Tunicate+Swarm+Algorithm+for+Global+Optimization+and+Image+Segmentation&rft.jtitle=IEEE+access&rft.au=Houssein%2C+Essam+H.&rft.au=Helmy%2C+Bahaa+El-Din&rft.au=Elngar%2C+Ahmed+A.&rft.au=Abdelminaam%2C+Diaa+Salama&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=56066&rft.epage=56092&rft_id=info:doi/10.1109%2FACCESS.2021.3072336&rft.externalDocID=9399412 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |