A Deep Convolutional Neural Networks based approach for Alzheimer's disease and Mild Cognitive Impairment classification using Brain Images

Alzheimer's disease (AD) is a hazardous neurological disorder of people aged in the early 60s. The main symptoms of AD is significant memory loss. Mild Cognitive Impairment (MCI) is a state of dementia in which a patient exhibits the early symptoms of AD. Since brain is the most impacted region...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 10; s. 1
Hlavní autori: Hazarika, Ruhul Amin, Kandar, Debdatta, Maji, Arnab Kumar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Alzheimer's disease (AD) is a hazardous neurological disorder of people aged in the early 60s. The main symptoms of AD is significant memory loss. Mild Cognitive Impairment (MCI) is a state of dementia in which a patient exhibits the early symptoms of AD. Since brain is the most impacted region, the disorders can be classified by analyzing factors from brain tissues in different subjects. Machine Learning (ML) is a widely utilised concept that aids in the decision-making process. Deep Convolutional Neural Network (DNN) is a type of ML techniques that uses artificially connected neurons to mimic the human brain. In this work, we have proposed a novel DNN-based model for distinguishing AD and MCI patients from Cognitively Normal individuals. Inspired by the original VGG-19, we have created 19 deep layers in the network. In Back Propagation, deeper models suffer from the problem of vanishing gradient and information loss. As a solution, we borrowed the Dense-Block notion from the original DenseNet architecture, which provides a path of information exchange amongst all the layers. Furthermore, we have implemented depth-wise convolutional procedures to make the model computationally faster. Outcome of the proposed model is compared with some prominent DNN models and observed that, the proposed approach performs most convincingly with an average performance rate of 95.39%.
AbstractList Alzheimer’s disease (AD) is a hazardous neurological disorder of people aged in the early 60s. The main symptoms of AD is significant memory loss. Mild Cognitive Impairment (MCI) is a state of dementia in which a patient exhibits the early symptoms of AD. Since brain is the most impacted region, the disorders can be classified by analyzing factors from brain tissues in different subjects. Machine Learning (ML) is a widely utilised concept that aids in the decision-making process. Deep Convolutional Neural Network (DNN) is a type of ML techniques that uses artificially connected neurons to mimic the human brain. In this work, we have proposed a novel DNN-based model for distinguishing AD and MCI patients from Cognitively Normal individuals. Inspired by the original VGG-19, we have created 19 deep layers in the network. In Back Propagation, deeper models suffer from the problem of vanishing gradient and information loss. As a solution, we borrowed the Dense-Block notion from the original DenseNet architecture, which provides a path of information exchange amongst all the layers. Furthermore, we have implemented depth-wise convolutional procedures to make the model computationally faster. Outcome of the proposed model is compared with some prominent DNN models and observed that, the proposed approach performs most convincingly with an average performance rate of 95.39%.
Author Hazarika, Ruhul Amin
Maji, Arnab Kumar
Kandar, Debdatta
Author_xml – sequence: 1
  givenname: Ruhul Amin
  surname: Hazarika
  fullname: Hazarika, Ruhul Amin
  organization: Department of Information Technology, North Eastern Hill University, Shillong, Meghalaya, India
– sequence: 2
  givenname: Debdatta
  orcidid: 0000-0002-3409-5189
  surname: Kandar
  fullname: Kandar, Debdatta
  organization: Department of Information Technology, North Eastern Hill University, Shillong, Meghalaya, India
– sequence: 3
  givenname: Arnab Kumar
  orcidid: 0000-0002-3320-9965
  surname: Maji
  fullname: Maji, Arnab Kumar
  organization: Department of Information Technology, North Eastern Hill University, Shillong, Meghalaya, India
BookMark eNp9Uk1v1DAQtVArUdr-gl4sceC0S_yRxD4uocBKhR4KZ2vWnmy9ZONgJ0XwF_jTeDcFIQ71ZazRe8-e9-YFOelDj4RcsWLJWKFfr5rm-u5uyQvOl4IXlVD6GTnjrNILUYrq5J_7c3KZ0q7IR-VWWZ-RXyv6FnGgTegfQjeNPvTQ0U84xWMZv4f4NdENJHQUhiEGsPe0DZGuup_36PcYXyXqfMKMoNA7-tF3Lqttez_6B6Tr_QA-7rEfqe0gJd96C4dX6JR8v6VvIvg-o2CL6YKcttAlvHys5-TLu-vPzYfFze37dbO6WVhZqHFRtporq1CrimnlQJXKaoVMVcCh3khX27beqJIxzfQGBPBSSuGsFqwsag3inKxnXRdgZ4bo9xB_mADeHBshbg3E0dsOjUTtpLXKtVhIDpWSUlqJYKsSwHGdtV7OWtmabxOm0ezCFLOHyfCa1azUtWAZpWeUjSGliK2xfjzaMOb5O8MKc4jSzFGaQ5TmMcrMFf9x__z4adbVzPKI-JehlVIsL8JvzL6tmg
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_neuri_2025_100196
crossref_primary_10_1007_s11042_023_16379_6
crossref_primary_10_3389_fninf_2024_1507217
crossref_primary_10_1109_ACCESS_2023_3300034
crossref_primary_10_3390_diagnostics15111318
crossref_primary_10_1007_s44163_025_00358_x
crossref_primary_10_1007_s11042_023_18084_w
crossref_primary_10_1016_j_jestch_2025_102058
crossref_primary_10_1007_s41870_024_02103_6
crossref_primary_10_1109_ACCESS_2023_3289867
crossref_primary_10_1016_j_artmed_2024_102928
Cites_doi 10.30773/pi.2018.02.12
10.1007/s11548-019-02106-w
10.1038/s41598-019-54548-6
10.3389/fnins.2020.00259
10.1109/GCAT52182.2021.9587756
10.1007/s11334-023-00529-y
10.1016/j.cmpb.2021.106032
10.1016/j.jksuci.2021.09.003
10.1007/978-1-4615-0377-4_5
10.1111/j.1582-4934.2009.00889.x
10.1038/s41598-020-79243-9
10.3233/JIFS-219279
10.1016/j.zemedi.2018.11.002
10.1109/ACCESS.2021.3059658
10.1109/MCI.2021.3084435
10.1109/JBHI.2020.3006925
10.1038/s41598-019-38793-3
10.1001/archneur.63.10.1434
10.1016/S1532-0464(03)00034-0
10.3390/s21041302
10.1016/j.jalz.2018.02.001
10.1212/WNL.51.1_Suppl_1.S45
10.1016/b0-12-227210-2/00009-1
10.1136/pgmj.2005.036665
10.1109/ICIT48102.2019.00023
10.1109/LSP.2020.2964161
10.1109/TPAMI.2018.2889096
10.1109/ACCESS.2021.3072559
10.1007/978-981-15-1286-5_24
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3206389
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_4e9d4cc8dfe042a68444c4eac65aad29
10_1109_ACCESS_2022_3206389
9888135
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
ABAZT
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-5f928c8e986198da858c98e186a2a7b4d7cf7b8511919ba3a25443dc9315079a3
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000857353100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:56 EDT 2025
Mon Jun 30 06:31:26 EDT 2025
Sat Nov 29 06:32:23 EST 2025
Tue Nov 18 22:32:58 EST 2025
Tue Nov 25 14:44:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-5f928c8e986198da858c98e186a2a7b4d7cf7b8511919ba3a25443dc9315079a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3409-5189
0000-0002-3320-9965
OpenAccessLink https://doaj.org/article/4e9d4cc8dfe042a68444c4eac65aad29
PQID 2717159731
PQPubID 4845423
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_4e9d4cc8dfe042a68444c4eac65aad29
ieee_primary_9888135
crossref_citationtrail_10_1109_ACCESS_2022_3206389
proquest_journals_2717159731
crossref_primary_10_1109_ACCESS_2022_3206389
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref34
ref15
ref37
ref36
Raghavan (ref14) 2016
ref11
ref33
ref10
ref2
Pagel (ref12) 2017
Folks (ref31) 2014; 55
ref17
ref16
ref18
Gomez (ref38) 2020
(ref8) 2021
ref24
ref23
ref26
Korolev (ref1) 2014; 4
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref7
Virupakshappa (ref32)
ref9
ref4
(ref30) 2020
ref3
ref6
ref5
Dumitru (ref19) 2013; 13
Mebsout (ref39) 2021
References_xml – ident: ref4
  doi: 10.30773/pi.2018.02.12
– ident: ref29
  doi: 10.1007/s11548-019-02106-w
– ident: ref10
  doi: 10.1038/s41598-019-54548-6
– ident: ref25
  doi: 10.3389/fnins.2020.00259
– ident: ref26
  doi: 10.1109/GCAT52182.2021.9587756
– ident: ref36
  doi: 10.1007/s11334-023-00529-y
– ident: ref28
  doi: 10.1016/j.cmpb.2021.106032
– volume-title: Cognitive Computing: Theory and Applications
  year: 2016
  ident: ref14
– ident: ref17
  doi: 10.1016/j.jksuci.2021.09.003
– volume-title: Deep Learning’s Mathematics
  year: 2021
  ident: ref39
– ident: ref11
  doi: 10.1007/978-1-4615-0377-4_5
– ident: ref3
  doi: 10.1111/j.1582-4934.2009.00889.x
– ident: ref21
  doi: 10.1038/s41598-020-79243-9
– volume-title: Alzheimer’s Disease Neuroimaging Initiative: ADNI
  year: 2020
  ident: ref30
– ident: ref37
  doi: 10.3233/JIFS-219279
– ident: ref16
  doi: 10.1016/j.zemedi.2018.11.002
– volume: 4
  start-page: 24
  issue: 1
  year: 2014
  ident: ref1
  article-title: Alzheimer’s disease: A clinical and basic science review
  publication-title: Med. Student Res. J.
– volume-title: Machine Dreaming and Consciousness
  year: 2017
  ident: ref12
– ident: ref27
  doi: 10.1109/ACCESS.2021.3059658
– ident: ref15
  doi: 10.1109/MCI.2021.3084435
– ident: ref24
  doi: 10.1109/JBHI.2020.3006925
– ident: ref7
  doi: 10.1038/s41598-019-38793-3
– ident: ref5
  doi: 10.1001/archneur.63.10.1434
– volume-title: Depthwise separable convolutions for neural machine translation
  year: 2020
  ident: ref38
– volume: 13
  start-page: 444
  issue: 1
  year: 2013
  ident: ref19
  article-title: Advantages and disadvantages of using neural networks for predictions
  publication-title: Ovidius Univ. Ann., Ser. Econ. Sci.
– ident: ref13
  doi: 10.1016/S1532-0464(03)00034-0
– ident: ref22
  doi: 10.3390/s21041302
– ident: ref2
  doi: 10.1016/j.jalz.2018.02.001
– ident: ref9
  doi: 10.1212/WNL.51.1_Suppl_1.S45
– volume: 55
  start-page: 1322
  issue: 1
  year: 2014
  ident: ref31
  article-title: Using the Python programming language for image processing in nuclear medicine
  publication-title: J. Nucl. Med.
– ident: ref35
  doi: 10.1016/b0-12-227210-2/00009-1
– ident: ref34
  doi: 10.1136/pgmj.2005.036665
– start-page: 1
  volume-title: Proc. Eur. Cong. Radiol.
  ident: ref32
  article-title: Essence of Python programming language in medical image analysis: Enhancing workplace productivity
– ident: ref18
  doi: 10.1109/ICIT48102.2019.00023
– ident: ref20
  doi: 10.1109/LSP.2020.2964161
– ident: ref23
  doi: 10.1109/TPAMI.2018.2889096
– ident: ref6
  doi: 10.1109/ACCESS.2021.3072559
– volume-title: What is Mild Cognitive Impairment?
  year: 2021
  ident: ref8
– ident: ref33
  doi: 10.1007/978-981-15-1286-5_24
SSID ssj0000816957
Score 2.3159597
Snippet Alzheimer's disease (AD) is a hazardous neurological disorder of people aged in the early 60s. The main symptoms of AD is significant memory loss. Mild...
Alzheimer’s disease (AD) is a hazardous neurological disorder of people aged in the early 60s. The main symptoms of AD is significant memory loss. Mild...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Alzheimer's disease
Alzheimer’s Disease (AD)
Artificial neural networks
Back propagation networks
Brain
Brain modeling
Cognitive ability
Cognitively Normal (CN)
Computational modeling
Computer architecture
Convolutional neural networks
Decision making
Deep Convolutional Neural Network (DNN)
DenseNet
Image classification
Impairment
Machine learning
Machine Learning (ML)
Magnetic resonance imaging
Mild Cognitive Impairment (MCI)
Neural networks
Neurological diseases
Neurons
Signs and symptoms
Training data
VGG-19
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbaqgc4lJaCutAiHypxadrEdhLPcbtQwaEVB5B6sxzbgZW22Wqz7YG_wJ9mxvFGIBASpzxkjxx9zjzs8TeMnQpValc0KkNj6DN8KDPd5m0G0ta1Cw24cig2Ud_c6Ntb-LTFzsazMCGEmHwWzuk27uX7pXugpbILwHCtkOU2267rajirNa6nUAEJKOtELFTkcDGdzfAbMAQU4lyKaJp_Mz6Roz8VVflDE0fzcvXs_wa2z_aSG8mnA-4HbCt0z9nTX8gFD9mPKX8Xwj2fLbvHNL-wB5FxxEvM_u45WTHPN8ziHF1YPl18_xbmd2H1tudp_4bbzvPr-cKjtJRuxD-iIpmvaGDckQtOOUcRZk659F_5JRWfwFaosPoX7MvV-8-zD1kqvZA5let1VrYgtNMBNAZY2luNiIIOha6ssHWjPLEZNeStQQGNlZaYzqR3IMnBBCtfsp1u2YUjxqVqAN0S0UgLSra5FZVACVAJW3lb5RMmNpgYl3jJqTzGwsT4JAczAGkISJOAnLCzsdP9QMvx7-aXBPbYlDi14wtE0aRf1KgAXjmnfRtQk9lKK6WcQsNUldZ6gUIOCflRSAJ9wo43U8ek_783AqNkdBRrWbz6e6_X7AkNcFjMOWY769VDOGG77nE971dv4tT-CcB796c
  priority: 102
  providerName: IEEE
Title A Deep Convolutional Neural Networks based approach for Alzheimer's disease and Mild Cognitive Impairment classification using Brain Images
URI https://ieeexplore.ieee.org/document/9888135
https://www.proquest.com/docview/2717159731
https://doaj.org/article/4e9d4cc8dfe042a68444c4eac65aad29
Volume 10
WOSCitedRecordID wos000857353100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOVaEgti_5gMSF0MR2kpljdtsKDq04gNSb5diOWGmbVpulBw79A_3THTvuaiukcuGSKJHjxPkm83DG3zD2UagSbNGqjIyhy-igzKDLuwylqWvrW7TlWGyivriAy0v8vlHqK-SEjfTA44s7Vh6dshZc50m-TAVKKatIXVSlMU7EpXt5jRvBVNTBUFRY1olmqMjxuJnNaEQUEArxRYpoqJ-YosjYn0qs_KWXo7E522HbyUvkzfh0b9gL379lrze4A3fZfcNPvL_hs-v-NokPXRG4NuIuJncPfEpGyvEmEYdz8lB5s_jzy8-v_PLTwE_G3zPc9I6fzxeOekvZRPwb6Yn5Mswd8lg4M6QURRR5zDLg01BbglqRPhresZ9npz9mX7NUWSGzKodVVnYowIJHoPgJnAECDMEXUBlh6la5QFbUBmcMC2yNNIHITDqLMviPaOR7ttVf9_4D41K1SF6HaKVBJbvciEpQD1gRVs5U-YSJx5esbaIdD9UvFjqGHznqERkdkNEJmQn7vL7oZmTdeL75NKC3bhoos-MJEiSdBEn_S5AmbDdgv-4EAaCQ5YQdPMqCTp_3oAUFweQH1rLY-x-33mevwnDGmZ0DtrVa_vaH7KW9Xc2H5VGUbNqe350exfWJD7gl_UM
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgkQ58CoVCwV8QOLStIntJPZxu1C1ol1xKFJvlmN7YaUlW222PfAX-NPMON4IBELilIfskaPPmYc9_gbgLZelckUjMzSGPsOHMlOzfJZpYevahUa7si82UU-n6upKf9qCg-EsTAghJp-FQ7qNe_l-6W5oqexIY7hWiPIO3C2l5Hl_WmtYUaESErqsE7VQkeuj8WSCX4FBIOeHgkfj_Jv5iSz9qazKH7o4GpiTR_83tMfwMDmSbNwj_wS2QvsUHvxCL7gLP8bsfQjXbLJsb9MMwx5ExxEvMf-7Y2THPNtwizN0Ytl48f1rmH8Lq3cdSzs4zLaeXcwXHqWlhCN2hqpkvqKBMUdOOGUdRaAZZdN_YcdUfgJbocrqnsHnkw-Xk9MsFV_InMzVOitnmiunglYYYilvFWKqVShUZbmtG-mJz6ghf00XurHCEteZ8E4LcjG1FXuw3S7b8ByYkI1Gx4Q3wmopZrnlFUcJuuK28rbKR8A3mBiXmMmpQMbCxAgl16YH0hCQJgE5goOh03VPzPHv5scE9tCUWLXjC0TRpJ_UyKC9dE75WUBdZislpXQSTVNVWus5Ctkl5AchCfQR7G-mjkkaoDMc42R0FWtRvPh7rzdw__Ty4tycn00_voQdGmy_tLMP2-vVTXgF99ztet6tXsdp_hPAm_ru
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Convolutional+Neural+Networks+Based+Approach+for+Alzheimer%E2%80%99s+Disease+and+Mild+Cognitive+Impairment+Classification+Using+Brain+Images&rft.jtitle=IEEE+access&rft.au=Hazarika%2C+Ruhul+Amin&rft.au=Kandar%2C+Debdatta&rft.au=Maji%2C+Arnab+Kumar&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=99066&rft.epage=99076&rft_id=info:doi/10.1109%2FACCESS.2022.3206389&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3206389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon