A Deep Convolutional Neural Networks based approach for Alzheimer's disease and Mild Cognitive Impairment classification using Brain Images
Alzheimer's disease (AD) is a hazardous neurological disorder of people aged in the early 60s. The main symptoms of AD is significant memory loss. Mild Cognitive Impairment (MCI) is a state of dementia in which a patient exhibits the early symptoms of AD. Since brain is the most impacted region...
Uložené v:
| Vydané v: | IEEE access Ročník 10; s. 1 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Alzheimer's disease (AD) is a hazardous neurological disorder of people aged in the early 60s. The main symptoms of AD is significant memory loss. Mild Cognitive Impairment (MCI) is a state of dementia in which a patient exhibits the early symptoms of AD. Since brain is the most impacted region, the disorders can be classified by analyzing factors from brain tissues in different subjects. Machine Learning (ML) is a widely utilised concept that aids in the decision-making process. Deep Convolutional Neural Network (DNN) is a type of ML techniques that uses artificially connected neurons to mimic the human brain. In this work, we have proposed a novel DNN-based model for distinguishing AD and MCI patients from Cognitively Normal individuals. Inspired by the original VGG-19, we have created 19 deep layers in the network. In Back Propagation, deeper models suffer from the problem of vanishing gradient and information loss. As a solution, we borrowed the Dense-Block notion from the original DenseNet architecture, which provides a path of information exchange amongst all the layers. Furthermore, we have implemented depth-wise convolutional procedures to make the model computationally faster. Outcome of the proposed model is compared with some prominent DNN models and observed that, the proposed approach performs most convincingly with an average performance rate of 95.39%. |
|---|---|
| AbstractList | Alzheimer’s disease (AD) is a hazardous neurological disorder of people aged in the early 60s. The main symptoms of AD is significant memory loss. Mild Cognitive Impairment (MCI) is a state of dementia in which a patient exhibits the early symptoms of AD. Since brain is the most impacted region, the disorders can be classified by analyzing factors from brain tissues in different subjects. Machine Learning (ML) is a widely utilised concept that aids in the decision-making process. Deep Convolutional Neural Network (DNN) is a type of ML techniques that uses artificially connected neurons to mimic the human brain. In this work, we have proposed a novel DNN-based model for distinguishing AD and MCI patients from Cognitively Normal individuals. Inspired by the original VGG-19, we have created 19 deep layers in the network. In Back Propagation, deeper models suffer from the problem of vanishing gradient and information loss. As a solution, we borrowed the Dense-Block notion from the original DenseNet architecture, which provides a path of information exchange amongst all the layers. Furthermore, we have implemented depth-wise convolutional procedures to make the model computationally faster. Outcome of the proposed model is compared with some prominent DNN models and observed that, the proposed approach performs most convincingly with an average performance rate of 95.39%. |
| Author | Hazarika, Ruhul Amin Maji, Arnab Kumar Kandar, Debdatta |
| Author_xml | – sequence: 1 givenname: Ruhul Amin surname: Hazarika fullname: Hazarika, Ruhul Amin organization: Department of Information Technology, North Eastern Hill University, Shillong, Meghalaya, India – sequence: 2 givenname: Debdatta orcidid: 0000-0002-3409-5189 surname: Kandar fullname: Kandar, Debdatta organization: Department of Information Technology, North Eastern Hill University, Shillong, Meghalaya, India – sequence: 3 givenname: Arnab Kumar orcidid: 0000-0002-3320-9965 surname: Maji fullname: Maji, Arnab Kumar organization: Department of Information Technology, North Eastern Hill University, Shillong, Meghalaya, India |
| BookMark | eNp9Uk1v1DAQtVArUdr-gl4sceC0S_yRxD4uocBKhR4KZ2vWnmy9ZONgJ0XwF_jTeDcFIQ71ZazRe8-e9-YFOelDj4RcsWLJWKFfr5rm-u5uyQvOl4IXlVD6GTnjrNILUYrq5J_7c3KZ0q7IR-VWWZ-RXyv6FnGgTegfQjeNPvTQ0U84xWMZv4f4NdENJHQUhiEGsPe0DZGuup_36PcYXyXqfMKMoNA7-tF3Lqttez_6B6Tr_QA-7rEfqe0gJd96C4dX6JR8v6VvIvg-o2CL6YKcttAlvHys5-TLu-vPzYfFze37dbO6WVhZqHFRtporq1CrimnlQJXKaoVMVcCh3khX27beqJIxzfQGBPBSSuGsFqwsag3inKxnXRdgZ4bo9xB_mADeHBshbg3E0dsOjUTtpLXKtVhIDpWSUlqJYKsSwHGdtV7OWtmabxOm0ezCFLOHyfCa1azUtWAZpWeUjSGliK2xfjzaMOb5O8MKc4jSzFGaQ5TmMcrMFf9x__z4adbVzPKI-JehlVIsL8JvzL6tmg |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_neuri_2025_100196 crossref_primary_10_1007_s11042_023_16379_6 crossref_primary_10_3389_fninf_2024_1507217 crossref_primary_10_1109_ACCESS_2023_3300034 crossref_primary_10_3390_diagnostics15111318 crossref_primary_10_1007_s44163_025_00358_x crossref_primary_10_1007_s11042_023_18084_w crossref_primary_10_1016_j_jestch_2025_102058 crossref_primary_10_1007_s41870_024_02103_6 crossref_primary_10_1109_ACCESS_2023_3289867 crossref_primary_10_1016_j_artmed_2024_102928 |
| Cites_doi | 10.30773/pi.2018.02.12 10.1007/s11548-019-02106-w 10.1038/s41598-019-54548-6 10.3389/fnins.2020.00259 10.1109/GCAT52182.2021.9587756 10.1007/s11334-023-00529-y 10.1016/j.cmpb.2021.106032 10.1016/j.jksuci.2021.09.003 10.1007/978-1-4615-0377-4_5 10.1111/j.1582-4934.2009.00889.x 10.1038/s41598-020-79243-9 10.3233/JIFS-219279 10.1016/j.zemedi.2018.11.002 10.1109/ACCESS.2021.3059658 10.1109/MCI.2021.3084435 10.1109/JBHI.2020.3006925 10.1038/s41598-019-38793-3 10.1001/archneur.63.10.1434 10.1016/S1532-0464(03)00034-0 10.3390/s21041302 10.1016/j.jalz.2018.02.001 10.1212/WNL.51.1_Suppl_1.S45 10.1016/b0-12-227210-2/00009-1 10.1136/pgmj.2005.036665 10.1109/ICIT48102.2019.00023 10.1109/LSP.2020.2964161 10.1109/TPAMI.2018.2889096 10.1109/ACCESS.2021.3072559 10.1007/978-981-15-1286-5_24 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2022.3206389 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_4e9d4cc8dfe042a68444c4eac65aad29 10_1109_ACCESS_2022_3206389 9888135 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD ABAZT JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-5f928c8e986198da858c98e186a2a7b4d7cf7b8511919ba3a25443dc9315079a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000857353100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:56 EDT 2025 Mon Jun 30 06:31:26 EDT 2025 Sat Nov 29 06:32:23 EST 2025 Tue Nov 18 22:32:58 EST 2025 Tue Nov 25 14:44:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-5f928c8e986198da858c98e186a2a7b4d7cf7b8511919ba3a25443dc9315079a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3409-5189 0000-0002-3320-9965 |
| OpenAccessLink | https://doaj.org/article/4e9d4cc8dfe042a68444c4eac65aad29 |
| PQID | 2717159731 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4e9d4cc8dfe042a68444c4eac65aad29 ieee_primary_9888135 crossref_citationtrail_10_1109_ACCESS_2022_3206389 proquest_journals_2717159731 crossref_primary_10_1109_ACCESS_2022_3206389 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref34 ref15 ref37 ref36 Raghavan (ref14) 2016 ref11 ref33 ref10 ref2 Pagel (ref12) 2017 Folks (ref31) 2014; 55 ref17 ref16 ref18 Gomez (ref38) 2020 (ref8) 2021 ref24 ref23 ref26 Korolev (ref1) 2014; 4 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref7 Virupakshappa (ref32) ref9 ref4 (ref30) 2020 ref3 ref6 ref5 Dumitru (ref19) 2013; 13 Mebsout (ref39) 2021 |
| References_xml | – ident: ref4 doi: 10.30773/pi.2018.02.12 – ident: ref29 doi: 10.1007/s11548-019-02106-w – ident: ref10 doi: 10.1038/s41598-019-54548-6 – ident: ref25 doi: 10.3389/fnins.2020.00259 – ident: ref26 doi: 10.1109/GCAT52182.2021.9587756 – ident: ref36 doi: 10.1007/s11334-023-00529-y – ident: ref28 doi: 10.1016/j.cmpb.2021.106032 – volume-title: Cognitive Computing: Theory and Applications year: 2016 ident: ref14 – ident: ref17 doi: 10.1016/j.jksuci.2021.09.003 – volume-title: Deep Learning’s Mathematics year: 2021 ident: ref39 – ident: ref11 doi: 10.1007/978-1-4615-0377-4_5 – ident: ref3 doi: 10.1111/j.1582-4934.2009.00889.x – ident: ref21 doi: 10.1038/s41598-020-79243-9 – volume-title: Alzheimer’s Disease Neuroimaging Initiative: ADNI year: 2020 ident: ref30 – ident: ref37 doi: 10.3233/JIFS-219279 – ident: ref16 doi: 10.1016/j.zemedi.2018.11.002 – volume: 4 start-page: 24 issue: 1 year: 2014 ident: ref1 article-title: Alzheimer’s disease: A clinical and basic science review publication-title: Med. Student Res. J. – volume-title: Machine Dreaming and Consciousness year: 2017 ident: ref12 – ident: ref27 doi: 10.1109/ACCESS.2021.3059658 – ident: ref15 doi: 10.1109/MCI.2021.3084435 – ident: ref24 doi: 10.1109/JBHI.2020.3006925 – ident: ref7 doi: 10.1038/s41598-019-38793-3 – ident: ref5 doi: 10.1001/archneur.63.10.1434 – volume-title: Depthwise separable convolutions for neural machine translation year: 2020 ident: ref38 – volume: 13 start-page: 444 issue: 1 year: 2013 ident: ref19 article-title: Advantages and disadvantages of using neural networks for predictions publication-title: Ovidius Univ. Ann., Ser. Econ. Sci. – ident: ref13 doi: 10.1016/S1532-0464(03)00034-0 – ident: ref22 doi: 10.3390/s21041302 – ident: ref2 doi: 10.1016/j.jalz.2018.02.001 – ident: ref9 doi: 10.1212/WNL.51.1_Suppl_1.S45 – volume: 55 start-page: 1322 issue: 1 year: 2014 ident: ref31 article-title: Using the Python programming language for image processing in nuclear medicine publication-title: J. Nucl. Med. – ident: ref35 doi: 10.1016/b0-12-227210-2/00009-1 – ident: ref34 doi: 10.1136/pgmj.2005.036665 – start-page: 1 volume-title: Proc. Eur. Cong. Radiol. ident: ref32 article-title: Essence of Python programming language in medical image analysis: Enhancing workplace productivity – ident: ref18 doi: 10.1109/ICIT48102.2019.00023 – ident: ref20 doi: 10.1109/LSP.2020.2964161 – ident: ref23 doi: 10.1109/TPAMI.2018.2889096 – ident: ref6 doi: 10.1109/ACCESS.2021.3072559 – volume-title: What is Mild Cognitive Impairment? year: 2021 ident: ref8 – ident: ref33 doi: 10.1007/978-981-15-1286-5_24 |
| SSID | ssj0000816957 |
| Score | 2.3159597 |
| Snippet | Alzheimer's disease (AD) is a hazardous neurological disorder of people aged in the early 60s. The main symptoms of AD is significant memory loss. Mild... Alzheimer’s disease (AD) is a hazardous neurological disorder of people aged in the early 60s. The main symptoms of AD is significant memory loss. Mild... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Alzheimer's disease Alzheimer’s Disease (AD) Artificial neural networks Back propagation networks Brain Brain modeling Cognitive ability Cognitively Normal (CN) Computational modeling Computer architecture Convolutional neural networks Decision making Deep Convolutional Neural Network (DNN) DenseNet Image classification Impairment Machine learning Machine Learning (ML) Magnetic resonance imaging Mild Cognitive Impairment (MCI) Neural networks Neurological diseases Neurons Signs and symptoms Training data VGG-19 |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbaqgc4lJaCutAiHypxadrEdhLPcbtQwaEVB5B6sxzbgZW22Wqz7YG_wJ9mxvFGIBASpzxkjxx9zjzs8TeMnQpValc0KkNj6DN8KDPd5m0G0ta1Cw24cig2Ud_c6Ntb-LTFzsazMCGEmHwWzuk27uX7pXugpbILwHCtkOU2267rajirNa6nUAEJKOtELFTkcDGdzfAbMAQU4lyKaJp_Mz6Roz8VVflDE0fzcvXs_wa2z_aSG8mnA-4HbCt0z9nTX8gFD9mPKX8Xwj2fLbvHNL-wB5FxxEvM_u45WTHPN8ziHF1YPl18_xbmd2H1tudp_4bbzvPr-cKjtJRuxD-iIpmvaGDckQtOOUcRZk659F_5JRWfwFaosPoX7MvV-8-zD1kqvZA5let1VrYgtNMBNAZY2luNiIIOha6ssHWjPLEZNeStQQGNlZaYzqR3IMnBBCtfsp1u2YUjxqVqAN0S0UgLSra5FZVACVAJW3lb5RMmNpgYl3jJqTzGwsT4JAczAGkISJOAnLCzsdP9QMvx7-aXBPbYlDi14wtE0aRf1KgAXjmnfRtQk9lKK6WcQsNUldZ6gUIOCflRSAJ9wo43U8ek_783AqNkdBRrWbz6e6_X7AkNcFjMOWY769VDOGG77nE971dv4tT-CcB796c priority: 102 providerName: IEEE |
| Title | A Deep Convolutional Neural Networks based approach for Alzheimer's disease and Mild Cognitive Impairment classification using Brain Images |
| URI | https://ieeexplore.ieee.org/document/9888135 https://www.proquest.com/docview/2717159731 https://doaj.org/article/4e9d4cc8dfe042a68444c4eac65aad29 |
| Volume | 10 |
| WOSCitedRecordID | wos000857353100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOVaEgti_5gMSF0MR2kpljdtsKDq04gNSb5diOWGmbVpulBw79A_3THTvuaiukcuGSKJHjxPkm83DG3zD2UagSbNGqjIyhy-igzKDLuwylqWvrW7TlWGyivriAy0v8vlHqK-SEjfTA44s7Vh6dshZc50m-TAVKKatIXVSlMU7EpXt5jRvBVNTBUFRY1olmqMjxuJnNaEQUEArxRYpoqJ-YosjYn0qs_KWXo7E522HbyUvkzfh0b9gL379lrze4A3fZfcNPvL_hs-v-NokPXRG4NuIuJncPfEpGyvEmEYdz8lB5s_jzy8-v_PLTwE_G3zPc9I6fzxeOekvZRPwb6Yn5Mswd8lg4M6QURRR5zDLg01BbglqRPhresZ9npz9mX7NUWSGzKodVVnYowIJHoPgJnAECDMEXUBlh6la5QFbUBmcMC2yNNIHITDqLMviPaOR7ttVf9_4D41K1SF6HaKVBJbvciEpQD1gRVs5U-YSJx5esbaIdD9UvFjqGHznqERkdkNEJmQn7vL7oZmTdeL75NKC3bhoos-MJEiSdBEn_S5AmbDdgv-4EAaCQ5YQdPMqCTp_3oAUFweQH1rLY-x-33mevwnDGmZ0DtrVa_vaH7KW9Xc2H5VGUbNqe350exfWJD7gl_UM |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgkQ58CoVCwV8QOLStIntJPZxu1C1ol1xKFJvlmN7YaUlW222PfAX-NPMON4IBELilIfskaPPmYc9_gbgLZelckUjMzSGPsOHMlOzfJZpYevahUa7si82UU-n6upKf9qCg-EsTAghJp-FQ7qNe_l-6W5oqexIY7hWiPIO3C2l5Hl_WmtYUaESErqsE7VQkeuj8WSCX4FBIOeHgkfj_Jv5iSz9qazKH7o4GpiTR_83tMfwMDmSbNwj_wS2QvsUHvxCL7gLP8bsfQjXbLJsb9MMwx5ExxEvMf-7Y2THPNtwizN0Ytl48f1rmH8Lq3cdSzs4zLaeXcwXHqWlhCN2hqpkvqKBMUdOOGUdRaAZZdN_YcdUfgJbocrqnsHnkw-Xk9MsFV_InMzVOitnmiunglYYYilvFWKqVShUZbmtG-mJz6ghf00XurHCEteZ8E4LcjG1FXuw3S7b8ByYkI1Gx4Q3wmopZrnlFUcJuuK28rbKR8A3mBiXmMmpQMbCxAgl16YH0hCQJgE5goOh03VPzPHv5scE9tCUWLXjC0TRpJ_UyKC9dE75WUBdZislpXQSTVNVWus5Ctkl5AchCfQR7G-mjkkaoDMc42R0FWtRvPh7rzdw__Ty4tycn00_voQdGmy_tLMP2-vVTXgF99ztet6tXsdp_hPAm_ru |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Convolutional+Neural+Networks+Based+Approach+for+Alzheimer%E2%80%99s+Disease+and+Mild+Cognitive+Impairment+Classification+Using+Brain+Images&rft.jtitle=IEEE+access&rft.au=Hazarika%2C+Ruhul+Amin&rft.au=Kandar%2C+Debdatta&rft.au=Maji%2C+Arnab+Kumar&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=99066&rft.epage=99076&rft_id=info:doi/10.1109%2FACCESS.2022.3206389&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3206389 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |