Neural Combinatorial Optimization for Energy-Efficient Offloading in Mobile Edge Computing
Computation offloading is an efficient approach to reduce the energy consumption of a mobile device (MD). In this paper, we consider the multi-user offloading problem for mobile edge computing (MEC) in a multi-server environment. Its aim is to minimize the total energy consumption of MDs. This probl...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 8; S. 35077 - 35089 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Computation offloading is an efficient approach to reduce the energy consumption of a mobile device (MD). In this paper, we consider the multi-user offloading problem for mobile edge computing (MEC) in a multi-server environment. Its aim is to minimize the total energy consumption of MDs. This problem has been proven to be NP-hard. We formulate the problem as a multidimensional multiple knapsack (MMKP) problem with constraints, and propose a neural network architecture called Multi-Pointer networks (Mptr-Net) to solve the problem. We train Mptr-Net based on the reinforcement learning method, and design an algorithm to search for feasible solutions that meet the constraints. The simulation results show that the probability of a Mptr-Net obtaining an optimal solution can exceed 98%, which is approximately 25% more than that of a baseline heuristic algorithm. Additionally, the time needed to solve the problem by our neural network is stable compared with that of a mathematical programming solver named or-tools. |
|---|---|
| AbstractList | Computation offloading is an efficient approach to reduce the energy consumption of a mobile device (MD). In this paper, we consider the multi-user offloading problem for mobile edge computing (MEC) in a multi-server environment. Its aim is to minimize the total energy consumption of MDs. This problem has been proven to be NP-hard. We formulate the problem as a multidimensional multiple knapsack (MMKP) problem with constraints, and propose a neural network architecture called Multi-Pointer networks (Mptr-Net) to solve the problem. We train Mptr-Net based on the reinforcement learning method, and design an algorithm to search for feasible solutions that meet the constraints. The simulation results show that the probability of a Mptr-Net obtaining an optimal solution can exceed 98%, which is approximately 25% more than that of a baseline heuristic algorithm. Additionally, the time needed to solve the problem by our neural network is stable compared with that of a mathematical programming solver named or-tools. |
| Author | Yan, Jinyao Zhang, Yuan Jiang, Qingmiao |
| Author_xml | – sequence: 1 givenname: Qingmiao orcidid: 0000-0001-6078-6736 surname: Jiang fullname: Jiang, Qingmiao organization: School of Information and Communication Engineering, Communication University of China, Beijing, China – sequence: 2 givenname: Yuan orcidid: 0000-0002-1335-2780 surname: Zhang fullname: Zhang, Yuan organization: State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing, China – sequence: 3 givenname: Jinyao orcidid: 0000-0003-4153-313X surname: Yan fullname: Yan, Jinyao email: jyan@cuc.edu.cn organization: State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing, China |
| BookMark | eNqFkU1v1DAQhi1UJErpL-glEucs_kzsYxUFqFTYQ-HCxfLHeOVVNl4c76H8-nqbqkJc8MWe8bzvjOZ5jy7mNANCNwRvCMHq0-0wjA8PG4op3lDVcy75G3RJSadaJlh38df7Hbpelj2uR9aU6C_Rr-9wymZqhnSwcTYl5Vij7bHEQ_xjSkxzE1Juxhny7rEdQ4guwlyabQhTMj7OuybOzbdk4wTN6HdwdjqeSv34gN4GMy1w_XJfoZ-fxx_D1_Z---VuuL1vHceytMJh6zwOIJw1xNbBvBBcUep7b4IzXXBKsUCBOA9YMtbz3knvgDKibCfZFbpbfX0ye33M8WDyo04m6udEyjttcoluAu2JtTJUDXjKDTFKGeBcGCU7zK3sqtfH1euY0-8TLEXv0ynPdXxNueC9qFsjtYqtVS6nZckQXrsSrM9M9MpEn5noFyZVpf5RuVieV1yyidN_tDerNgLAazd1BikYewKlspyV |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_math12193025 crossref_primary_10_1016_j_aej_2025_07_033 crossref_primary_10_1109_TMC_2023_3254553 crossref_primary_10_1109_ACCESS_2022_3183647 crossref_primary_10_1109_ACCESS_2023_3264966 crossref_primary_10_3390_informatics7040043 crossref_primary_10_59324_ejaset_2025_3_2__10 crossref_primary_10_1109_TNSM_2023_3316074 crossref_primary_10_1007_s11227_022_04756_1 crossref_primary_10_1016_j_jnca_2023_103669 |
| Cites_doi | 10.1109/TCOMM.2018.2881725 10.3390/en12010184 10.1109/MILCOM.2008.4753629 10.1109/ICCW.2018.8403701 10.1109/TSIPN.2015.2448520 10.1109/MCOM.2019.1800608 10.1109/WCNC.2018.8377343 10.1016/j.dcan.2018.10.003 10.1109/JIOT.2016.2579198 10.1587/transcom.2017CQP0014 10.1109/COMST.2017.2682318 10.1109/ACCESS.2019.2936435 10.1007/978-1-4613-0303-9_5 10.1109/TNET.2015.2487344 10.1109/JIOT.2018.2878435 10.1109/TVT.2018.2890685 10.1109/TWC.2013.072513.121842 10.1109/ACCESS.2018.2819690 10.1109/ACCESS.2017.2710056 10.1007/BF00992696 10.1145/2632951.2632958 10.1109/TVT.2018.2799620 10.1016/j.neucom.2017.04.075 10.3390/s19061446 10.1109/MCOM.2019.1800971 10.1109/TPDS.2014.2316834 10.1016/j.future.2019.01.059 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2020.2974484 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 35089 |
| ExternalDocumentID | oai_doaj_org_article_d1bb8f683ed24a1a99ae445a98604b86 10_1109_ACCESS_2020_2974484 9000853 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 61971382; 61631016 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-5c0bcd0fe5cba1b816d554922d7dafca6fc993f2e1cde0833747c8dce2319b683 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000567611100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:29:46 EDT 2025 Mon Jun 30 12:38:51 EDT 2025 Sat Nov 29 02:41:58 EST 2025 Tue Nov 18 19:52:48 EST 2025 Wed Aug 27 02:35:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-5c0bcd0fe5cba1b816d554922d7dafca6fc993f2e1cde0833747c8dce2319b683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6078-6736 0000-0003-4153-313X 0000-0002-1335-2780 |
| OpenAccessLink | https://doaj.org/article/d1bb8f683ed24a1a99ae445a98604b86 |
| PQID | 2454756951 |
| PQPubID | 4845423 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2020_2974484 ieee_primary_9000853 doaj_primary_oai_doaj_org_article_d1bb8f683ed24a1a99ae445a98604b86 crossref_primary_10_1109_ACCESS_2020_2974484 proquest_journals_2454756951 |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 sutton (ref30) 2018 ref33 vinyals (ref35) 2015 ref11 ref10 ref2 ref17 ref16 salkin (ref36) 1989 ref19 ref18 hu (ref34) 2017 ref24 ref23 vinyals (ref26) 2015 ref25 ref20 bello (ref32) 2016 ref22 ref21 ref28 ref27 ref8 dütting (ref7) 2017 sutskever (ref29) 2014 ref9 ref4 ref3 ref6 ref5 hu (ref1) 2015; 11 |
| References_xml | – volume: 11 start-page: 1 year: 2015 ident: ref1 article-title: Mobile edge computing-A key technology towards 5G publication-title: ETSI White Paper – ident: ref11 doi: 10.1109/TCOMM.2018.2881725 – start-page: 3104 year: 2014 ident: ref29 article-title: Sequence to sequence learning with neural networks publication-title: Proc Adv Neural Inf Proces Syst – ident: ref3 doi: 10.3390/en12010184 – ident: ref10 doi: 10.1109/MILCOM.2008.4753629 – ident: ref13 doi: 10.1109/ICCW.2018.8403701 – ident: ref14 doi: 10.1109/TSIPN.2015.2448520 – ident: ref16 doi: 10.1109/MCOM.2019.1800608 – ident: ref9 doi: 10.1109/WCNC.2018.8377343 – ident: ref21 doi: 10.1016/j.dcan.2018.10.003 – ident: ref2 doi: 10.1109/JIOT.2016.2579198 – ident: ref20 doi: 10.1587/transcom.2017CQP0014 – year: 1989 ident: ref36 publication-title: Foundations of Integer Programming – ident: ref4 doi: 10.1109/COMST.2017.2682318 – year: 2015 ident: ref35 article-title: Order matters: Sequence to sequence for sets publication-title: arXiv 1511 06391 – ident: ref12 doi: 10.1109/ACCESS.2019.2936435 – ident: ref25 doi: 10.1007/978-1-4613-0303-9_5 – ident: ref5 doi: 10.1109/TNET.2015.2487344 – year: 2018 ident: ref30 publication-title: Reinforcement Learning An Introduction – start-page: 2692 year: 2015 ident: ref26 article-title: Pointer networks publication-title: Proc Adv Neural Inf Proces Syst – ident: ref19 doi: 10.1109/JIOT.2018.2878435 – year: 2017 ident: ref7 article-title: Optimal auctions through deep learning publication-title: arXiv 1706 03459 – ident: ref18 doi: 10.1109/TVT.2018.2890685 – ident: ref24 doi: 10.1109/TWC.2013.072513.121842 – ident: ref28 doi: 10.1109/ACCESS.2018.2819690 – ident: ref27 doi: 10.1109/ACCESS.2017.2710056 – ident: ref31 doi: 10.1007/BF00992696 – ident: ref6 doi: 10.1145/2632951.2632958 – ident: ref15 doi: 10.1109/TVT.2018.2799620 – year: 2016 ident: ref32 article-title: Neural combinatorial optimization with reinforcement learning publication-title: arXiv 1611 09940 – year: 2017 ident: ref34 article-title: Solving a new 3D bin packing problem with deep reinforcement learning method publication-title: arXiv 1708 05930 – ident: ref8 doi: 10.1016/j.neucom.2017.04.075 – ident: ref22 doi: 10.3390/s19061446 – ident: ref23 doi: 10.1109/MCOM.2019.1800971 – ident: ref33 doi: 10.1109/TPDS.2014.2316834 – ident: ref17 doi: 10.1016/j.future.2019.01.059 |
| SSID | ssj0000816957 |
| Score | 2.271773 |
| Snippet | Computation offloading is an efficient approach to reduce the energy consumption of a mobile device (MD). In this paper, we consider the multi-user offloading... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 35077 |
| SubjectTerms | Algorithms Approximation algorithms Combinatorial analysis Computation offloading Computational modeling Computer architecture Edge computing Electronic devices Energy consumption Heuristic methods Machine learning Mathematical programming Mobile computing Mobile edge computing multi-pointer networks multidimensional multiple knapsack problem Neural networks Optimization reinforcement learning Servers Task analysis |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc48CqIhYJ84Ni0jtfPY1ltxQFaDoAqLpEfY1Sp7KJ229_fseNGIBAStyhxEsffePyNY38D8DZbHZwwvkNrdUdeUnc-Gtl5NY9KWDS8LqL5-sGcnNizM_dpC_anvTCIWBef4UE5rP_y0zpel6myQ1cZwnwbto0x416taT6lJJBwyjRhoZ67w6PFgr6BQkDBDwTRZmnlb4NP1ehvSVX-8MR1eDl-9H8VewwPG41kRyPuT2ALV0_hwS_igrvwrehuUBnq8RT9ltiaTI2dkov40fZeMiKsbFk3_3XLKiVBb2GnOV-s68p6dr5iH9eB_AZbpu_IxgwQdOEZfDlefl6871omhS5KbjedijzExDOqGHwfqKmSKtJsIpnkc_Q6R-IpWWAfExIpm1OQEW2KSOzPBW3nz2FntV7hC2C90Z44pKVRTcveK59lcA45WhetSHEG4q6Jh9hkxku2i4uhhhvcDSMuQ8FlaLjMYH-66eeosvHv4u8KdlPRIpFdTxAoQ-txQ-pDsJnqjklI33vnPEqpvLOay2D1DHYLkNNDGoYz2LuzhKF156tBFNkzRfbVv_z7Xa_gfqngODezBzuby2t8Dffizeb86vJNtdRbX9nmiQ priority: 102 providerName: IEEE |
| Title | Neural Combinatorial Optimization for Energy-Efficient Offloading in Mobile Edge Computing |
| URI | https://ieeexplore.ieee.org/document/9000853 https://www.proquest.com/docview/2454756951 https://doaj.org/article/d1bb8f683ed24a1a99ae445a98604b86 |
| Volume | 8 |
| WOSCitedRecordID | wos000567611100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07TxwxELYQooACJQHEAUEuUmbB9tleu4TTohQ8UgBCNJafERLcoeOgzG9n7DWnQ5FIQ7PFrvfhmfHMN6vxNwj9SEo6zVrbRKVkA15SNta3vLFi6AVTsSWliOb6tD0_Vzc3-vdCq69cE9bTA_eCOwzUOZWkGsbAuKVWaxs5F1YrSbhThWwbUM9CMlV8sKJSi7bSDFGiD49GI5gRJISMHDAA0Vzxd6GoMPbXFiv_-OUSbE6-oPWKEvFR_3Vf0VIcf0NrC9yBG-g202rAGFjQkNzm1BksCV-AB3ioWysx4FHclb19TVeYIiDA4IuU7ielcB7fjfHZxIFbwF34E3Hf4AEubKKrk-5y9KupjRIaz4maNcIT5wNJUXhnqYO5B5GZ11hog03eyuQBhiQWqQ8RMNcQcgivgo8A7rQD2W6h5fFkHLcRpq20ABEVBC3JqRU2cad1JFFpr1jwA8TeZGZ8ZRHPzSzuTckmiDa9oE0WtKmCHqCf85seexKNj4cfZ2XMh2YG7HIC7MJUuzD_s4sB2siqnD9EF3Q5HKC9N9WaulqfDMusZgIMhu58xqt30WqeTv-jZg8tz6bP8Tta8S-zu6fpfjFUOJ797fbLdsNX3CDr3Q |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PTxQxFH5BNBEO_kLiKmoPHhnodNtOe8TNEozL4gEN8dL0pyGBXQKLfz-vnTLRaEy8TWY6M51-r6_f67TfA_iQlHSadbaJSskGvaRsrO94Y8XYC6ZiR8simm-zbj5XZ2f6yxrsDnthYoxl8Vncy4flX35Y-ts8VbavC0MYP4CHgnPW9ru1hhmVnEJCi65KC7VU7x9MJvgVGAQyuseQOHPFfxt-ikp_Tavyhy8uA8zh0_-r2jN4UokkOeiRfw5rcfECNn-RF9yC71l5A8tgn8f4N0fXaGzkBJ3EZd19SZCykmnZ_tdMi5gEvoWcpHSxLGvryfmCHC8deg4yDT8i6XNA4IWX8PVwejo5amouhcZzqlaN8NT5QFMU3tnWYVMFkcXZWOiCTd7K5JGpJBZbHyLSsjGGGV4FH5H_aSfVeBvWF8tFfAWk7aRFFqlwXJO8tcIm7rSONCrtFQt-BOy-iY2vQuM538WFKQEH1abHxWRcTMVlBLvDTVe9zsa_i3_M2A1Fs0h2OYGgmNrnTGidUwnrHgPjtrVa28i5sFpJyp2SI9jKQA4PqRiOYOfeEkzt0DeGZeEzgfbVvv77Xe_h8dHp8czMPs0_v4GNXNl-pmYH1lfXt_EtPPI_V-c31--K1d4BgEXp0A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Combinatorial+Optimization+for+Energy-Efficient+Offloading+in+Mobile+Edge+Computing&rft.jtitle=IEEE+access&rft.au=Jiang%2C+Qingmiao&rft.au=Zhang%2C+Yuan&rft.au=Yan%2C+Jinyao&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=35077&rft.epage=35089&rft_id=info:doi/10.1109%2FACCESS.2020.2974484&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2974484 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |