Neural Combinatorial Optimization for Energy-Efficient Offloading in Mobile Edge Computing

Computation offloading is an efficient approach to reduce the energy consumption of a mobile device (MD). In this paper, we consider the multi-user offloading problem for mobile edge computing (MEC) in a multi-server environment. Its aim is to minimize the total energy consumption of MDs. This probl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 8; s. 35077 - 35089
Hlavní autoři: Jiang, Qingmiao, Zhang, Yuan, Yan, Jinyao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Computation offloading is an efficient approach to reduce the energy consumption of a mobile device (MD). In this paper, we consider the multi-user offloading problem for mobile edge computing (MEC) in a multi-server environment. Its aim is to minimize the total energy consumption of MDs. This problem has been proven to be NP-hard. We formulate the problem as a multidimensional multiple knapsack (MMKP) problem with constraints, and propose a neural network architecture called Multi-Pointer networks (Mptr-Net) to solve the problem. We train Mptr-Net based on the reinforcement learning method, and design an algorithm to search for feasible solutions that meet the constraints. The simulation results show that the probability of a Mptr-Net obtaining an optimal solution can exceed 98%, which is approximately 25% more than that of a baseline heuristic algorithm. Additionally, the time needed to solve the problem by our neural network is stable compared with that of a mathematical programming solver named or-tools.
AbstractList Computation offloading is an efficient approach to reduce the energy consumption of a mobile device (MD). In this paper, we consider the multi-user offloading problem for mobile edge computing (MEC) in a multi-server environment. Its aim is to minimize the total energy consumption of MDs. This problem has been proven to be NP-hard. We formulate the problem as a multidimensional multiple knapsack (MMKP) problem with constraints, and propose a neural network architecture called Multi-Pointer networks (Mptr-Net) to solve the problem. We train Mptr-Net based on the reinforcement learning method, and design an algorithm to search for feasible solutions that meet the constraints. The simulation results show that the probability of a Mptr-Net obtaining an optimal solution can exceed 98%, which is approximately 25% more than that of a baseline heuristic algorithm. Additionally, the time needed to solve the problem by our neural network is stable compared with that of a mathematical programming solver named or-tools.
Author Yan, Jinyao
Zhang, Yuan
Jiang, Qingmiao
Author_xml – sequence: 1
  givenname: Qingmiao
  orcidid: 0000-0001-6078-6736
  surname: Jiang
  fullname: Jiang, Qingmiao
  organization: School of Information and Communication Engineering, Communication University of China, Beijing, China
– sequence: 2
  givenname: Yuan
  orcidid: 0000-0002-1335-2780
  surname: Zhang
  fullname: Zhang, Yuan
  organization: State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing, China
– sequence: 3
  givenname: Jinyao
  orcidid: 0000-0003-4153-313X
  surname: Yan
  fullname: Yan, Jinyao
  email: jyan@cuc.edu.cn
  organization: State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing, China
BookMark eNqFkU1v1DAQhi1UJErpL-glEucs_kzsYxUFqFTYQ-HCxfLHeOVVNl4c76H8-nqbqkJc8MWe8bzvjOZ5jy7mNANCNwRvCMHq0-0wjA8PG4op3lDVcy75G3RJSadaJlh38df7Hbpelj2uR9aU6C_Rr-9wymZqhnSwcTYl5Vij7bHEQ_xjSkxzE1Juxhny7rEdQ4guwlyabQhTMj7OuybOzbdk4wTN6HdwdjqeSv34gN4GMy1w_XJfoZ-fxx_D1_Z---VuuL1vHceytMJh6zwOIJw1xNbBvBBcUep7b4IzXXBKsUCBOA9YMtbz3knvgDKibCfZFbpbfX0ye33M8WDyo04m6udEyjttcoluAu2JtTJUDXjKDTFKGeBcGCU7zK3sqtfH1euY0-8TLEXv0ynPdXxNueC9qFsjtYqtVS6nZckQXrsSrM9M9MpEn5noFyZVpf5RuVieV1yyidN_tDerNgLAazd1BikYewKlspyV
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_math12193025
crossref_primary_10_1016_j_aej_2025_07_033
crossref_primary_10_1109_TMC_2023_3254553
crossref_primary_10_1109_ACCESS_2022_3183647
crossref_primary_10_1109_ACCESS_2023_3264966
crossref_primary_10_3390_informatics7040043
crossref_primary_10_59324_ejaset_2025_3_2__10
crossref_primary_10_1109_TNSM_2023_3316074
crossref_primary_10_1007_s11227_022_04756_1
crossref_primary_10_1016_j_jnca_2023_103669
Cites_doi 10.1109/TCOMM.2018.2881725
10.3390/en12010184
10.1109/MILCOM.2008.4753629
10.1109/ICCW.2018.8403701
10.1109/TSIPN.2015.2448520
10.1109/MCOM.2019.1800608
10.1109/WCNC.2018.8377343
10.1016/j.dcan.2018.10.003
10.1109/JIOT.2016.2579198
10.1587/transcom.2017CQP0014
10.1109/COMST.2017.2682318
10.1109/ACCESS.2019.2936435
10.1007/978-1-4613-0303-9_5
10.1109/TNET.2015.2487344
10.1109/JIOT.2018.2878435
10.1109/TVT.2018.2890685
10.1109/TWC.2013.072513.121842
10.1109/ACCESS.2018.2819690
10.1109/ACCESS.2017.2710056
10.1007/BF00992696
10.1145/2632951.2632958
10.1109/TVT.2018.2799620
10.1016/j.neucom.2017.04.075
10.3390/s19061446
10.1109/MCOM.2019.1800971
10.1109/TPDS.2014.2316834
10.1016/j.future.2019.01.059
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.2974484
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 35089
ExternalDocumentID oai_doaj_org_article_d1bb8f683ed24a1a99ae445a98604b86
10_1109_ACCESS_2020_2974484
9000853
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 61971382; 61631016
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-5c0bcd0fe5cba1b816d554922d7dafca6fc993f2e1cde0833747c8dce2319b683
IEDL.DBID RIE
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000567611100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:29:46 EDT 2025
Mon Jun 30 12:38:51 EDT 2025
Sat Nov 29 02:41:58 EST 2025
Tue Nov 18 19:52:48 EST 2025
Wed Aug 27 02:35:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-5c0bcd0fe5cba1b816d554922d7dafca6fc993f2e1cde0833747c8dce2319b683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6078-6736
0000-0003-4153-313X
0000-0002-1335-2780
OpenAccessLink https://ieeexplore.ieee.org/document/9000853
PQID 2454756951
PQPubID 4845423
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2020_2974484
ieee_primary_9000853
doaj_primary_oai_doaj_org_article_d1bb8f683ed24a1a99ae445a98604b86
crossref_primary_10_1109_ACCESS_2020_2974484
proquest_journals_2454756951
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
sutton (ref30) 2018
ref33
vinyals (ref35) 2015
ref11
ref10
ref2
ref17
ref16
salkin (ref36) 1989
ref19
ref18
hu (ref34) 2017
ref24
ref23
vinyals (ref26) 2015
ref25
ref20
bello (ref32) 2016
ref22
ref21
ref28
ref27
ref8
dütting (ref7) 2017
sutskever (ref29) 2014
ref9
ref4
ref3
ref6
ref5
hu (ref1) 2015; 11
References_xml – volume: 11
  start-page: 1
  year: 2015
  ident: ref1
  article-title: Mobile edge computing-A key technology towards 5G
  publication-title: ETSI White Paper
– ident: ref11
  doi: 10.1109/TCOMM.2018.2881725
– start-page: 3104
  year: 2014
  ident: ref29
  article-title: Sequence to sequence learning with neural networks
  publication-title: Proc Adv Neural Inf Proces Syst
– ident: ref3
  doi: 10.3390/en12010184
– ident: ref10
  doi: 10.1109/MILCOM.2008.4753629
– ident: ref13
  doi: 10.1109/ICCW.2018.8403701
– ident: ref14
  doi: 10.1109/TSIPN.2015.2448520
– ident: ref16
  doi: 10.1109/MCOM.2019.1800608
– ident: ref9
  doi: 10.1109/WCNC.2018.8377343
– ident: ref21
  doi: 10.1016/j.dcan.2018.10.003
– ident: ref2
  doi: 10.1109/JIOT.2016.2579198
– ident: ref20
  doi: 10.1587/transcom.2017CQP0014
– year: 1989
  ident: ref36
  publication-title: Foundations of Integer Programming
– ident: ref4
  doi: 10.1109/COMST.2017.2682318
– year: 2015
  ident: ref35
  article-title: Order matters: Sequence to sequence for sets
  publication-title: arXiv 1511 06391
– ident: ref12
  doi: 10.1109/ACCESS.2019.2936435
– ident: ref25
  doi: 10.1007/978-1-4613-0303-9_5
– ident: ref5
  doi: 10.1109/TNET.2015.2487344
– year: 2018
  ident: ref30
  publication-title: Reinforcement Learning An Introduction
– start-page: 2692
  year: 2015
  ident: ref26
  article-title: Pointer networks
  publication-title: Proc Adv Neural Inf Proces Syst
– ident: ref19
  doi: 10.1109/JIOT.2018.2878435
– year: 2017
  ident: ref7
  article-title: Optimal auctions through deep learning
  publication-title: arXiv 1706 03459
– ident: ref18
  doi: 10.1109/TVT.2018.2890685
– ident: ref24
  doi: 10.1109/TWC.2013.072513.121842
– ident: ref28
  doi: 10.1109/ACCESS.2018.2819690
– ident: ref27
  doi: 10.1109/ACCESS.2017.2710056
– ident: ref31
  doi: 10.1007/BF00992696
– ident: ref6
  doi: 10.1145/2632951.2632958
– ident: ref15
  doi: 10.1109/TVT.2018.2799620
– year: 2016
  ident: ref32
  article-title: Neural combinatorial optimization with reinforcement learning
  publication-title: arXiv 1611 09940
– year: 2017
  ident: ref34
  article-title: Solving a new 3D bin packing problem with deep reinforcement learning method
  publication-title: arXiv 1708 05930
– ident: ref8
  doi: 10.1016/j.neucom.2017.04.075
– ident: ref22
  doi: 10.3390/s19061446
– ident: ref23
  doi: 10.1109/MCOM.2019.1800971
– ident: ref33
  doi: 10.1109/TPDS.2014.2316834
– ident: ref17
  doi: 10.1016/j.future.2019.01.059
SSID ssj0000816957
Score 2.271773
Snippet Computation offloading is an efficient approach to reduce the energy consumption of a mobile device (MD). In this paper, we consider the multi-user offloading...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35077
SubjectTerms Algorithms
Approximation algorithms
Combinatorial analysis
Computation offloading
Computational modeling
Computer architecture
Edge computing
Electronic devices
Energy consumption
Heuristic methods
Machine learning
Mathematical programming
Mobile computing
Mobile edge computing
multi-pointer networks
multidimensional multiple knapsack problem
Neural networks
Optimization
reinforcement learning
Servers
Task analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA4iHvQgrlitkoNHR5M0mUmOWioe3A4K4iVkFUFbqdXf70smLRVBL15nMkteXl6-L8v3EDq0jaLeWGCqXLCKN4xXhnpW1Q2JFgCIISGr618219fy4UHdzqX6SnvCWnng1nAnnlorYy17wTNuqFHKBM6FUbIm3Mostg2oZ45M5Rgsaa1EU2SGKFEnp_0-1AgIISPHDEA0l_zbUJQV-0uKlR9xOQ8252totaBEfNr-3TpaCMMNtDKnHbiJHpOsBpSBDg3kNlFn8CR8AxHgtRytxIBH8SCf7asGWSkCBhh8E-PLKG-cx89DfDWyEBbwwD8F3CZ4gBtb6P58cNe_qEqihMpxIieVcMQ6T2IQzhpqoe5eJOU15htvojN1dABDIgvU-QCYqwccwknvAoA7ZcG222hxOBqGHYQFs8ypWgTKQjpMpYSRaaktWhXT3EcHsanNtCsq4imZxYvObIIo3RpaJ0PrYugOOpo99NaKaPxe_Cw1xqxoUsDOF8AvdPEL_ZdfdNBmasrZS1RGl70O6k6bVpfe-q5ZUjUT4DB09z8-vYeWU3XaiZouWpyMP8I-WnKfk-f38UF21C94SOlP
  priority: 102
  providerName: Directory of Open Access Journals
Title Neural Combinatorial Optimization for Energy-Efficient Offloading in Mobile Edge Computing
URI https://ieeexplore.ieee.org/document/9000853
https://www.proquest.com/docview/2454756951
https://doaj.org/article/d1bb8f683ed24a1a99ae445a98604b86
Volume 8
WOSCitedRecordID wos000567611100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PTxUxEJ4A8aAHRNHwFEkPHllo-9pte8SXJRwEPGhCvDT9aUjwPQMPj_7tTrtlo9GYeNlsdru73c60_Wba-QbgrVeGRefRUhWSd0Jx0TkWedcrmj0CEEdTZdd_ry4u9NWV-bABh1MsTEqpbj5LR-W0ruXHVbgvrrJjUxHCfBM2lVJjrNbkTykJJIxUjViIUXN8sljgP6AJyOkRR9gstPht8qkc_S2pyh8jcZ1eTp_-X8V2YLvBSHIyyv0ZbKTlc3jyC7ngLnwuvBtYBns8Wr_FtkZVI5c4RHxtsZcEASsZavBfN1QqCfwKucz5ZlV31pPrJTlfeRw3yBC_JDJmgMAbL-DT6fBxcda1TApdEFSvOxmoD5HmJIN3zGNTRVmo2XhU0eXg-hwQp2SeWIgJQdkcjYygY0iI_ozv9fwlbC1Xy7QHRHLPg-llYjyVaCsjnS5rcdmbXJwjM-APTWxDoxkv2S5ubDU3qLGjXGyRi21ymcHh9NC3kWXj38XfFdlNRQtFdr2AQrGtx9nIvNcZ654iF445Y1wSQjqjeyq87mewWwQ5vaTJcAb7D5pgW3e-s7zQnknUL_bq70-9hselgqNvZh-21rf36Q08Ct_X13e3B9XQx-P5j-Ggau1P5dPoUw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ8gmigPfqHhALUPPrLQ9trd9hEuRzAehw-YEF-afhISvCNw-Pc77ZaNRmPi22a33e32N21npp3fAHx0nWbBOrRUheSN6LhoLAu8aTuaHCoglsbCrj_r5nN1caG_rMHeEAsTYyyHz-J-vix7-WHp77Or7EAXDWH8CB5LITjro7UGj0pOIaFlV6mFGNUHh5MJ_gUagZzuc1SchRK_LT-Fpb-mVfljLi4LzPGL_2vaS3heFUly2CP_Ctbi4jVs_EIvuAnfMvMGlsExj_Zvtq5R2MgZThLfa_QlQZWVTEv4XzMtZBL4FXKW0vWynK0nVwtyunQ4c5BpuIykzwGBD97A1-Pp-eSkqbkUGi-oWjXSU-cDTVF6Z5nDrgoyk7Px0AWbvG2TR00l8ch8iKiWjdHM8Cr4iPqfdq0av4X1xXIRt4BI7rjXrYyMxxxvpaVVeTcuOZ2ye2QE_KGLja9E4znfxbUpBgfVpsfFZFxMxWUEe0Olm55n49_FjzJ2Q9FMkl1uICimjjkTmHMqYdtj4MIyq7WNQkirVUuFU-0INjOQw0sqhiPYfZAEUwf0neGZ-EyifLHtv9f6AE9Pzk9nZvZp_nkHnuXG9p6aXVhf3d7Hd_DE_1hd3d2-L1L7Eytq6XQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Combinatorial+Optimization+for+Energy-Efficient+Offloading+in+Mobile+Edge+Computing&rft.jtitle=IEEE+access&rft.au=Jiang%2C+Qingmiao&rft.au=Zhang%2C+Yuan&rft.au=Yan%2C+Jinyao&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=35077&rft.epage=35089&rft_id=info:doi/10.1109%2FACCESS.2020.2974484&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2974484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon