Unsupervised K-Means Clustering Algorithm
The k-means algorithm is generally the most known and used clustering method. There are various extensions of k-means to be proposed in the literature. Although it is an unsupervised learning to clustering in pattern recognition and machine learning, the k-means algorithm and its extensions are alwa...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 8; S. 80716 - 80727 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The k-means algorithm is generally the most known and used clustering method. There are various extensions of k-means to be proposed in the literature. Although it is an unsupervised learning to clustering in pattern recognition and machine learning, the k-means algorithm and its extensions are always influenced by initializations with a necessary number of clusters a priori. That is, the k-means algorithm is not exactly an unsupervised clustering method. In this paper, we construct an unsupervised learning schema for the k-means algorithm so that it is free of initializations without parameter selection and can also simultaneously find an optimal number of clusters. That is, we propose a novel unsupervised k-means (U-k-means) clustering algorithm with automatically finding an optimal number of clusters without giving any initialization and parameter selection. The computational complexity of the proposed U-k-means clustering algorithm is also analyzed. Comparisons between the proposed U-k-means and other existing methods are made. Experimental results and comparisons actually demonstrate these good aspects of the proposed U-k-means clustering algorithm. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2020.2988796 |