Verification of deterministic solar forecasts

•This review aims at standardizing the forecast verification approaches used in deterministic solar forecasting.•The distribution-oriented forecast verification framework is introduced.•RMSE skill score is recommended to be universally reported in solar forecasting studies.•A series of practical iss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy Jg. 210; S. 20 - 37
Hauptverfasser: Yang, Dazhi, Alessandrini, Stefano, Antonanzas, Javier, Antonanzas-Torres, Fernando, Badescu, Viorel, Beyer, Hans Georg, Blaga, Robert, Boland, John, Bright, Jamie M., Coimbra, Carlos F.M., David, Mathieu, Frimane, Âzeddine, Gueymard, Christian A., Hong, Tao, Kay, Merlinde J., Killinger, Sven, Kleissl, Jan, Lauret, Philippe, Lorenz, Elke, van der Meer, Dennis, Paulescu, Marius, Perez, Richard, Perpiñán-Lamigueiro, Oscar, Peters, Ian Marius, Reikard, Gordon, Renné, David, Saint-Drenan, Yves-Marie, Shuai, Yong, Urraca, Ruben, Verbois, Hadrien, Vignola, Frank, Voyant, Cyril, Zhang, Jie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 01.11.2020
Pergamon Press Inc
Elsevier
Schlagworte:
ISSN:0038-092X, 1471-1257, 1471-1257
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •This review aims at standardizing the forecast verification approaches used in deterministic solar forecasting.•The distribution-oriented forecast verification framework is introduced.•RMSE skill score is recommended to be universally reported in solar forecasting studies.•A series of practical issues during verification are reviewed. The field of energy forecasting has attracted many researchers from different fields (e.g., meteorology, data sciences, mechanical or electrical engineering) over the last decade. Solar forecasting is a fast-growing subdomain of energy forecasting. Despite several previous attempts, the methods and measures used for verification of deterministic (also known as single-valued or point) solar forecasts are still far from being standardized, making forecast analysis and comparison difficult. To analyze and compare solar forecasts, the well-established Murphy–Winkler framework for distribution-oriented forecast verification is recommended as a standard practice. This framework examines aspects of forecast quality, such as reliability, resolution, association, or discrimination, and analyzes the joint distribution of forecasts and observations, which contains all time-independent information relevant to verification. To verify forecasts, one can use any graphical display or mathematical/statistical measure to provide insights and summarize the aspects of forecast quality. The majority of graphical methods and accuracy measures known to solar forecasters are specific methods under this general framework. Additionally, measuring the overall skillfulness of forecasters is also of general interest. The use of the root mean square error (RMSE) skill score based on the optimal convex combination of climatology and persistence methods is highly recommended. By standardizing the accuracy measure and reference forecasting method, the RMSE skill score allows—with appropriate caveats—comparison of forecasts made using different models, across different locations and time periods.
AbstractList The field of energy forecasting has attracted many researchers from different fields (e.g., meteorology, data sciences, mechanical or electrical engineering) over the last decade. Solar forecasting is a fast-growing sub-domain of energy forecasting. Despite several previous attempts, the methods and measures used for verification of deterministic (also known as single-valued or point) solar forecasts are still far from being standardized, making forecast analysis and comparison difficult. To analyze and compare solar forecasts, the well-established Murphy-Winkler framework for distribution-oriented forecast verification is recommended as a standard practice. This framework examines aspects of forecast quality, such as reliability, resolution, association, or discrimination, and analyzes the joint distribution of forecasts and observations, which contains all time-independent information relevant to verification. To verify forecasts, one can use any graphical display or mathematical/statistical measure to provide insights and summarize the aspects of forecast quality. The majority of graphical methods and accuracy measures known to solar forecasters are specific methods under this general framework. Additionally, measuring the overall skillfulness of forecasters is also of general interest. The use of the root mean square error (RMSE) skill score based on the optimal convex combination of climatology and persistence methods is highly recommended. By standardizing the accuracy measure and reference forecasting method, the RMSE skill score allows-with appropriate caveats-comparison of forecasts made using different models, across different locations and time periods.
The field of energy forecasting has attracted many researchers from different fields (e.g., meteorology, data sciences, mechanical or electrical engineering) over the last decade. Solar forecasting is a fast-growing subdomain of energy forecasting. Despite several previous attempts, the methods and measures used for verification of deterministic (also known as single-valued or point) solar forecasts are still far from being standardized, making forecast analysis and comparison difficult. To analyze and compare solar forecasts, the well-established Murphy–Winkler framework for distribution-oriented forecast verification is recommended as a standard practice. This framework examines aspects of forecast quality, such as reliability, resolution, association, or discrimination, and analyzes the joint distribution of forecasts and observations, which contains all time-independent information relevant to verification. To verify forecasts, one can use any graphical display or mathematical/statistical measure to provide insights and summarize the aspects of forecast quality. The majority of graphical methods and accuracy measures known to solar forecasters are specific methods under this general framework. Additionally, measuring the overall skillfulness of forecasters is also of general interest. The use of the root mean square error (RMSE) skill score based on the optimal convex combination of climatology and persistence methods is highly recommended. By standardizing the accuracy measure and reference forecasting method, the RMSE skill score allows-with appropriate caveats-comparison of forecasts made using different models, across different locations and time periods.
•This review aims at standardizing the forecast verification approaches used in deterministic solar forecasting.•The distribution-oriented forecast verification framework is introduced.•RMSE skill score is recommended to be universally reported in solar forecasting studies.•A series of practical issues during verification are reviewed. The field of energy forecasting has attracted many researchers from different fields (e.g., meteorology, data sciences, mechanical or electrical engineering) over the last decade. Solar forecasting is a fast-growing subdomain of energy forecasting. Despite several previous attempts, the methods and measures used for verification of deterministic (also known as single-valued or point) solar forecasts are still far from being standardized, making forecast analysis and comparison difficult. To analyze and compare solar forecasts, the well-established Murphy–Winkler framework for distribution-oriented forecast verification is recommended as a standard practice. This framework examines aspects of forecast quality, such as reliability, resolution, association, or discrimination, and analyzes the joint distribution of forecasts and observations, which contains all time-independent information relevant to verification. To verify forecasts, one can use any graphical display or mathematical/statistical measure to provide insights and summarize the aspects of forecast quality. The majority of graphical methods and accuracy measures known to solar forecasters are specific methods under this general framework. Additionally, measuring the overall skillfulness of forecasters is also of general interest. The use of the root mean square error (RMSE) skill score based on the optimal convex combination of climatology and persistence methods is highly recommended. By standardizing the accuracy measure and reference forecasting method, the RMSE skill score allows—with appropriate caveats—comparison of forecasts made using different models, across different locations and time periods.
Author Beyer, Hans Georg
Alessandrini, Stefano
Killinger, Sven
Perpiñán-Lamigueiro, Oscar
Renné, David
Paulescu, Marius
Antonanzas, Javier
Gueymard, Christian A.
Frimane, Âzeddine
van der Meer, Dennis
Badescu, Viorel
Vignola, Frank
David, Mathieu
Reikard, Gordon
Saint-Drenan, Yves-Marie
Bright, Jamie M.
Hong, Tao
Verbois, Hadrien
Blaga, Robert
Kay, Merlinde J.
Lauret, Philippe
Shuai, Yong
Kleissl, Jan
Peters, Ian Marius
Urraca, Ruben
Coimbra, Carlos F.M.
Yang, Dazhi
Voyant, Cyril
Lorenz, Elke
Zhang, Jie
Antonanzas-Torres, Fernando
Boland, John
Perez, Richard
Author_xml – sequence: 1
  givenname: Dazhi
  orcidid: 0000-0001-8427-0718
  surname: Yang
  fullname: Yang, Dazhi
  email: yangdazhi.nus@gmail.com
  organization: Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, Singapore
– sequence: 2
  givenname: Stefano
  orcidid: 0000-0002-7382-1294
  surname: Alessandrini
  fullname: Alessandrini, Stefano
  organization: Research Application Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
– sequence: 3
  givenname: Javier
  surname: Antonanzas
  fullname: Antonanzas, Javier
  organization: Deparment of Mechanical Engineering, University of La Rioja, Logrono, Spain
– sequence: 4
  givenname: Fernando
  surname: Antonanzas-Torres
  fullname: Antonanzas-Torres, Fernando
  organization: Deparment of Mechanical Engineering, University of La Rioja, Logrono, Spain
– sequence: 5
  givenname: Viorel
  surname: Badescu
  fullname: Badescu, Viorel
  organization: Candida Oancea Institute, Polytechnic University of Bucharest, Bucharest, Romania
– sequence: 6
  givenname: Hans Georg
  surname: Beyer
  fullname: Beyer, Hans Georg
  organization: Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands
– sequence: 7
  givenname: Robert
  orcidid: 0000-0001-9379-9701
  surname: Blaga
  fullname: Blaga, Robert
  organization: Faculty of Physics, West University of Timisoara, Timisoara, Romania
– sequence: 8
  givenname: John
  orcidid: 0000-0003-0362-4655
  surname: Boland
  fullname: Boland, John
  organization: Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes, SA, Australia
– sequence: 9
  givenname: Jamie M.
  surname: Bright
  fullname: Bright, Jamie M.
  organization: Solar Energy Research Institute of Singapore, National University of Singapore, Singapore
– sequence: 10
  givenname: Carlos F.M.
  surname: Coimbra
  fullname: Coimbra, Carlos F.M.
  organization: Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA, USA
– sequence: 11
  givenname: Mathieu
  orcidid: 0000-0002-4134-7196
  surname: David
  fullname: David, Mathieu
  organization: PIMENT Laboratory, University of La Reunion, Reunion, France
– sequence: 12
  givenname: Âzeddine
  surname: Frimane
  fullname: Frimane, Âzeddine
  organization: Faculty of Science, Ibn Tofail University, Kenitra, Morocco
– sequence: 13
  givenname: Christian A.
  surname: Gueymard
  fullname: Gueymard, Christian A.
  organization: Solar Consulting Services, Colebrook, NH, USA
– sequence: 14
  givenname: Tao
  orcidid: 0000-0003-0453-1143
  surname: Hong
  fullname: Hong, Tao
  organization: Department of Systems Engineering and Engineering Management, University of North Carolina at Charlotte, Charlotte, NC, USA
– sequence: 15
  givenname: Merlinde J.
  surname: Kay
  fullname: Kay, Merlinde J.
  organization: School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, Australia
– sequence: 16
  givenname: Sven
  orcidid: 0000-0003-2959-6146
  surname: Killinger
  fullname: Killinger, Sven
  organization: Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany
– sequence: 17
  givenname: Jan
  surname: Kleissl
  fullname: Kleissl, Jan
  organization: Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA, USA
– sequence: 18
  givenname: Philippe
  orcidid: 0000-0003-2574-0745
  surname: Lauret
  fullname: Lauret, Philippe
  organization: PIMENT Laboratory, University of La Reunion, Reunion, France
– sequence: 19
  givenname: Elke
  surname: Lorenz
  fullname: Lorenz, Elke
  organization: Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany
– sequence: 20
  givenname: Dennis
  orcidid: 0000-0001-8197-5181
  surname: van der Meer
  fullname: van der Meer, Dennis
  organization: Department of Civil and Industrial Engineering, Uppsala University, Uppsala, Sweden
– sequence: 21
  givenname: Marius
  surname: Paulescu
  fullname: Paulescu, Marius
  organization: Faculty of Physics, West University of Timisoara, Timisoara, Romania
– sequence: 22
  givenname: Richard
  surname: Perez
  fullname: Perez, Richard
  organization: Atmospheric Sciences Research Center, University at Albany, SUNY, Albany, NY, USA
– sequence: 23
  givenname: Oscar
  surname: Perpiñán-Lamigueiro
  fullname: Perpiñán-Lamigueiro, Oscar
  organization: School of Engineering and Industrial Design, Polytechnic University of Madrid, Madrid, Spain
– sequence: 24
  givenname: Ian Marius
  surname: Peters
  fullname: Peters, Ian Marius
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 25
  givenname: Gordon
  orcidid: 0000-0003-1132-7589
  surname: Reikard
  fullname: Reikard, Gordon
  organization: Statistics Department, U.S. Cellular, Chicago, IL, USA
– sequence: 26
  givenname: David
  surname: Renné
  fullname: Renné, David
  organization: Dave Renné Renewables, Boulder, CO, USA
– sequence: 27
  givenname: Yves-Marie
  surname: Saint-Drenan
  fullname: Saint-Drenan, Yves-Marie
  organization: MINES ParisTech, PSL Research University, Sophia Antipolis, France
– sequence: 28
  givenname: Yong
  orcidid: 0000-0003-0242-7377
  surname: Shuai
  fullname: Shuai, Yong
  organization: School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
– sequence: 29
  givenname: Ruben
  orcidid: 0000-0003-2977-5697
  surname: Urraca
  fullname: Urraca, Ruben
  organization: Deparment of Mechanical Engineering, University of La Rioja, Logrono, Spain
– sequence: 30
  givenname: Hadrien
  orcidid: 0000-0002-9465-3453
  surname: Verbois
  fullname: Verbois, Hadrien
  organization: Solar Energy Research Institute of Singapore, National University of Singapore, Singapore
– sequence: 31
  givenname: Frank
  surname: Vignola
  fullname: Vignola, Frank
  organization: Material Science Institute, University of Oregon, Eugene, OR, USA
– sequence: 32
  givenname: Cyril
  surname: Voyant
  fullname: Voyant, Cyril
  organization: PIMENT Laboratory, University of La Reunion, Reunion, France
– sequence: 33
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  organization: Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, USA
BackLink https://hal.science/hal-02899290$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-424636$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNqFkU1LAzEURYMo2FZ_glBwJTjjSybzhQsp9RMKblTcPdJMointpCaZiv_e1NGFblyEQHLu5eVkSHZb2ypCjiikFGhxtki9XapWuZQBgxR4CrTeIQPKS5pQlpe7ZACQVQnU7HmfDL1fANCSVuWAJE_KGW2kCMa2Y6vHjQrKrUxrfDByHIuFG2vrlBQ--AOyp8XSq8PvfUQer68eprfJ7P7mbjqZJZJDFZK8bLhoqJC6yiVnuqRNHKNiRamh0gUTcbJG0GzOuS6yXM41VaxmKs-A5qzh2Yic9r3-Xa27Oa6dWQn3gVYYvDRPE7TuBbsOOeNFVkT8pMdfxfIXezuZ4fYMWFXXrIYNjexxz66dfeuUD7iwnWvjazCWcQ5ZHdeInPeUdNZ7pzRKE74cBSfMEingVj0u8Fs9btUjcIzqYzr_k_4Z6r_cRZ9T0e3GxFsvjWqlakz8gICNNf80fAJ9waGC
CitedBy_id crossref_primary_10_1016_j_apenergy_2022_119924
crossref_primary_10_1016_j_rser_2023_113992
crossref_primary_10_1016_j_egyr_2023_10_058
crossref_primary_10_1016_j_solener_2022_08_042
crossref_primary_10_1016_j_engappai_2022_104860
crossref_primary_10_1016_j_apenergy_2021_118438
crossref_primary_10_1016_j_solener_2022_08_040
crossref_primary_10_1016_j_rser_2023_113359
crossref_primary_10_1016_j_energy_2023_128135
crossref_primary_10_3390_en14061679
crossref_primary_10_35848_1347_4065_adb8f6
crossref_primary_10_1016_j_rser_2024_114448
crossref_primary_10_1016_j_measurement_2022_111759
crossref_primary_10_1016_j_ijforecast_2022_03_008
crossref_primary_10_1016_j_renene_2024_121055
crossref_primary_10_1016_j_apenergy_2023_122144
crossref_primary_10_1016_j_eswa_2022_117335
crossref_primary_10_1016_j_rser_2021_111736
crossref_primary_10_1016_j_rser_2023_113915
crossref_primary_10_1063_5_0181311
crossref_primary_10_1080_15435075_2024_2356103
crossref_primary_10_1007_s00376_021_1372_8
crossref_primary_10_1016_j_solener_2021_12_011
crossref_primary_10_3103_S0003701X24600152
crossref_primary_10_1016_j_solener_2020_04_017
crossref_primary_10_3390_atmos14071150
crossref_primary_10_3390_atmos14030567
crossref_primary_10_1016_j_rser_2022_112772
crossref_primary_10_1016_j_renene_2024_120135
crossref_primary_10_1109_ACCESS_2021_3122826
crossref_primary_10_1016_j_eswa_2022_116992
crossref_primary_10_1016_j_renene_2023_118952
crossref_primary_10_1016_j_ijforecast_2022_08_002
crossref_primary_10_1016_j_apenergy_2023_122434
crossref_primary_10_1038_s41598_022_18516_x
crossref_primary_10_1016_j_ijepes_2021_107176
crossref_primary_10_1016_j_rser_2021_111909
crossref_primary_10_1109_TPAMI_2022_3152862
crossref_primary_10_1016_j_renene_2022_04_065
crossref_primary_10_1016_j_apenergy_2023_120818
crossref_primary_10_1016_j_rser_2023_113171
crossref_primary_10_1016_j_enconman_2024_118398
crossref_primary_10_3390_rs17162861
crossref_primary_10_1007_s00704_024_04985_9
crossref_primary_10_1038_s41612_024_00812_0
crossref_primary_10_1016_j_rser_2022_112364
crossref_primary_10_1016_j_apenergy_2024_123573
crossref_primary_10_1016_j_prime_2022_100103
crossref_primary_10_1016_j_renene_2024_120385
crossref_primary_10_3390_su142416446
crossref_primary_10_1007_s00376_024_3229_4
crossref_primary_10_1016_j_apenergy_2025_126606
crossref_primary_10_1016_j_solener_2021_07_010
crossref_primary_10_1016_j_solener_2022_05_049
crossref_primary_10_1016_j_enconman_2022_115641
crossref_primary_10_1016_j_solener_2025_113821
crossref_primary_10_1016_j_asoc_2023_110979
crossref_primary_10_1016_j_enconman_2025_120303
crossref_primary_10_1002_solr_202400664
crossref_primary_10_1016_j_solener_2022_12_054
crossref_primary_10_1016_j_solener_2020_08_093
crossref_primary_10_1016_j_rser_2022_112195
crossref_primary_10_1016_j_seta_2023_103329
crossref_primary_10_1029_2024MS004759
crossref_primary_10_1016_j_apenergy_2024_123681
crossref_primary_10_1007_s40095_023_00560_6
crossref_primary_10_3390_en14186005
crossref_primary_10_1016_j_rser_2021_111768
crossref_primary_10_3390_en13143565
crossref_primary_10_1016_j_atmosenv_2020_118146
crossref_primary_10_1016_j_solener_2021_09_073
crossref_primary_10_1080_15435075_2023_2166788
crossref_primary_10_3390_en17020329
crossref_primary_10_1016_j_solener_2023_05_053
crossref_primary_10_1016_j_solener_2021_03_023
crossref_primary_10_1002_env_2800
crossref_primary_10_1016_j_solener_2021_12_066
crossref_primary_10_1016_j_energy_2023_130096
crossref_primary_10_3390_en15010370
crossref_primary_10_3390_en17143527
crossref_primary_10_1016_j_apenergy_2022_119603
crossref_primary_10_1016_j_rser_2022_112224
crossref_primary_10_1016_j_solener_2024_112597
crossref_primary_10_1016_j_apenergy_2025_126664
crossref_primary_10_1016_j_rser_2022_112348
crossref_primary_10_1016_j_renene_2022_05_056
crossref_primary_10_1016_j_solener_2024_113044
crossref_primary_10_1016_j_solener_2023_111820
crossref_primary_10_1109_TSTE_2024_3482360
crossref_primary_10_1016_j_rser_2022_112868
crossref_primary_10_1016_j_renene_2021_08_032
crossref_primary_10_1016_j_solener_2022_10_062
crossref_primary_10_1016_j_solener_2025_113845
crossref_primary_10_1016_j_solener_2021_10_065
crossref_primary_10_1016_j_solener_2021_09_044
crossref_primary_10_1016_j_jclepro_2023_138793
crossref_primary_10_1016_j_solener_2023_01_003
crossref_primary_10_3390_en15031061
crossref_primary_10_3390_en14165154
crossref_primary_10_1016_j_ijforecast_2024_12_003
crossref_primary_10_1016_j_solener_2024_112504
crossref_primary_10_1016_j_rser_2021_110735
crossref_primary_10_1016_j_rser_2022_112736
crossref_primary_10_1016_j_solener_2021_05_037
crossref_primary_10_1016_j_solener_2021_09_050
crossref_primary_10_1016_j_apenergy_2023_121544
crossref_primary_10_1109_ACCESS_2023_3297494
crossref_primary_10_3390_en14082216
crossref_primary_10_1016_j_energy_2025_134595
crossref_primary_10_1016_j_solener_2021_06_011
crossref_primary_10_1002_solr_202400475
crossref_primary_10_1016_j_enconman_2024_118598
crossref_primary_10_1016_j_jastp_2024_106405
crossref_primary_10_1016_j_solener_2020_12_045
crossref_primary_10_1016_j_rser_2023_114185
crossref_primary_10_3390_en17163958
crossref_primary_10_3390_en15041330
crossref_primary_10_1051_epjpv_2023006
crossref_primary_10_1002_met_2051
crossref_primary_10_1016_j_solener_2021_04_002
crossref_primary_10_1016_j_apenergy_2022_119063
crossref_primary_10_1016_j_segan_2024_101376
crossref_primary_10_1016_j_solener_2021_11_033
crossref_primary_10_1016_j_solener_2024_112413
crossref_primary_10_1016_j_rser_2024_114391
crossref_primary_10_1016_j_renene_2021_10_102
crossref_primary_10_1016_j_apenergy_2023_121958
crossref_primary_10_3390_en16020646
crossref_primary_10_1002_solr_202400468
crossref_primary_10_1016_j_solcom_2025_100146
crossref_primary_10_1016_j_solener_2024_113171
crossref_primary_10_1088_1742_6596_2247_1_012002
crossref_primary_10_1016_j_renene_2022_05_166
crossref_primary_10_1016_j_rser_2024_114655
crossref_primary_10_1016_j_solener_2025_113353
crossref_primary_10_1016_j_solener_2024_112649
crossref_primary_10_1016_j_seta_2021_101816
crossref_primary_10_1016_j_apenergy_2022_119598
crossref_primary_10_1016_j_solener_2022_03_004
crossref_primary_10_3390_en13174489
crossref_primary_10_1016_j_solener_2021_05_055
crossref_primary_10_1029_2023SW003482
crossref_primary_10_3390_en16207125
crossref_primary_10_1016_j_solener_2021_05_056
Cites_doi 10.1016/j.solener.2019.12.042
10.1016/j.rser.2019.04.006
10.1016/j.solener.2016.06.069
10.1063/5.0003495
10.5194/gmd-7-1247-2014
10.1016/j.solener.2018.02.008
10.2174/1874282300802010023
10.1016/j.solener.2017.02.010
10.1016/j.solener.2015.10.010
10.1016/j.energy.2014.11.082
10.1198/016214506000001437
10.1016/j.solener.2014.10.016
10.1016/j.pecs.2018.10.003
10.1057/palgrave.jors.2602597
10.18777/ieashc-task46-2015-0001
10.1016/j.solener.2013.05.005
10.1016/j.rser.2018.08.023
10.1002/pip.2799
10.1016/j.solener.2016.01.049
10.1016/j.solener.2017.04.064
10.1016/j.solener.2015.09.031
10.1016/j.rser.2019.02.032
10.1016/j.solener.2019.08.078
10.1002/met.60
10.1016/j.solener.2017.09.043
10.1016/j.solener.2017.09.032
10.3354/cr030079
10.1063/1.5114985
10.1063/1.5087588
10.1002/2013JD020301
10.1016/j.solener.2018.10.065
10.1016/j.solener.2019.11.090
10.1016/j.renene.2015.12.031
10.1016/j.energy.2013.04.027
10.1175/1520-0434(1989)004<0485:DVOTF>2.0.CO;2
10.1016/j.solener.2018.06.048
10.1016/j.solener.2015.04.032
10.1016/j.solener.2016.06.062
10.1016/j.rser.2015.04.081
10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2
10.1016/j.solener.2017.07.032
10.1175/2008WAF2222133.1
10.1016/j.rser.2017.05.212
10.1016/j.solener.2011.06.031
10.1127/metz/2019/0946
10.1115/1.4007496
10.1016/j.solener.2012.12.004
10.1002/pip.2225
10.1016/S0169-2070(00)00065-0
10.1260/030952405776234599
10.1016/j.solener.2017.01.058
10.1002/pip.1127
10.1063/1.5087463
10.1016/j.pecs.2013.06.002
10.1016/0038-092X(90)90055-H
10.1016/j.solener.2015.12.031
10.1198/jasa.2011.r10138
10.1016/j.renene.2016.12.095
10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2
10.1175/2010BAMS2819.1
10.1016/j.solener.2017.11.023
10.1016/j.ijforecast.2016.02.001
10.1175/1520-0434(1992)007<0692:CPATLC>2.0.CO;2
10.1016/j.rser.2018.04.116
10.1063/1.5087462
10.1016/j.solener.2016.12.053
10.1115/ES2011-54519
10.1016/j.solener.2019.10.006
10.5194/amt-6-2403-2013
10.1016/j.solener.2011.11.011
10.1175/1520-0477(1971)052<0239:FAPFSC>2.0.CO;2
10.1016/j.ijforecast.2006.03.001
10.1016/j.solener.2017.10.052
10.1016/j.renene.2017.04.049
10.3390/atmos9070264
10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2
ContentType Journal Article
Copyright 2020 International Solar Energy Society
Copyright Pergamon Press Inc. Nov 1, 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 International Solar Energy Society
– notice: Copyright Pergamon Press Inc. Nov 1, 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
1XC
ADTPV
AOWAS
DF2
DOI 10.1016/j.solener.2020.04.019
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
Hyper Article en Ligne (HAL)
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1471-1257
EndPage 37
ExternalDocumentID oai_DiVA_org_uu_424636
oai:HAL:hal-02899290v1
10_1016_j_solener_2020_04_019
S0038092X20303947
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
WH7
XPP
YNT
ZMT
~02
~G-
~KM
~S-
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
NEJ
R2-
SAC
SEW
UKR
VOH
WUQ
XOL
ZY4
~A~
~HD
7SP
7ST
8FD
AGCQF
C1K
FR3
KR7
L7M
SOI
1XC
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-c408t-57d4ad1acf85c42f71d1258267f08f62a147da13b44f635cbf1e292e530152d43
ISICitedReferencesCount 176
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000579879500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-092X
1471-1257
IngestDate Sat Nov 01 10:42:07 EDT 2025
Sat Nov 29 15:08:02 EST 2025
Wed Aug 13 08:03:55 EDT 2025
Tue Nov 18 22:28:02 EST 2025
Sat Nov 29 07:26:40 EST 2025
Fri Feb 23 02:47:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Combination of climatology and persistence
Distribution-oriented forecast verification
Solar forecasting
Skill score
Measure-oriented forecast verification
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c408t-57d4ad1acf85c42f71d1258267f08f62a147da13b44f635cbf1e292e530152d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8427-0718
0000-0001-8197-5181
0000-0003-1132-7589
0000-0003-0242-7377
0000-0003-0362-4655
0000-0002-4134-7196
0000-0003-2959-6146
0000-0002-7382-1294
0000-0002-9465-3453
0000-0001-9379-9701
0000-0003-2574-0745
0000-0003-2977-5697
0000-0003-0453-1143
0000-0003-1471-1092
0000-0003-2421-7290
0000-0002-1725-0909
0000-0003-2162-6873
PQID 2464403940
PQPubID 9393
PageCount 18
ParticipantIDs swepub_primary_oai_DiVA_org_uu_424636
hal_primary_oai_HAL_hal_02899290v1
proquest_journals_2464403940
crossref_citationtrail_10_1016_j_solener_2020_04_019
crossref_primary_10_1016_j_solener_2020_04_019
elsevier_sciencedirect_doi_10_1016_j_solener_2020_04_019
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Solar energy
PublicationYear 2020
Publisher Elsevier Ltd
Pergamon Press Inc
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
– name: Elsevier
References Lave, M., Kleissl, J., Arias-Castro, E., 2012. High-frequency irradiance fluctuations and geographic smoothing. Sol. Energy 86, 2190–2199. URL
Gneiting, Raftery (b0080) 2007; 102
Inman, Edson, Coimbra (b0120) 2015; 117
van der Meer, Widén, Munkhammar (b0225) 2018; 81
Armstrong (b0025) 2001
Antonanzas-Torres, Urraca, Polo, Perpiñán-Lamigueiro, Escobar (b0020) 2019; 107
Yang, Perez (b0410) 2019; 11
Hong, Pinson, Fan, Zareipour, Troccoli, Hyndman (b0105) 2016; 32
Blaga (b0035) 2019; 191
Yang (b0395) 2019; 11
Yang, D., Kleissl, J., Gueymard, C.A., Pedro, H.T.C., Coimbra, C.F.M., 2018. History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Sol. Energy 168, 60–101. Advances in Solar Resource Assessment and Forecasting. URL
Murphy, Brown, Chen (b0255) 1989; 4
Willmott, Matsuura (b0370) 2005; 30
Gneiting (b0075) 2011; 106
Sun, Bright, Gueymard, Acord, Wang, Engerer (b0330) 2019; 111
Urraca, Huld, Lindfors, Riihelä, de Pison, Sanz-Garcia (b0345) 2018; 176
Hoff, Perez, Kleissl, Renne, Stein (b0100) 2013; 21
Murphy (b0250) 1997
Schilling (b0320) 2017
Perpiñán, Marcos, Lorenzo (b0290) 2013; 88
Yang (bib426) 2020; 12
Dong, Yang, Reindl, Walsh (b0055) 2013; 55
Martinez-Anido, Botor, Florita, Draxl, Lu, Hamann, Hodge (b0220) 2016; 129
Antonanzas, Osorio, Escobar, Urraca, de Pison, Antonanzas-Torres (b0010) 2016; 136
Reno, Hansen (b0305) 2016; 90
Perez, Ineichen, Seals, Michalsky, Stewart (b0275) 1990; 44
The M3- Competition.
Voyant, Notton (b0355) 2018; 92
Murphy (b0240) 1992; 7
Yang (b0375) 2016; 136
Murphy, Winkler (b0260) 1971; 52
Urraca, Gracia-Amillo, Huld, de Pison, Trentmann, Lindfors, Riihelä, Sanz-Garcia (b0340) 2017; 158
Madsen, Pinson, Kariniotakis, Nielsen, Nielsen (b0195) 2005; 29
Yang (b0380) 2018; 97
.
Sengupta, M., Habte, A., Kurtz, S., Dobos, A., Wilbert, S., Lorenz, E., Stoffel, T., Renné, D., Gueymard, C.A., Myers, D., et al., 2015. Best practices handbook for the collection and use of solar resource data for solar energy applications. Technical Report NREL/TP-5D00-63112. National Renewable Energy Laboratory.
Special issue: Progress in Solar Energy.
Lorenz, Kühnert, Heinemann, Nielsen, Remund, Müller (b0190) 2016; 24
Blaga, Sabadus, Stefu, Dughir, Paulescu, Badescu (b0040) 2019; 70
Gschwind, Wald, Blanc, Lefèvre, Schroedter-Homscheidt, Arola (b0085) 2019; 28
Klingler, Teichtmann (b0150) 2017; 158
Zhang, Florita, Hodge, Lu, Hamann, Banunarayanan, Brockway (b0425) 2015; 111
Murphy (b0235) 1988; 116
Perez, Schlemmer, Kankiewicz, Dise, Tadese, Hoff (b0285) 2017
Antonanzas, Pozo-Vázquez, Fernandez-Jimenez, de Pison (b0015) 2017; 158
Gilleland, Ahijevych, Brown, Ebert (b0070) 2010; 91
Long, Shi (b0185) 2008; 2
Murphy (b0245) 1993; 8
Gueymard, C.A., Ruiz-Arias, J.A., 2016. Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance. Sol. Energy 128, 1–30. URL
Jolliffe (b0135) 2008; 15
Marquez, Coimbra (b0215) 2013; 135
Yang, Boland (b0400) 2019; 11
Polo, Martín-Pomares, Gueymard, Balenzategui, Fabero, Silva (b0295) 2019
Wasserman (b0365) 2013
Murphy, Winkler (b0265) 1987; 115
Perez, Lorenz, Pelland, Beauharnois, Knowe, Hemker, Heinemann, Remund, Müller, Traunmüller, Steinmauer, Pozo, Ruiz-Arias, Lara-Fanego, Ramirez-Santigosa, Gaston-Romero, Pomares (b0280) 2013; 94
Yang, Sharma, Ye, Lim, Zhao, Aryaputera (b0420) 2015; 81
Yang (b0390) 2019; 193
Yang, Quan, Disfani, Liu (b0415) 2017; 146
Jolliffe, Stephenson (b0140) 2012
Vallance, Charbonnier, Paul, Dubost, Blanc (b0350) 2017; 150
Huang, Thatcher (b0110) 2017; 144
Law, Kay, Taylor (b0160) 2016; 125
Lohmann (b0180) 2018; 9
Fildes, Nikolopoulos, Crone, Syntetos (b0060) 2008; 59
Järvelä, Lappalainen, Valkealahti (b0130) 2020; 196
García, García, Cuevas, Cachorro, Romero-Campos, Ramos, de Frutos (b0065) 2014; 119
Marcos, Marroyo, Lorenzo, Garcáa (b0205) 2012; 20
Makridakis, Wheelwright, Hyndman (b0200) 2008
Yang (b0385) 2019; 11
Hyndman, Koehler (b0115) 2006; 22
Coimbra, Kleissl, Marquez (b0050) 2013
Progress in Solar Energy 3.
Gueymard, C.A., 2012. Clear-sky irradiance predictions for solar resource mapping and large-scale applications: Improved validation methodology and detailed performance analysis of 18 broadband radiative models. Sol. Energy 86, 2145–2169. URL
Beyer, H.G., Polo Martinez, J., Suri, M., Torres, J.L., Lorenz, E., Müller, S.C., Hoyer-Klick, C., Ineichen, P., 2009. Benchmarking of Radiation Products. Technical Report 038665. Mesor Report D.1.1.3.
Almeida, Muñoz, de la Parra, Perpiñán (b0005) 2017; 155
Li, Chen, Zhao, Zhao, Wang (b0170) 2017; 111
Pedro, Coimbra (b0270) 2015; 122
Moskaitis (b0230) 2008; 23
Lindsay, Libois, Badosa, Migan-Dubois, Bourdin (b0175) 2020; 197
Tashman, L.J., 2000. Out-of-sample tests of forecasting accuracy: an analysis and review. Int. J. Forecast. 16, 437–450. URL
Voyant, Notton, Kalogirou, Nivet, Paoli, Motte, Fouilloy (b0360) 2017; 105
Ruiz-Arias, Gueymard (b0310) 2018; 171
Killinger, Engerer, Müller (b0145) 2017; 143
Marquez, R., Coimbra, C.F.M., 2011. A novel metric for evaluation of solar forecasting models. In: ASME 2011 5th International Conference on Energy Sustainability. ASME, pp. 1459–1467.
Ruiz-Arias, J.A., Gueymard, C.A., 2018b. Worldwide inter-comparison of clear-sky solar radiation models: Consensus-based review of direct and global irradiance components simulated at the earth surface. Sol. Energy 168, 10–29. Advances in Solar Resource Assessment and Forecasting. URL
Inman, Pedro, Coimbra (b0125) 2013; 39
Lefèvre, Oumbe, Blanc, Espinar, Gschwind, Qu, Wald, Schroedter-Homscheidt, Hoyer-Klick, Arola, Benedetti, Kaiser, Morcrette (b0165) 2013; 6
Ren, Suganthan, Srikanth (b0300) 2015; 50
Chai, Draxler (b0045) 2014; 7
Pedro (10.1016/j.solener.2020.04.019_b0270) 2015; 122
Ren (10.1016/j.solener.2020.04.019_b0300) 2015; 50
García (10.1016/j.solener.2020.04.019_b0065) 2014; 119
Willmott (10.1016/j.solener.2020.04.019_b0370) 2005; 30
Yang (10.1016/j.solener.2020.04.019_b0380) 2018; 97
Yang (10.1016/j.solener.2020.04.019_b0395) 2019; 11
Marcos (10.1016/j.solener.2020.04.019_b0205) 2012; 20
Gilleland (10.1016/j.solener.2020.04.019_b0070) 2010; 91
10.1016/j.solener.2020.04.019_b0155
10.1016/j.solener.2020.04.019_b0030
Yang (10.1016/j.solener.2020.04.019_b0400) 2019; 11
Murphy (10.1016/j.solener.2020.04.019_b0260) 1971; 52
Zhang (10.1016/j.solener.2020.04.019_b0425) 2015; 111
Yang (10.1016/j.solener.2020.04.019_b0415) 2017; 146
Murphy (10.1016/j.solener.2020.04.019_b0245) 1993; 8
Klingler (10.1016/j.solener.2020.04.019_b0150) 2017; 158
Lefèvre (10.1016/j.solener.2020.04.019_b0165) 2013; 6
Madsen (10.1016/j.solener.2020.04.019_b0195) 2005; 29
Polo (10.1016/j.solener.2020.04.019_b0295) 2019
Yang (10.1016/j.solener.2020.04.019_b0420) 2015; 81
Perez (10.1016/j.solener.2020.04.019_b0275) 1990; 44
Voyant (10.1016/j.solener.2020.04.019_b0355) 2018; 92
Martinez-Anido (10.1016/j.solener.2020.04.019_b0220) 2016; 129
Perpiñán (10.1016/j.solener.2020.04.019_b0290) 2013; 88
Inman (10.1016/j.solener.2020.04.019_b0120) 2015; 117
Murphy (10.1016/j.solener.2020.04.019_b0235) 1988; 116
Sun (10.1016/j.solener.2020.04.019_b0330) 2019; 111
Ruiz-Arias (10.1016/j.solener.2020.04.019_b0310) 2018; 171
Murphy (10.1016/j.solener.2020.04.019_b0250) 1997
Perez (10.1016/j.solener.2020.04.019_b0285) 2017
Voyant (10.1016/j.solener.2020.04.019_b0360) 2017; 105
Inman (10.1016/j.solener.2020.04.019_b0125) 2013; 39
Urraca (10.1016/j.solener.2020.04.019_b0345) 2018; 176
Antonanzas-Torres (10.1016/j.solener.2020.04.019_b0020) 2019; 107
Coimbra (10.1016/j.solener.2020.04.019_b0050) 2013
Gschwind (10.1016/j.solener.2020.04.019_b0085) 2019; 28
10.1016/j.solener.2020.04.019_b0335
Killinger (10.1016/j.solener.2020.04.019_b0145) 2017; 143
Lindsay (10.1016/j.solener.2020.04.019_b0175) 2020; 197
Vallance (10.1016/j.solener.2020.04.019_b0350) 2017; 150
Antonanzas (10.1016/j.solener.2020.04.019_b0010) 2016; 136
Reno (10.1016/j.solener.2020.04.019_b0305) 2016; 90
Dong (10.1016/j.solener.2020.04.019_b0055) 2013; 55
Murphy (10.1016/j.solener.2020.04.019_b0240) 1992; 7
10.1016/j.solener.2020.04.019_b0095
Järvelä (10.1016/j.solener.2020.04.019_b0130) 2020; 196
10.1016/j.solener.2020.04.019_b0090
Yang (10.1016/j.solener.2020.04.019_b0375) 2016; 136
Urraca (10.1016/j.solener.2020.04.019_b0340) 2017; 158
Fildes (10.1016/j.solener.2020.04.019_b0060) 2008; 59
10.1016/j.solener.2020.04.019_b0210
Almeida (10.1016/j.solener.2020.04.019_b0005) 2017; 155
Yang (10.1016/j.solener.2020.04.019_b0390) 2019; 193
Yang (10.1016/j.solener.2020.04.019_b0410) 2019; 11
Long (10.1016/j.solener.2020.04.019_b0185) 2008; 2
Moskaitis (10.1016/j.solener.2020.04.019_b0230) 2008; 23
Jolliffe (10.1016/j.solener.2020.04.019_b0140) 2012
10.1016/j.solener.2020.04.019_b0405
Li (10.1016/j.solener.2020.04.019_b0170) 2017; 111
Makridakis (10.1016/j.solener.2020.04.019_b0200) 2008
Hyndman (10.1016/j.solener.2020.04.019_b0115) 2006; 22
10.1016/j.solener.2020.04.019_b0325
Antonanzas (10.1016/j.solener.2020.04.019_b0015) 2017; 158
Lohmann (10.1016/j.solener.2020.04.019_b0180) 2018; 9
Lorenz (10.1016/j.solener.2020.04.019_b0190) 2016; 24
Yang (10.1016/j.solener.2020.04.019_b0385) 2019; 11
Yang (10.1016/j.solener.2020.04.019_bib426) 2020; 12
Chai (10.1016/j.solener.2020.04.019_b0045) 2014; 7
Wasserman (10.1016/j.solener.2020.04.019_b0365) 2013
Schilling (10.1016/j.solener.2020.04.019_b0320) 2017
Hong (10.1016/j.solener.2020.04.019_b0105) 2016; 32
Jolliffe (10.1016/j.solener.2020.04.019_b0135) 2008; 15
Marquez (10.1016/j.solener.2020.04.019_b0215) 2013; 135
Huang (10.1016/j.solener.2020.04.019_b0110) 2017; 144
Law (10.1016/j.solener.2020.04.019_b0160) 2016; 125
Armstrong (10.1016/j.solener.2020.04.019_b0025) 2001
Blaga (10.1016/j.solener.2020.04.019_b0040) 2019; 70
Gneiting (10.1016/j.solener.2020.04.019_b0080) 2007; 102
10.1016/j.solener.2020.04.019_b0315
Hoff (10.1016/j.solener.2020.04.019_b0100) 2013; 21
Perez (10.1016/j.solener.2020.04.019_b0280) 2013; 94
Gneiting (10.1016/j.solener.2020.04.019_b0075) 2011; 106
van der Meer (10.1016/j.solener.2020.04.019_b0225) 2018; 81
Blaga (10.1016/j.solener.2020.04.019_b0035) 2019; 191
Murphy (10.1016/j.solener.2020.04.019_b0255) 1989; 4
Murphy (10.1016/j.solener.2020.04.019_b0265) 1987; 115
References_xml – volume: 29
  start-page: 475
  year: 2005
  end-page: 489
  ident: b0195
  article-title: Standardizing the performance evaluation of short-term wind power prediction models
  publication-title: Wind Eng.
– volume: 4
  start-page: 485
  year: 1989
  end-page: 501
  ident: b0255
  article-title: Diagnostic verification of temperature forecasts
  publication-title: Weather Forecast.
– volume: 171
  start-page: 447
  year: 2018
  end-page: 465
  ident: b0310
  article-title: A multi-model benchmarking of direct and global clear-sky solar irradiance predictions at arid sites using a reference physical radiative transfer model
  publication-title: Sol. Energy
– start-page: 443
  year: 2001
  end-page: 472
  ident: b0025
  article-title: Evaluating forecasting methods
  publication-title: Principles of Forecasting
– volume: 146
  start-page: 276
  year: 2017
  end-page: 286
  ident: b0415
  article-title: Reconciling solar forecasts: Geographical hierarchy
  publication-title: Sol. Energy
– year: 2017
  ident: b0320
  article-title: Measures, Integrals and Martingales
– volume: 176
  start-page: 663
  year: 2018
  end-page: 677
  ident: b0345
  article-title: Quantifying the amplified bias of PV system simulations due to uncertainties in solar radiation estimates
  publication-title: Sol. Energy
– start-page: 1104
  year: 2017
  end-page: 1109
  ident: b0285
  article-title: Detecting calibration drift at ground truth stations a demonstration of satellite irradiance models’ accuracy
  publication-title: 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC)
– volume: 102
  start-page: 359
  year: 2007
  end-page: 378
  ident: b0080
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: J. Am. Statist. Assoc.
– volume: 191
  start-page: 371
  year: 2019
  end-page: 381
  ident: b0035
  article-title: The impact of temporal smoothing on the accuracy of separation models
  publication-title: Sol. Energy
– volume: 70
  start-page: 119
  year: 2019
  end-page: 144
  ident: b0040
  article-title: A current perspective on the accuracy of incoming solar energy forecasting
  publication-title: Prog. Energy Combust. Sci.
– volume: 122
  start-page: 587
  year: 2015
  end-page: 602
  ident: b0270
  article-title: Short-term irradiance forecastability for various solar micro-climates
  publication-title: Sol. Energy
– volume: 136
  start-page: 78
  year: 2016
  end-page: 111
  ident: b0010
  article-title: Review of photovoltaic power forecasting
  publication-title: Sol. Energy
– volume: 9
  year: 2018
  ident: b0180
  article-title: Irradiance variability quantification and small-scale averaging in space and time: A short review
  publication-title: Atmosphere
– year: 2008
  ident: b0200
  article-title: Forecasting Methods and Applications
– reference: Beyer, H.G., Polo Martinez, J., Suri, M., Torres, J.L., Lorenz, E., Müller, S.C., Hoyer-Klick, C., Ineichen, P., 2009. Benchmarking of Radiation Products. Technical Report 038665. Mesor Report D.1.1.3.
– reference: . Progress in Solar Energy 3.
– volume: 24
  start-page: 1626
  year: 2016
  end-page: 1640
  ident: b0190
  article-title: Comparison of global horizontal irradiance forecasts based on numerical weather prediction models with different spatio-temporal resolutions
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 111
  start-page: 157
  year: 2015
  end-page: 175
  ident: b0425
  article-title: A suite of metrics for assessing the performance of solar power forecasting
  publication-title: Sol. Energy
– volume: 158
  start-page: 861
  year: 2017
  end-page: 868
  ident: b0150
  article-title: Impacts of a forecast-based operation strategy for grid-connected PV storage systems on profitability and the energy system
  publication-title: Sol. Energy
– volume: 125
  start-page: 267
  year: 2016
  end-page: 281
  ident: b0160
  article-title: Calculating the financial value of a concentrated solar thermal plant operated using direct normal irradiance forecasts
  publication-title: Sol. Energy
– volume: 23
  start-page: 1195
  year: 2008
  end-page: 1220
  ident: b0230
  article-title: A case study of deterministic forecast verification: Tropical cyclone intensity
  publication-title: Weather Forecast.
– reference: Tashman, L.J., 2000. Out-of-sample tests of forecasting accuracy: an analysis and review. Int. J. Forecast. 16, 437–450. URL:
– volume: 21
  start-page: 1514
  year: 2013
  end-page: 1519
  ident: b0100
  article-title: Reporting of irradiance modeling relative prediction errors
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 12
  start-page: 26101
  year: 2020
  ident: bib426
  article-title: Choice of clear-sky model in solar forecasting
  publication-title: J. Renewable Sustainable Energy
– volume: 32
  start-page: 896
  year: 2016
  end-page: 913
  ident: b0105
  article-title: Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond
  publication-title: Int. J. Forecast.
– reference: Marquez, R., Coimbra, C.F.M., 2011. A novel metric for evaluation of solar forecasting models. In: ASME 2011 5th International Conference on Energy Sustainability. ASME, pp. 1459–1467.
– volume: 94
  start-page: 305
  year: 2013
  end-page: 326
  ident: b0280
  article-title: Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe
  publication-title: Sol. Energy
– volume: 7
  start-page: 692
  year: 1992
  end-page: 698
  ident: b0240
  article-title: Climatology, persistence, and their linear combination as standards of reference in skill scores
  publication-title: Weather Forecast.
– volume: 136
  start-page: 288
  year: 2016
  end-page: 302
  ident: b0375
  article-title: Solar radiation on inclined surfaces: Corrections and benchmarks
  publication-title: Sol. Energy
– volume: 20
  start-page: 226
  year: 2012
  end-page: 237
  ident: b0205
  article-title: Smoothing of PV power fluctuations by geographical dispersion
  publication-title: Prog. Photovoltaics Res. Appl.
– start-page: 171
  year: 2013
  end-page: 194
  ident: b0050
  article-title: Chapter 8 - Overview of solar-forecasting methods and a metric for accuracy evaluation
  publication-title: Solar Energy Forecasting and Resource Assessment
– volume: 52
  start-page: 239
  year: 1971
  end-page: 248
  ident: b0260
  article-title: forecasters and probability forecasts: some current problems
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 97
  start-page: 152
  year: 2018
  end-page: 155
  ident: b0380
  article-title: A correct validation of the National Solar Radiation Data Base (NSRDB)
  publication-title: Renew. Sustain. Energy Rev.
– reference: .
– volume: 8
  start-page: 281
  year: 1993
  end-page: 293
  ident: b0245
  article-title: What is a good forecast? An essay on the nature of goodness in weather forecasting
  publication-title: Weather Forecast.
– volume: 111
  start-page: 550
  year: 2019
  end-page: 570
  ident: b0330
  article-title: Worldwide performance assessment of 75 global clear-sky irradiance models using principal component analysis
  publication-title: Renew. Sustain. Energy Rev.
– volume: 135
  start-page: 011016
  year: 2013
  ident: b0215
  article-title: Proposed metric for evaluation of solar forecasting models
  publication-title: J. Solar Energy Eng.
– volume: 119
  start-page: 179
  year: 2014
  end-page: 194
  ident: b0065
  article-title: Solar radiation measurements compared to simulations at the BSRN Izaña station. mineral dust radiative forcing and efficiency study
  publication-title: J. Geophys. Res.: Atmosph.
– year: 2012
  ident: b0140
  article-title: Forecast Verification: A Practitioner’s Guide in Atmospheric Science
– year: 2013
  ident: b0365
  article-title: All of Statistics: A Concise Course in Statistical Inference
– volume: 106
  start-page: 746
  year: 2011
  end-page: 762
  ident: b0075
  article-title: Making and evaluating point forecasts
  publication-title: J. Am. Stat. Assoc.
– volume: 90
  start-page: 520
  year: 2016
  end-page: 531
  ident: b0305
  article-title: Global horizontal irradiance clear sky models: Implementation and analysis
  publication-title: Renewable Energy
– volume: 6
  start-page: 2403
  year: 2013
  end-page: 2418
  ident: b0165
  article-title: McClear: a new model estimating downwelling solar radiation at ground level in clear-sky conditions
  publication-title: Atmospheric Measur. Tech.
– volume: 92
  start-page: 343
  year: 2018
  end-page: 352
  ident: b0355
  article-title: Solar irradiation nowcasting by stochastic persistence: A new parsimonious, simple and efficient forecasting tool
  publication-title: Renew. Sustain. Energy Rev.
– reference: Gueymard, C.A., 2012. Clear-sky irradiance predictions for solar resource mapping and large-scale applications: Improved validation methodology and detailed performance analysis of 18 broadband radiative models. Sol. Energy 86, 2145–2169. URL:
– reference: Sengupta, M., Habte, A., Kurtz, S., Dobos, A., Wilbert, S., Lorenz, E., Stoffel, T., Renné, D., Gueymard, C.A., Myers, D., et al., 2015. Best practices handbook for the collection and use of solar resource data for solar energy applications. Technical Report NREL/TP-5D00-63112. National Renewable Energy Laboratory.
– volume: 155
  start-page: 854
  year: 2017
  end-page: 866
  ident: b0005
  article-title: Comparative study of PV power forecast using parametric and nonparametric PV models
  publication-title: Sol. Energy
– reference: Lave, M., Kleissl, J., Arias-Castro, E., 2012. High-frequency irradiance fluctuations and geographic smoothing. Sol. Energy 86, 2190–2199. URL:
– volume: 11
  start-page: 53702
  year: 2019
  ident: b0395
  article-title: Standard of reference in operational day-ahead deterministic solar forecasting
  publication-title: J. Renewable Sustainable Energy
– volume: 11
  start-page: 023704
  year: 2019
  ident: b0410
  article-title: Can we gauge forecasts using satellite-derived solar irradiance?
  publication-title: J. Renewable Sustainable Energy
– reference: Yang, D., Kleissl, J., Gueymard, C.A., Pedro, H.T.C., Coimbra, C.F.M., 2018. History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Sol. Energy 168, 60–101. Advances in Solar Resource Assessment and Forecasting. URL:
– volume: 81
  start-page: 111
  year: 2015
  end-page: 119
  ident: b0420
  article-title: Forecasting of global horizontal irradiance by exponential smoothing, using decompositions
  publication-title: Energy
– volume: 111
  start-page: 732
  year: 2017
  end-page: 739
  ident: b0170
  article-title: Development of a PV performance model for power output simulation at minutely resolution
  publication-title: Renewable Energy
– volume: 107
  start-page: 374
  year: 2019
  end-page: 387
  ident: b0020
  article-title: Clear sky solar irradiance models: A review of seventy models
  publication-title: Renew. Sustain. Energy Rev.
– volume: 22
  start-page: 679
  year: 2006
  end-page: 688
  ident: b0115
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
– volume: 117
  start-page: 125
  year: 2015
  end-page: 138
  ident: b0120
  article-title: Impact of local broadband turbidity estimation on forecasting of clear sky direct normal irradiance
  publication-title: Sol. Energy
– volume: 7
  start-page: 1247
  year: 2014
  end-page: 1250
  ident: b0045
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature
  publication-title: Geoscientific Model Devel.
– volume: 59
  start-page: 1150
  year: 2008
  end-page: 1172
  ident: b0060
  article-title: Forecasting and operational research: a review
  publication-title: J. Oper. Res. Soc.
– volume: 129
  start-page: 192
  year: 2016
  end-page: 203
  ident: b0220
  article-title: The value of day-ahead solar power forecasting improvement
  publication-title: Sol. Energy
– volume: 150
  start-page: 408
  year: 2017
  end-page: 422
  ident: b0350
  article-title: Towards a standardized procedure to assess solar forecast accuracy: A new ramp and time alignment metric
  publication-title: Sol. Energy
– volume: 105
  start-page: 569
  year: 2017
  end-page: 582
  ident: b0360
  article-title: Machine learning methods for solar radiation forecasting: A review
  publication-title: Renewable Energy
– volume: 158
  start-page: 49
  year: 2017
  end-page: 62
  ident: b0340
  article-title: Quality control of global solar radiation data with satellite-based products
  publication-title: Sol. Energy
– volume: 44
  start-page: 271
  year: 1990
  end-page: 289
  ident: b0275
  article-title: Modeling daylight availability and irradiance components from direct and global irradiance
  publication-title: Sol. Energy
– volume: 50
  start-page: 82
  year: 2015
  end-page: 91
  ident: b0300
  article-title: Ensemble methods for wind and solar power forecasting—A state-of-the-art review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 88
  start-page: 227
  year: 2013
  end-page: 241
  ident: b0290
  article-title: Electrical power fluctuations in a network of DC/AC inverters in a large PV plant: Relationship between correlation, distance and time scale
  publication-title: Sol. Energy
– volume: 28
  start-page: 147
  year: 2019
  end-page: 163
  ident: b0085
  article-title: Improving the McClear model estimating the downwelling solar radiation at ground level in cloud-free conditions – McClear-v3
  publication-title: Meteorol. Z.
– volume: 116
  start-page: 2417
  year: 1988
  end-page: 2424
  ident: b0235
  article-title: Skill scores based on the mean square error and their relationships to the correlation coefficient
  publication-title: Mon. Weather Rev.
– volume: 115
  start-page: 1330
  year: 1987
  end-page: 1338
  ident: b0265
  article-title: A general framework for forecast verification
  publication-title: Mon. Weather Rev.
– reference: Gueymard, C.A., Ruiz-Arias, J.A., 2016. Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance. Sol. Energy 128, 1–30. URL:
– volume: 81
  start-page: 1484
  year: 2018
  end-page: 1512
  ident: b0225
  article-title: Review on probabilistic forecasting of photovoltaic power production and electricity consumption
  publication-title: Renew. Sustain. Energy Rev.
– volume: 91
  start-page: 1365
  year: 2010
  end-page: 1376
  ident: b0070
  article-title: Verifying forecasts spatially
  publication-title: Bull. Am. Meteorol. Soc.
– reference: . Special issue: Progress in Solar Energy.
– volume: 158
  start-page: 140
  year: 2017
  end-page: 146
  ident: b0015
  article-title: The value of day-ahead forecasting for photovoltaics in the Spanish electricity market
  publication-title: Sol. Energy
– volume: 193
  start-page: 981
  year: 2019
  end-page: 985
  ident: b0390
  article-title: Making reference solar forecasts with climatology, persistence, and their optimal convex combination
  publication-title: Sol. Energy
– volume: 197
  start-page: 266
  year: 2020
  end-page: 278
  ident: b0175
  article-title: Errors in PV power modelling due to the lack of spectral and angular details of solar irradiance inputs
  publication-title: Sol. Energy
– volume: 2
  start-page: 23
  year: 2008
  end-page: 37
  ident: b0185
  article-title: An automated quality assessment and control algorithm for surface radiation measurements
  publication-title: Open Atmospheric Sci. J.
– volume: 11
  start-page: 22701
  year: 2019
  ident: b0385
  article-title: A guideline to solar forecasting research practice: Reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES)
  publication-title: J. Renewable Sustainable Energy
– start-page: 1
  year: 2019
  end-page: 14
  ident: b0295
  article-title: Fundamentals: Quantities, definitions, and units
  publication-title: Solar Resources Mapping: Fundamentals and Applications
– reference: .
– volume: 196
  start-page: 137
  year: 2020
  end-page: 145
  ident: b0130
  article-title: Characteristics of the cloud enhancement phenomenon and PV power plants
  publication-title: Sol. Energy
– volume: 15
  start-page: 25
  year: 2008
  end-page: 29
  ident: b0135
  article-title: The impenetrable hedge: a note on propriety, equitability and consistency
  publication-title: Meteorolog. Appl.
– volume: 30
  start-page: 79
  year: 2005
  end-page: 82
  ident: b0370
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Climate Res.
– volume: 39
  start-page: 535
  year: 2013
  end-page: 576
  ident: b0125
  article-title: Solar forecasting methods for renewable energy integration
  publication-title: Prog. Energy Combust. Sci.
– volume: 143
  start-page: 120
  year: 2017
  end-page: 131
  ident: b0145
  article-title: QCPV: A quality control algorithm for distributed photovoltaic array power output
  publication-title: Sol. Energy
– reference: Ruiz-Arias, J.A., Gueymard, C.A., 2018b. Worldwide inter-comparison of clear-sky solar radiation models: Consensus-based review of direct and global irradiance components simulated at the earth surface. Sol. Energy 168, 10–29. Advances in Solar Resource Assessment and Forecasting. URL:
– start-page: 19
  year: 1997
  end-page: 74
  ident: b0250
  article-title: Forecast verification
  publication-title: Economic Value of Weather and Climate Forecasts
– reference: . The M3- Competition.
– volume: 144
  start-page: 529
  year: 2017
  end-page: 539
  ident: b0110
  article-title: Assessing the value of simulated regional weather variability in solar forecasting using numerical weather prediction
  publication-title: Sol. Energy
– volume: 11
  start-page: 023705
  year: 2019
  ident: b0400
  article-title: Satellite-augmented diffuse solar radiation separation models
  publication-title: J. Renewable Sustainable Energy
– volume: 55
  start-page: 1104
  year: 2013
  end-page: 1113
  ident: b0055
  article-title: Short-term solar irradiance forecasting using exponential smoothing state space model
  publication-title: Energy
– volume: 197
  start-page: 266
  year: 2020
  ident: 10.1016/j.solener.2020.04.019_b0175
  article-title: Errors in PV power modelling due to the lack of spectral and angular details of solar irradiance inputs
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.12.042
– volume: 111
  start-page: 550
  year: 2019
  ident: 10.1016/j.solener.2020.04.019_b0330
  article-title: Worldwide performance assessment of 75 global clear-sky irradiance models using principal component analysis
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.04.006
– volume: 136
  start-page: 78
  year: 2016
  ident: 10.1016/j.solener.2020.04.019_b0010
  article-title: Review of photovoltaic power forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.06.069
– volume: 12
  start-page: 26101
  issue: 2
  year: 2020
  ident: 10.1016/j.solener.2020.04.019_bib426
  article-title: Choice of clear-sky model in solar forecasting
  publication-title: J. Renewable Sustainable Energy
  doi: 10.1063/5.0003495
– volume: 7
  start-page: 1247
  year: 2014
  ident: 10.1016/j.solener.2020.04.019_b0045
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature
  publication-title: Geoscientific Model Devel.
  doi: 10.5194/gmd-7-1247-2014
– ident: 10.1016/j.solener.2020.04.019_b0030
– ident: 10.1016/j.solener.2020.04.019_b0315
  doi: 10.1016/j.solener.2018.02.008
– volume: 2
  start-page: 23
  year: 2008
  ident: 10.1016/j.solener.2020.04.019_b0185
  article-title: An automated quality assessment and control algorithm for surface radiation measurements
  publication-title: Open Atmospheric Sci. J.
  doi: 10.2174/1874282300802010023
– start-page: 1
  year: 2019
  ident: 10.1016/j.solener.2020.04.019_b0295
  article-title: Fundamentals: Quantities, definitions, and units
– volume: 146
  start-page: 276
  year: 2017
  ident: 10.1016/j.solener.2020.04.019_b0415
  article-title: Reconciling solar forecasts: Geographical hierarchy
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.02.010
– ident: 10.1016/j.solener.2020.04.019_b0095
  doi: 10.1016/j.solener.2015.10.010
– volume: 81
  start-page: 111
  year: 2015
  ident: 10.1016/j.solener.2020.04.019_b0420
  article-title: Forecasting of global horizontal irradiance by exponential smoothing, using decompositions
  publication-title: Energy
  doi: 10.1016/j.energy.2014.11.082
– volume: 102
  start-page: 359
  year: 2007
  ident: 10.1016/j.solener.2020.04.019_b0080
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: J. Am. Statist. Assoc.
  doi: 10.1198/016214506000001437
– volume: 111
  start-page: 157
  year: 2015
  ident: 10.1016/j.solener.2020.04.019_b0425
  article-title: A suite of metrics for assessing the performance of solar power forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.10.016
– volume: 70
  start-page: 119
  year: 2019
  ident: 10.1016/j.solener.2020.04.019_b0040
  article-title: A current perspective on the accuracy of incoming solar energy forecasting
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2018.10.003
– volume: 59
  start-page: 1150
  year: 2008
  ident: 10.1016/j.solener.2020.04.019_b0060
  article-title: Forecasting and operational research: a review
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2602597
– ident: 10.1016/j.solener.2020.04.019_b0325
  doi: 10.18777/ieashc-task46-2015-0001
– volume: 94
  start-page: 305
  year: 2013
  ident: 10.1016/j.solener.2020.04.019_b0280
  article-title: Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.05.005
– volume: 97
  start-page: 152
  year: 2018
  ident: 10.1016/j.solener.2020.04.019_b0380
  article-title: A correct validation of the National Solar Radiation Data Base (NSRDB)
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.08.023
– volume: 24
  start-page: 1626
  year: 2016
  ident: 10.1016/j.solener.2020.04.019_b0190
  article-title: Comparison of global horizontal irradiance forecasts based on numerical weather prediction models with different spatio-temporal resolutions
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.2799
– volume: 129
  start-page: 192
  year: 2016
  ident: 10.1016/j.solener.2020.04.019_b0220
  article-title: The value of day-ahead solar power forecasting improvement
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.01.049
– start-page: 171
  year: 2013
  ident: 10.1016/j.solener.2020.04.019_b0050
  article-title: Chapter 8 - Overview of solar-forecasting methods and a metric for accuracy evaluation
– volume: 150
  start-page: 408
  year: 2017
  ident: 10.1016/j.solener.2020.04.019_b0350
  article-title: Towards a standardized procedure to assess solar forecast accuracy: A new ramp and time alignment metric
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.04.064
– volume: 122
  start-page: 587
  year: 2015
  ident: 10.1016/j.solener.2020.04.019_b0270
  article-title: Short-term irradiance forecastability for various solar micro-climates
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.09.031
– volume: 107
  start-page: 374
  year: 2019
  ident: 10.1016/j.solener.2020.04.019_b0020
  article-title: Clear sky solar irradiance models: A review of seventy models
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.02.032
– volume: 191
  start-page: 371
  year: 2019
  ident: 10.1016/j.solener.2020.04.019_b0035
  article-title: The impact of temporal smoothing on the accuracy of separation models
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.08.078
– volume: 15
  start-page: 25
  year: 2008
  ident: 10.1016/j.solener.2020.04.019_b0135
  article-title: The impenetrable hedge: a note on propriety, equitability and consistency
  publication-title: Meteorolog. Appl.
  doi: 10.1002/met.60
– volume: 158
  start-page: 140
  year: 2017
  ident: 10.1016/j.solener.2020.04.019_b0015
  article-title: The value of day-ahead forecasting for photovoltaics in the Spanish electricity market
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.09.043
– volume: 158
  start-page: 49
  year: 2017
  ident: 10.1016/j.solener.2020.04.019_b0340
  article-title: Quality control of global solar radiation data with satellite-based products
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.09.032
– start-page: 1104
  year: 2017
  ident: 10.1016/j.solener.2020.04.019_b0285
  article-title: Detecting calibration drift at ground truth stations a demonstration of satellite irradiance models’ accuracy
– volume: 30
  start-page: 79
  year: 2005
  ident: 10.1016/j.solener.2020.04.019_b0370
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Climate Res.
  doi: 10.3354/cr030079
– volume: 11
  start-page: 53702
  year: 2019
  ident: 10.1016/j.solener.2020.04.019_b0395
  article-title: Standard of reference in operational day-ahead deterministic solar forecasting
  publication-title: J. Renewable Sustainable Energy
  doi: 10.1063/1.5114985
– volume: 11
  start-page: 023704
  year: 2019
  ident: 10.1016/j.solener.2020.04.019_b0410
  article-title: Can we gauge forecasts using satellite-derived solar irradiance?
  publication-title: J. Renewable Sustainable Energy
  doi: 10.1063/1.5087588
– volume: 119
  start-page: 179
  year: 2014
  ident: 10.1016/j.solener.2020.04.019_b0065
  article-title: Solar radiation measurements compared to simulations at the BSRN Izaña station. mineral dust radiative forcing and efficiency study
  publication-title: J. Geophys. Res.: Atmosph.
  doi: 10.1002/2013JD020301
– year: 2012
  ident: 10.1016/j.solener.2020.04.019_b0140
– volume: 176
  start-page: 663
  year: 2018
  ident: 10.1016/j.solener.2020.04.019_b0345
  article-title: Quantifying the amplified bias of PV system simulations due to uncertainties in solar radiation estimates
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.10.065
– volume: 196
  start-page: 137
  year: 2020
  ident: 10.1016/j.solener.2020.04.019_b0130
  article-title: Characteristics of the cloud enhancement phenomenon and PV power plants
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.11.090
– start-page: 443
  year: 2001
  ident: 10.1016/j.solener.2020.04.019_b0025
  article-title: Evaluating forecasting methods
– volume: 90
  start-page: 520
  year: 2016
  ident: 10.1016/j.solener.2020.04.019_b0305
  article-title: Global horizontal irradiance clear sky models: Implementation and analysis
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2015.12.031
– volume: 55
  start-page: 1104
  year: 2013
  ident: 10.1016/j.solener.2020.04.019_b0055
  article-title: Short-term solar irradiance forecasting using exponential smoothing state space model
  publication-title: Energy
  doi: 10.1016/j.energy.2013.04.027
– volume: 4
  start-page: 485
  year: 1989
  ident: 10.1016/j.solener.2020.04.019_b0255
  article-title: Diagnostic verification of temperature forecasts
  publication-title: Weather Forecast.
  doi: 10.1175/1520-0434(1989)004<0485:DVOTF>2.0.CO;2
– volume: 171
  start-page: 447
  year: 2018
  ident: 10.1016/j.solener.2020.04.019_b0310
  article-title: A multi-model benchmarking of direct and global clear-sky solar irradiance predictions at arid sites using a reference physical radiative transfer model
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.06.048
– volume: 117
  start-page: 125
  year: 2015
  ident: 10.1016/j.solener.2020.04.019_b0120
  article-title: Impact of local broadband turbidity estimation on forecasting of clear sky direct normal irradiance
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.04.032
– volume: 136
  start-page: 288
  year: 2016
  ident: 10.1016/j.solener.2020.04.019_b0375
  article-title: Solar radiation on inclined surfaces: Corrections and benchmarks
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.06.062
– volume: 50
  start-page: 82
  year: 2015
  ident: 10.1016/j.solener.2020.04.019_b0300
  article-title: Ensemble methods for wind and solar power forecasting—A state-of-the-art review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.04.081
– volume: 8
  start-page: 281
  year: 1993
  ident: 10.1016/j.solener.2020.04.019_b0245
  article-title: What is a good forecast? An essay on the nature of goodness in weather forecasting
  publication-title: Weather Forecast.
  doi: 10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2
– volume: 155
  start-page: 854
  year: 2017
  ident: 10.1016/j.solener.2020.04.019_b0005
  article-title: Comparative study of PV power forecast using parametric and nonparametric PV models
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.07.032
– volume: 23
  start-page: 1195
  year: 2008
  ident: 10.1016/j.solener.2020.04.019_b0230
  article-title: A case study of deterministic forecast verification: Tropical cyclone intensity
  publication-title: Weather Forecast.
  doi: 10.1175/2008WAF2222133.1
– volume: 81
  start-page: 1484
  year: 2018
  ident: 10.1016/j.solener.2020.04.019_b0225
  article-title: Review on probabilistic forecasting of photovoltaic power production and electricity consumption
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.212
– ident: 10.1016/j.solener.2020.04.019_b0155
  doi: 10.1016/j.solener.2011.06.031
– volume: 28
  start-page: 147
  year: 2019
  ident: 10.1016/j.solener.2020.04.019_b0085
  article-title: Improving the McClear model estimating the downwelling solar radiation at ground level in cloud-free conditions – McClear-v3
  publication-title: Meteorol. Z.
  doi: 10.1127/metz/2019/0946
– volume: 135
  start-page: 011016
  year: 2013
  ident: 10.1016/j.solener.2020.04.019_b0215
  article-title: Proposed metric for evaluation of solar forecasting models
  publication-title: J. Solar Energy Eng.
  doi: 10.1115/1.4007496
– volume: 88
  start-page: 227
  year: 2013
  ident: 10.1016/j.solener.2020.04.019_b0290
  article-title: Electrical power fluctuations in a network of DC/AC inverters in a large PV plant: Relationship between correlation, distance and time scale
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.12.004
– volume: 21
  start-page: 1514
  year: 2013
  ident: 10.1016/j.solener.2020.04.019_b0100
  article-title: Reporting of irradiance modeling relative prediction errors
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.2225
– ident: 10.1016/j.solener.2020.04.019_b0335
  doi: 10.1016/S0169-2070(00)00065-0
– volume: 29
  start-page: 475
  year: 2005
  ident: 10.1016/j.solener.2020.04.019_b0195
  article-title: Standardizing the performance evaluation of short-term wind power prediction models
  publication-title: Wind Eng.
  doi: 10.1260/030952405776234599
– volume: 144
  start-page: 529
  year: 2017
  ident: 10.1016/j.solener.2020.04.019_b0110
  article-title: Assessing the value of simulated regional weather variability in solar forecasting using numerical weather prediction
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.01.058
– volume: 20
  start-page: 226
  year: 2012
  ident: 10.1016/j.solener.2020.04.019_b0205
  article-title: Smoothing of PV power fluctuations by geographical dispersion
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.1127
– volume: 11
  start-page: 023705
  year: 2019
  ident: 10.1016/j.solener.2020.04.019_b0400
  article-title: Satellite-augmented diffuse solar radiation separation models
  publication-title: J. Renewable Sustainable Energy
  doi: 10.1063/1.5087463
– volume: 39
  start-page: 535
  year: 2013
  ident: 10.1016/j.solener.2020.04.019_b0125
  article-title: Solar forecasting methods for renewable energy integration
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2013.06.002
– volume: 44
  start-page: 271
  year: 1990
  ident: 10.1016/j.solener.2020.04.019_b0275
  article-title: Modeling daylight availability and irradiance components from direct and global irradiance
  publication-title: Sol. Energy
  doi: 10.1016/0038-092X(90)90055-H
– volume: 125
  start-page: 267
  year: 2016
  ident: 10.1016/j.solener.2020.04.019_b0160
  article-title: Calculating the financial value of a concentrated solar thermal plant operated using direct normal irradiance forecasts
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.12.031
– volume: 106
  start-page: 746
  year: 2011
  ident: 10.1016/j.solener.2020.04.019_b0075
  article-title: Making and evaluating point forecasts
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2011.r10138
– volume: 105
  start-page: 569
  year: 2017
  ident: 10.1016/j.solener.2020.04.019_b0360
  article-title: Machine learning methods for solar radiation forecasting: A review
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2016.12.095
– year: 2008
  ident: 10.1016/j.solener.2020.04.019_b0200
– volume: 116
  start-page: 2417
  year: 1988
  ident: 10.1016/j.solener.2020.04.019_b0235
  article-title: Skill scores based on the mean square error and their relationships to the correlation coefficient
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2
– volume: 91
  start-page: 1365
  year: 2010
  ident: 10.1016/j.solener.2020.04.019_b0070
  article-title: Verifying forecasts spatially
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/2010BAMS2819.1
– ident: 10.1016/j.solener.2020.04.019_b0405
  doi: 10.1016/j.solener.2017.11.023
– volume: 32
  start-page: 896
  year: 2016
  ident: 10.1016/j.solener.2020.04.019_b0105
  article-title: Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2016.02.001
– volume: 7
  start-page: 692
  year: 1992
  ident: 10.1016/j.solener.2020.04.019_b0240
  article-title: Climatology, persistence, and their linear combination as standards of reference in skill scores
  publication-title: Weather Forecast.
  doi: 10.1175/1520-0434(1992)007<0692:CPATLC>2.0.CO;2
– volume: 92
  start-page: 343
  year: 2018
  ident: 10.1016/j.solener.2020.04.019_b0355
  article-title: Solar irradiation nowcasting by stochastic persistence: A new parsimonious, simple and efficient forecasting tool
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.04.116
– volume: 11
  start-page: 22701
  year: 2019
  ident: 10.1016/j.solener.2020.04.019_b0385
  article-title: A guideline to solar forecasting research practice: Reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES)
  publication-title: J. Renewable Sustainable Energy
  doi: 10.1063/1.5087462
– volume: 143
  start-page: 120
  year: 2017
  ident: 10.1016/j.solener.2020.04.019_b0145
  article-title: QCPV: A quality control algorithm for distributed photovoltaic array power output
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.12.053
– start-page: 19
  year: 1997
  ident: 10.1016/j.solener.2020.04.019_b0250
  article-title: Forecast verification
– year: 2017
  ident: 10.1016/j.solener.2020.04.019_b0320
– ident: 10.1016/j.solener.2020.04.019_b0210
  doi: 10.1115/ES2011-54519
– year: 2013
  ident: 10.1016/j.solener.2020.04.019_b0365
– volume: 193
  start-page: 981
  year: 2019
  ident: 10.1016/j.solener.2020.04.019_b0390
  article-title: Making reference solar forecasts with climatology, persistence, and their optimal convex combination
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.10.006
– volume: 6
  start-page: 2403
  year: 2013
  ident: 10.1016/j.solener.2020.04.019_b0165
  article-title: McClear: a new model estimating downwelling solar radiation at ground level in clear-sky conditions
  publication-title: Atmospheric Measur. Tech.
  doi: 10.5194/amt-6-2403-2013
– ident: 10.1016/j.solener.2020.04.019_b0090
  doi: 10.1016/j.solener.2011.11.011
– volume: 52
  start-page: 239
  year: 1971
  ident: 10.1016/j.solener.2020.04.019_b0260
  article-title: forecasters and probability forecasts: some current problems
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1971)052<0239:FAPFSC>2.0.CO;2
– volume: 22
  start-page: 679
  year: 2006
  ident: 10.1016/j.solener.2020.04.019_b0115
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2006.03.001
– volume: 158
  start-page: 861
  year: 2017
  ident: 10.1016/j.solener.2020.04.019_b0150
  article-title: Impacts of a forecast-based operation strategy for grid-connected PV storage systems on profitability and the energy system
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.10.052
– volume: 111
  start-page: 732
  year: 2017
  ident: 10.1016/j.solener.2020.04.019_b0170
  article-title: Development of a PV performance model for power output simulation at minutely resolution
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.04.049
– volume: 9
  year: 2018
  ident: 10.1016/j.solener.2020.04.019_b0180
  article-title: Irradiance variability quantification and small-scale averaging in space and time: A short review
  publication-title: Atmosphere
  doi: 10.3390/atmos9070264
– volume: 115
  start-page: 1330
  year: 1987
  ident: 10.1016/j.solener.2020.04.019_b0265
  article-title: A general framework for forecast verification
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2
SSID ssj0017187
Score 2.6646428
Snippet •This review aims at standardizing the forecast verification approaches used in deterministic solar forecasting.•The distribution-oriented forecast...
The field of energy forecasting has attracted many researchers from different fields (e.g., meteorology, data sciences, mechanical or electrical engineering)...
SourceID swepub
hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 20
SubjectTerms Accuracy
Climatology
Combination of climatology and persistence
Distribution-oriented forecast verification
Engineering Science with specialization in Civil Engineering and Built Environment
Engineering Sciences
Environmental Sciences
Forecasting
Graphical methods
Mathematical models
Measure-oriented forecast verification
Meteorology
Reliability analysis
Reliability aspects
Root-mean-square errors
Skill score
Solar energy
Solar forecasting
Teknisk fysik med inriktning mot byggteknik och byggd miljö
Verification
Title Verification of deterministic solar forecasts
URI https://dx.doi.org/10.1016/j.solener.2020.04.019
https://www.proquest.com/docview/2464403940
https://hal.science/hal-02899290
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-424636
Volume 210
WOSCitedRecordID wos000579879500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1471-1257
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017187
  issn: 1471-1257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfYxgEOiE9RGChCwAV5OK6zJMeKdRqoKpPIpt4sx4m3TlNSmnaa-Ot5z3HSRAwGBy5R5Mgf8nt5X37-PULeYh2rODKGDlOWUuH7OU0zHtI0V8qIkInUKFtsIpxOo9ksPnbBnMqWEwiLIrq-jhf_ldTQBsTGq7P_QO52UGiAdyA6PIHs8Pwrwp_CJMZF4tAUzFzCi0Vk_lChK4u5hblWVY3i1Nim3-yn3F4GbIWBCycfqB_n85Y5LrFuSpHh4Y_LFDOqKDcRBbAnweR0V8UUat5fv9HE1gWxxnMdyy67EQhwN_1eBOIYloWVkeqkkX7-Jh48UhbbiumgbmoZC_qQgl0VdoUwd8mtToyyG6V7HWi42KswZSFHNFfOLFCtk7o9NO3pV3l4MpnIZDxL3i--Uyw0hgfyrurKFtnhYRCDINwZfR7PvrRHT6Csa6BVt_LNta-PN878O4Nm6xwza7tuSxeK1povyUPywPkd3qjml0fkTl48Jvc7aJRPCO1yjlcar8c5nuUcr-Wcp-TkcJx8OqKumgbVgkUrGoSZUJmvtIkCLbgJ_QyIAN5laFhk9rkCumTKH6ZCGLBCdWr8nMc8D0AFBDwTw2dkuyiL_DnxskinSmG_LBX7oBWY0WlgEPwvEDrSAyKaLZHaQc1jxZNL2eQUXki3kxJ3UjIhYScHZK_ttqixVm7rEDX7LZ3BWBuCEjjmtq5vgD7tNAiyfjSaSGzDs3dwGtiVPyC7Dfmk-8MryQW4EGwYCzYg72qS9oY5mJ-OZLk8k-u1FBzx-F78eZiX5N7mr9ol26vlOn9F7uqr1bxavnbs-ROHTbA7
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Verification+of+deterministic+solar+forecasts&rft.jtitle=Solar+energy&rft.au=Yang%2C+Dazhi&rft.au=Alessandrini%2C+Stefano&rft.au=Antonanzas%2C+Javier&rft.au=Antonanzas-Torres%2C+Fernando&rft.date=2020-11-01&rft.pub=Pergamon+Press+Inc&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=210&rft.spage=20&rft_id=info:doi/10.1016%2Fj.solener.2020.04.019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon