Iterative Reconstrained Low-Rank Representation via Weighted Nonconvex Regularizer

Benefiting from the joint consideration of geometric structures and low-rank constraint, graph low-rank representation (GLRR) method has led to the state-of-the-art results in many applications. However, it faces the limitations that the structure of errors should be known a prior, the isolated cons...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 6; pp. 51693 - 51707
Main Authors: Zheng, Jianwei, Lu, Cheng, Yu, Hongchuan, Wang, Wanliang, Chen, Shengyong
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Benefiting from the joint consideration of geometric structures and low-rank constraint, graph low-rank representation (GLRR) method has led to the state-of-the-art results in many applications. However, it faces the limitations that the structure of errors should be known a prior, the isolated construction of graph Laplacian matrix, and the over shrinkage of the leading rank components. To improve GLRR in these regards, this paper proposes a new LRR model, namely iterative reconstrained LRR via weighted nonconvex regularization, using three distinguished properties on the concerned representation matrix. The first characterizes various distributions of the errors into an adaptively learned weight factor for more flexibility of noise suppression. The second generates an accurate graph matrix from weighted observations for less afflicted by noisy features. The third employs a parameterized rational function to reveal the importance of different rank components for better approximation to the intrinsic subspace structure. Following a deep exploration of automatic thresholding, parallel update, and partial SVD operation, we derive a computationally efficient low-rank representation algorithm using an iterative reconstrained framework and accelerated proximal gradient method. Comprehensive experiments are conducted on synthetic data, image clustering, and background subtraction to achieve several quantitative benchmarks as clustering accuracy, normalized mutual information, and execution time. Results demonstrate the robustness and efficiency of IRWNR compared with other state-of-the-art models.
AbstractList Benefiting from the joint consideration of geometric structures and low-rank constraint, graph low-rank representation (GLRR) method has led to the state-of-the-art results in many applications. However, it faces the limitations that the structure of errors should be known a prior, the isolated construction of graph Laplacian matrix, and the over shrinkage of the leading rank components. To improve GLRR in these regards, this paper proposes a new LRR model, namely iterative reconstrained LRR via weighted nonconvex regularization, using three distinguished properties on the concerned representation matrix. The first characterizes various distributions of the errors into an adaptively learned weight factor for more flexibility of noise suppression. The second generates an accurate graph matrix from weighted observations for less afflicted by noisy features. The third employs a parameterized rational function to reveal the importance of different rank components for better approximation to the intrinsic subspace structure. Following a deep exploration of automatic thresholding, parallel update, and partial SVD operation, we derive a computationally efficient low-rank representation algorithm using an iterative reconstrained framework and accelerated proximal gradient method. Comprehensive experiments are conducted on synthetic data, image clustering, and background subtraction to achieve several quantitative benchmarks as clustering accuracy, normalized mutual information, and execution time. Results demonstrate the robustness and efficiency of IRWNR compared with other state-of-the-art models.
Author Zheng, Jianwei
Lu, Cheng
Yu, Hongchuan
Chen, Shengyong
Wang, Wanliang
Author_xml – sequence: 1
  givenname: Jianwei
  orcidid: 0000-0001-6017-0552
  surname: Zheng
  fullname: Zheng, Jianwei
  organization: School of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 2
  givenname: Cheng
  surname: Lu
  fullname: Lu, Cheng
  organization: School of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 3
  givenname: Hongchuan
  surname: Yu
  fullname: Yu, Hongchuan
  organization: National Centre for Computer Animation, Bournemouth University, Poole, U.K
– sequence: 4
  givenname: Wanliang
  surname: Wang
  fullname: Wang, Wanliang
  email: wwl@zjut.edu.cn
  organization: School of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 5
  givenname: Shengyong
  surname: Chen
  fullname: Chen, Shengyong
  organization: School of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou, China
BookMark eNqFkUtrGzEUhUVIIc9fkI0h63H1HmkZTJoYTAtOSpZC0lw5cl3J1Yydtr--cieE0E21kTh851xxzxk6TjkBQlcETwnB-uPNbHb78DClmKgpVS1mLTlCp5RI3TDB5PG79wm67Ps1rkdVSbSnaDkfoNgh7mGyBJ9TPxQbE3STRX5pljZ9q_K2QA9pqFROk320kyeIq-ehQp9zqp49_KzUarexJf6GcoE-BLvp4fL1PkdfP90-zu6bxZe7-exm0XiO1dAIji31QHVQXlJKgFkBwikfAgvEMsecCI55rxnotmuxFl4SKQNVXddKy87RfMztsl2bbYnfbfllso3mr5DLytgyRL8B42zQ3IsAynlOg3euczVYEs-5lbKrWddj1rbkHzvoB7POu5Lq9w3lQmjGCSaVYiPlS-77AuFtKsHm0IUZuzCHLsxrF9Wl_3H5OC7zsOvNf7xXozcCwNs0xaXUkrI_eNibOg
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s10044_024_01226_7
crossref_primary_10_1109_ACCESS_2021_3061634
crossref_primary_10_1007_s10044_024_01405_6
crossref_primary_10_1109_ACCESS_2019_2944426
crossref_primary_10_1109_TII_2019_2916986
crossref_primary_10_1109_TIP_2020_3008367
crossref_primary_10_1007_s13042_025_02595_z
crossref_primary_10_1016_j_sigpro_2023_109319
crossref_primary_10_1117_1_JEI_33_4_043039
Cites_doi 10.1109/TCYB.2013.2286106
10.1109/TIP.2015.2472277
10.1109/TPAMI.2012.88
10.1109/TPAMI.2016.2535218
10.1109/TIP.2016.2642784
10.1109/TPAMI.2010.220
10.1007/s11263-013-0611-6
10.1109/CVPR.2014.484
10.1109/TPAMI.2017.2689021
10.1109/TPAMI.2013.57
10.1016/j.ins.2017.09.047
10.1109/TIP.2016.2599290
10.1109/TKDE.2017.2650229
10.1109/TIP.2017.2691557
10.1109/TNNLS.2016.2608834
10.1016/j.neucom.2017.03.071
10.1137/090771806
10.1109/TPAMI.2015.2462360
10.1016/j.neucom.2018.03.035
10.1109/TIP.2017.2681841
10.1109/TIP.2015.2511584
10.1109/TCYB.2016.2623638
10.1109/TPAMI.2017.2677440
10.1016/j.cosrev.2016.11.001
10.1109/TIP.2018.2806279
10.1137/080716542
10.1109/TIP.2018.2825647
10.1137/080738970
10.1007/s10107-015-0871-8
10.1109/LSP.2016.2573159
10.1007/s11263-016-0930-5
10.1137/15M1026080
10.1109/TSP.2017.2684746
10.1109/TIP.2012.2235849
10.1109/CVPR.2014.495
10.1109/TCYB.2016.2536752
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2018.2870371
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 51707
ExternalDocumentID oai_doaj_org_article_baf94c5fe8bc42fcbbdbcc961c44a66d
10_1109_ACCESS_2018_2870371
8466962
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province
  grantid: Y19F030047
  funderid: 10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: 61602413; 61873240; U1509207
  funderid: 10.13039/501100001809
– fundername: Royal Society-Newton Mobility
  grantid: IE151018
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c408t-540a2ce29f8c6221e3a5e5b8cff3f1a3b3b5fb3cc93e97d7095c6166f28dd76a3
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446964700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:45:38 EDT 2025
Mon Jun 30 05:11:47 EDT 2025
Tue Nov 18 22:04:26 EST 2025
Sat Nov 29 03:33:22 EST 2025
Wed Aug 27 02:54:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-540a2ce29f8c6221e3a5e5b8cff3f1a3b3b5fb3cc93e97d7095c6166f28dd76a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6017-0552
OpenAccessLink https://ieeexplore.ieee.org/document/8466962
PQID 2455934101
PQPubID 4845423
PageCount 15
ParticipantIDs ieee_primary_8466962
doaj_primary_oai_doaj_org_article_baf94c5fe8bc42fcbbdbcc961c44a66d
crossref_citationtrail_10_1109_ACCESS_2018_2870371
crossref_primary_10_1109_ACCESS_2018_2870371
proquest_journals_2455934101
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
lu (ref45) 2015
ref14
ref11
li (ref48) 2017
ref17
ref16
ref18
hsieh (ref42) 2014
ref51
ref50
gui (ref28) 2016
ref46
ref47
zhang (ref23) 2010; 11
ref44
yao (ref41) 2017
ref49
vila (ref52) 2013
ref8
ref7
guo (ref30) 2015
ref9
ref4
ref3
ref40
ref35
ref34
ref36
ref31
zheng (ref22) 2018
ref33
ref32
ref2
ref1
lu (ref10) 2012
peng (ref5) 2016
ref38
zhou (ref6) 0
kang (ref12) 2015
yao (ref43) 2015
ref24
ref26
ref25
ref20
ref21
ref27
ref29
nie (ref19) 2016
he (ref37) 2011; 33
li (ref39) 2015; 1
References_xml – start-page: 1805
  year: 2015
  ident: ref45
  article-title: Generalized singular value thresholding
  publication-title: Proc 29th AAAI Conf Artif Intell
– ident: ref16
  doi: 10.1109/TCYB.2013.2286106
– ident: ref9
  doi: 10.1109/TIP.2015.2472277
– start-page: 3308
  year: 2017
  ident: ref41
  article-title: Efficient inexact proximal gradient algorithm for nonconvex problems
  publication-title: Proc Int Conf Artif Intell
– year: 0
  ident: ref6
  article-title: Transfer hashing: From shallow to deep
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref1
  doi: 10.1109/TPAMI.2012.88
– ident: ref33
  doi: 10.1109/TPAMI.2016.2535218
– ident: ref18
  doi: 10.1109/TIP.2016.2642784
– volume: 33
  start-page: 1561
  year: 2011
  ident: ref37
  article-title: Maximum correntropy criterion for robust face recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.220
– ident: ref34
  doi: 10.1007/s11263-013-0611-6
– volume: 11
  start-page: 1081
  year: 2010
  ident: ref23
  article-title: Analysis of multi-stage convex relaxation for sparse regularization
  publication-title: J Mach Learn Res
– year: 2013
  ident: ref52
  article-title: Parametric region-based foreground segmentation in planar and multi-view sequences
– ident: ref7
  doi: 10.1109/CVPR.2014.484
– ident: ref35
  doi: 10.1109/TPAMI.2017.2689021
– ident: ref11
  doi: 10.1109/TPAMI.2013.57
– ident: ref4
  doi: 10.1016/j.ins.2017.09.047
– ident: ref27
  doi: 10.1109/TIP.2016.2599290
– year: 2017
  ident: ref48
  publication-title: A fast implementation of singular value thresholding algorithm using recycling rank revealing randomized singular value decomposition
– start-page: 347
  year: 2012
  ident: ref10
  article-title: Robust and efficient subspace segmentation via least squares regression
  publication-title: Proc Eur Conf Comput Vis
– ident: ref29
  doi: 10.1109/TKDE.2017.2650229
– ident: ref8
  doi: 10.1109/TIP.2017.2691557
– ident: ref21
  doi: 10.1109/TNNLS.2016.2608834
– ident: ref32
  doi: 10.1016/j.neucom.2017.03.071
– ident: ref46
  doi: 10.1137/090771806
– ident: ref20
  doi: 10.1109/TPAMI.2015.2462360
– ident: ref24
  doi: 10.1016/j.neucom.2018.03.035
– ident: ref36
  doi: 10.1109/TIP.2017.2681841
– ident: ref25
  doi: 10.1109/TIP.2015.2511584
– ident: ref13
  doi: 10.1109/TCYB.2016.2623638
– ident: ref49
  doi: 10.1109/TPAMI.2017.2677440
– ident: ref50
  doi: 10.1016/j.cosrev.2016.11.001
– ident: ref3
  doi: 10.1109/TIP.2018.2806279
– start-page: 3547
  year: 2015
  ident: ref30
  article-title: Robust subspace segmentation by simultaneously learning data representations and their affinity matrix
  publication-title: Proc Int Conf Artif Intell
– ident: ref38
  doi: 10.1137/080716542
– ident: ref31
  doi: 10.1109/TIP.2018.2825647
– ident: ref44
  doi: 10.1137/080738970
– start-page: 97
  year: 2018
  ident: ref22
  article-title: An efficient truncated nuclear norm constrained matrix completion for image inpainting
  publication-title: Proc Comput Graph Int
– ident: ref40
  doi: 10.1007/s10107-015-0871-8
– start-page: 539
  year: 2015
  ident: ref43
  article-title: Fast low-rank matrix learning with nonconvex regularization
  publication-title: Proc Int Conf Data Mining
– ident: ref15
  doi: 10.1109/LSP.2016.2573159
– start-page: 211
  year: 2015
  ident: ref12
  article-title: Robust PCA via nonconvex rank approximation
  publication-title: Proc IEEE Conf Data Mining
– start-page: 1925
  year: 2016
  ident: ref5
  article-title: Deep subspace clustering with sparsity prior
  publication-title: Proc 25th Int Conf Artif Intell
– ident: ref26
  doi: 10.1007/s11263-016-0930-5
– start-page: 1874
  year: 2016
  ident: ref19
  article-title: Subspace clustering via new low-rank model with discrete group structure constraint
  publication-title: Proc Int Joint Conf Artif Intell
– start-page: 575
  year: 2014
  ident: ref42
  article-title: Nuclear norm minimization via active subspace selection
  publication-title: Proc Int Conf Mach Learn
– volume: 1
  start-page: 379
  year: 2015
  ident: ref39
  article-title: Accelerated proximal gradient methods for nonconvex programming
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 2300
  year: 2016
  ident: ref28
  article-title: Towards faster rates and oracle property for low-rank matrix estimation
  publication-title: Proc Int Conf Mach Learn
– ident: ref47
  doi: 10.1137/15M1026080
– ident: ref2
  doi: 10.1109/TSP.2017.2684746
– ident: ref17
  doi: 10.1109/TIP.2012.2235849
– ident: ref51
  doi: 10.1109/CVPR.2014.495
– ident: ref14
  doi: 10.1109/TCYB.2016.2536752
SSID ssj0000816957
Score 2.1586933
Snippet Benefiting from the joint consideration of geometric structures and low-rank constraint, graph low-rank representation (GLRR) method has led to the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 51693
SubjectTerms accelerated proximal gradient
Adaptation models
Algorithms
Approximation algorithms
Clustering
Cost function
Graphical representations
Iterative methods
Laplace equations
Low-rank representation (LRR)
Noise generation
Noise measurement
power method
Rational functions
Regularization
Robustness
singular value thresholding
Subtraction
weighted nonconvex constraint
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA5SPOhBXLFuzMGjYyfLZJJjLRYFKSKKvYXJBkWZSq0L_npfMtNaEfTiNbxZ8uXNW5I330PomBhirJA89VTalGnNU-0tS5mVJLeSYupMbDZRDAZiOJTXC62-Qk1YTQ9cA9fRpZcslEQJbRjxRmurjZEcG8ZKzm2wvhD1LCRT0QYLzGVeNDRDOJOdbq8HMwq1XOI0HO7RAn9zRZGxv2mx8sMuR2fTX0drTZSYdOu320BLrtpEqwvcgVvo5jLyIYOxSkIKGYhgIcl3Nrkav6U3ZfUAw09f_xZVyeuoTO7jRigIDcZVrDd_B6nQjH4y-nCTbXTXP7_tXaRNg4TUsExMQ1FDSYwj0gvDCcGOlrnLtTDeU49LqqnOvaYAF3WysAWEU4Zjzj0R1ha8pDuoVY0rt4sSB47eFRBPGQA2K4jwTjosHYcI3Dpt24jMsFKmYQ8P83pUMYvIpKoBVgFg1QDcRifzi55q8ozfxc_CIsxFA_N1HAB9UI0-qL_0oY22whLObwLxFZectNHBbElV85U-K8IgnwI3nuG9_3j0PloJ06k3aA5Qazp5cYdo2bxOR8-To6ignwx77Ck
  priority: 102
  providerName: Directory of Open Access Journals
Title Iterative Reconstrained Low-Rank Representation via Weighted Nonconvex Regularizer
URI https://ieeexplore.ieee.org/document/8466962
https://www.proquest.com/docview/2455934101
https://doaj.org/article/baf94c5fe8bc42fcbbdbcc961c44a66d
Volume 6
WOSCitedRecordID wos000446964700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYo4tAeWiitui2gHDgSWNuJH0dYgagEK4RalVsU22NpVZRFy0KrHvrbO-OYUNSqUi9RlIyjccb2PDz-hrFd4YUPxqoyShvKyjlVuhiqsgpW1MFKLsGnYhN6OjVXV_Zihe0NZ2EAICWfwT7dpr38MPd3FCo7QF2pLC24z7TW_VmtIZ5CBSRsrTOwEB_bg8PJBPtA2Vtmn7bzpOZPlE_C6M9FVf5YiZN6OXn1f4yts5fZjCwOe7lvsBXoXrMXv4ELbrLLjwkwGVezgnxMQopt8W0ozubfysu2-4qPbx4PH3XF_awtvqRIKRJN511KSP-OVFStfjH7AYs37PPJ8afJaZkrKJS-GpslZT20woOw0XglBAfZ1lA742OUkbfSSVdHJ723EqwOGu0tr7hSUZgQtGrlW7bazTt4xwpASwA0GlyeewJVMxEscAsKTfQALoyYePi1jc_w4tSv6ya5GWPb9PJoSB5NlseI7Q2Nbnp0jX-TH5HMBlKCxk4PUBhNnmmo_aOtKIfOOF-J6J0LDjuokO2qVQoZ3SQBDh_JshuxrYcR0ORpfNuICh0u1PNj_v7vrT6w58RgH5PZYqvLxR1sszV_v5zdLnaSg4_X85_HO2m0_gK68ejR
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqFgk48CqIpQVy4Ni060cc-9iuqFqxrFBVRG9WbI-lVVG22m4f4tcz46QpCITELXLG0Tif7Rnb428Y-yCCCNFYXSZpY6m816VPUZUqWlFFK7mEkJNN1LOZOTuzX9bYznAXBgBy8Bns0mM-y4-LcEVbZXtoK7WlCXejUkrw7rbWsKNCKSRsVffUQnxs9_YnE2wFxW-ZXTrQkzX_zfxklv4-rcofc3E2MIdP_0-1Z-xJ70gW-x3yz9katC_Y41_oBTfZyXGmTMb5rKBVJnHFNvg2FtPFTXnStOdYfHF__agtrudN8S3vlaLQbNHmkPRblKJ89cv5D1i-ZF8PP55Ojso-h0IZ1NisKO6hEQGETSZoITjIpoLKm5CSTLyRXvoqeRmClWDrWKPHFTTXOgkTY60b-Yqtt4sWXrMC0BeAGl2uwAPRqpkEFrgFjU56BB9HTNz9Whd6gnFq13eXFxpj6zo8HOHhejxGbGeodNHxa_xb_IAwG0SJHDsXIBiuH2to_5NVFEVnfFAiBe-jxwZqVFs1WqOimwTg8JEeuxHbvusBrh_Il04oXHKhpR_zN3-v9Z49PDr9PHXT49mnLfaIlO12aLbZ-mp5BW_Zg3C9ml8u3-Xe-hP_G-ny
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+Reconstrained+Low-Rank+Representation+via+Weighted+Nonconvex+Regularizer&rft.jtitle=IEEE+access&rft.au=Zheng%2C+Jianwei&rft.au=Lu%2C+Cheng&rft.au=Yu%2C+Hongchuan&rft.au=Wang%2C+Wanliang&rft.date=2018-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=6&rft.spage=51693&rft.epage=51707&rft_id=info:doi/10.1109%2FACCESS.2018.2870371&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2018_2870371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon