Energy-Efficient Power Allocation and Joint User Association in Multiuser-Downlink Massive MIMO System

Singular value decomposition is highly essential to achieve a higher performance in signal processing using massive multiple-input multiple-output (MIMO) systems. This paper aims to provide a solution to control power allocation problem identified as an essential metric in a massive MIMO system that...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 8; pp. 1314 - 1326
Main Authors: Salh, Adeeb, Shah, Nor Shahida M., Audah, Lukman, Abdullah, Qazwan, Jabbar, Waheb A., Mohamad, Mahathir
Format: Journal Article
Language:English
Published: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Singular value decomposition is highly essential to achieve a higher performance in signal processing using massive multiple-input multiple-output (MIMO) systems. This paper aims to provide a solution to control power allocation problem identified as an essential metric in a massive MIMO system that maximizes energy efficiency (EE). The network performance was evaluated by measuring circuit power consumption to maximize EE. The computational efficiency to maximize EE power allocation is very important to fifth generation networks (5G). The study aims to maximize the non-convex EE in a downlink (DL) massive MIMO system using a proposed energy-efficient low-complexity algorithm (EELCA) that guarantees optimal power allocation solution based on Newton's methods and joint user's association based on the Lagrange's decomposition method. An optimal power allocation solution in closed form to decrease the complexity of the power subject to both the maximum power and minimum data rate constrained systems was derived. Then, the unconstrained EE power allocation to solve the unconstrained optimal power was used to select the optimal power allocation by computing a root of the first derivative of the EE based on differentiating the instantaneous power allocation to maximize EE was formulated. Simulation results showed that the proposed EELCA with a total transmitted power allocation provided maximum EE for a large number of antennas at the base station (BS), Generally, non-linear schemes outperformed linear schemes. Finally, the large cost of circuit power consumption increased at the BS due to the large loss of radio frequency (RF) chains at every antenna when the signals were transmitted to all users. The maximum EE = 5.9 Mbits/joule when the number of distributed users, <inline-formula> <tex-math notation="LaTeX">K=33 </tex-math></inline-formula>, with <inline-formula> <tex-math notation="LaTeX">\left ({p_{c}, M }\right )=\left ({ 1000\mathrm {mW},200 }\right ) </tex-math></inline-formula>. The proposed low complexity algorithm provides the better result EE based on a training channel for a number of distributed users.
AbstractList Singular value decomposition is highly essential to achieve a higher performance in signal processing using massive multiple-input multiple-output (MIMO) systems. This paper aims to provide a solution to control power allocation problem identified as an essential metric in a massive MIMO system that maximizes energy efficiency (EE). The network performance was evaluated by measuring circuit power consumption to maximize EE. The computational efficiency to maximize EE power allocation is very important to fifth generation networks (5G). The study aims to maximize the non-convex EE in a downlink (DL) massive MIMO system using a proposed energy-efficient low-complexity algorithm (EELCA) that guarantees optimal power allocation solution based on Newton's methods and joint user's association based on the Lagrange's decomposition method. An optimal power allocation solution in closed form to decrease the complexity of the power subject to both the maximum power and minimum data rate constrained systems was derived. Then, the unconstrained EE power allocation to solve the unconstrained optimal power was used to select the optimal power allocation by computing a root of the first derivative of the EE based on differentiating the instantaneous power allocation to maximize EE was formulated. Simulation results showed that the proposed EELCA with a total transmitted power allocation provided maximum EE for a large number of antennas at the base station (BS), Generally, non-linear schemes outperformed linear schemes. Finally, the large cost of circuit power consumption increased at the BS due to the large loss of radio frequency (RF) chains at every antenna when the signals were transmitted to all users. The maximum EE = 5.9 Mbits/joule when the number of distributed users, K = 33, with (pc, M) = (1000mW, 200). The proposed low complexity algorithm provides the better result EE based on a training channel for a number of distributed users.
Singular value decomposition is highly essential to achieve a higher performance in signal processing using massive multiple-input multiple-output (MIMO) systems. This paper aims to provide a solution to control power allocation problem identified as an essential metric in a massive MIMO system that maximizes energy efficiency (EE). The network performance was evaluated by measuring circuit power consumption to maximize EE. The computational efficiency to maximize EE power allocation is very important to fifth generation networks (5G). The study aims to maximize the non-convex EE in a downlink (DL) massive MIMO system using a proposed energy-efficient low-complexity algorithm (EELCA) that guarantees optimal power allocation solution based on Newton's methods and joint user's association based on the Lagrange's decomposition method. An optimal power allocation solution in closed form to decrease the complexity of the power subject to both the maximum power and minimum data rate constrained systems was derived. Then, the unconstrained EE power allocation to solve the unconstrained optimal power was used to select the optimal power allocation by computing a root of the first derivative of the EE based on differentiating the instantaneous power allocation to maximize EE was formulated. Simulation results showed that the proposed EELCA with a total transmitted power allocation provided maximum EE for a large number of antennas at the base station (BS), Generally, non-linear schemes outperformed linear schemes. Finally, the large cost of circuit power consumption increased at the BS due to the large loss of radio frequency (RF) chains at every antenna when the signals were transmitted to all users. The maximum EE = 5.9 Mbits/joule when the number of distributed users, <inline-formula> <tex-math notation="LaTeX">K=33 </tex-math></inline-formula>, with <inline-formula> <tex-math notation="LaTeX">\left ({p_{c}, M }\right )=\left ({ 1000\mathrm {mW},200 }\right ) </tex-math></inline-formula>. The proposed low complexity algorithm provides the better result EE based on a training channel for a number of distributed users.
Singular value decomposition is highly essential to achieve a higher performance in signal processing using massive multiple-input multiple-output (MIMO) systems. This paper aims to provide a solution to control power allocation problem identified as an essential metric in a massive MIMO system that maximizes energy efficiency (EE). The network performance was evaluated by measuring circuit power consumption to maximize EE. The computational efficiency to maximize EE power allocation is very important to fifth generation networks (5G). The study aims to maximize the non-convex EE in a downlink (DL) massive MIMO system using a proposed energy-efficient low-complexity algorithm (EELCA) that guarantees optimal power allocation solution based on Newton's methods and joint user's association based on the Lagrange's decomposition method. An optimal power allocation solution in closed form to decrease the complexity of the power subject to both the maximum power and minimum data rate constrained systems was derived. Then, the unconstrained EE power allocation to solve the unconstrained optimal power was used to select the optimal power allocation by computing a root of the first derivative of the EE based on differentiating the instantaneous power allocation to maximize EE was formulated. Simulation results showed that the proposed EELCA with a total transmitted power allocation provided maximum EE for a large number of antennas at the base station (BS), Generally, non-linear schemes outperformed linear schemes. Finally, the large cost of circuit power consumption increased at the BS due to the large loss of radio frequency (RF) chains at every antenna when the signals were transmitted to all users. The maximum EE = 5.9 Mbits/joule when the number of distributed users, <tex-math notation="LaTeX">$K=33$ </tex-math>, with <tex-math notation="LaTeX">$\left ({p_{c}, M }\right )=\left ({ 1000\mathrm {mW},200 }\right )$ </tex-math>. The proposed low complexity algorithm provides the better result EE based on a training channel for a number of distributed users.
Author Shah, Nor Shahida M.
Audah, Lukman
Abdullah, Qazwan
Salh, Adeeb
Jabbar, Waheb A.
Mohamad, Mahathir
Author_xml – sequence: 1
  givenname: Adeeb
  orcidid: 0000-0002-5100-818X
  surname: Salh
  fullname: Salh, Adeeb
  email: adeebsalh11@gmail.com
  organization: Wireless and Radio Science Center (WARAS), Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
– sequence: 2
  givenname: Nor Shahida M.
  orcidid: 0000-0001-8759-0426
  surname: Shah
  fullname: Shah, Nor Shahida M.
  email: shahida@uthm.edu.my
  organization: Wireless and Radio Science Center (WARAS), Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
– sequence: 3
  givenname: Lukman
  orcidid: 0000-0002-0958-4474
  surname: Audah
  fullname: Audah, Lukman
  organization: Wireless and Radio Science Center (WARAS), Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
– sequence: 4
  givenname: Qazwan
  orcidid: 0000-0003-0623-2286
  surname: Abdullah
  fullname: Abdullah, Qazwan
  organization: Faculty of Electrical & Electronic Engineering Technology, Universiti Malaysia Pahang, Pahang, Malaysia
– sequence: 5
  givenname: Waheb A.
  orcidid: 0000-0001-5164-8403
  surname: Jabbar
  fullname: Jabbar, Waheb A.
  organization: Faculty of Electrical & Electronic Engineering Technology, Universiti Malaysia Pahang, Pahang, Malaysia
– sequence: 6
  givenname: Mahathir
  orcidid: 0000-0002-0838-0277
  surname: Mohamad
  fullname: Mohamad, Mahathir
  organization: Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
BookMark eNqFUU1PGzEQtRCVoMAv4LJSz5v6e-1jlKZtKiKQUs6Wd2Ijp4tN7Q0o_74Oi1DVS-cyo3nz3ozmfUSnMUWH0DXBM0Kw_jxfLJabzYxiomdUCyU5PkHnlEjdMsHk6V_1GboqZYdrqNoS3Tnyy-jyw6Fdeh8guDg2d-nF5WY-DAnsGFJsbNw2P1Ko0H05IqUkCBMUYrPeD2PYV6D9kl7iEOKvZm1LCc-uWa_Wt83mUEb3eIk-eDsUd_WWL9D91-XPxff25vbbajG_aYFjNbaCWQVSAVCnPfe98r4XsAUvO2-l6r2uZ5MOsLBKOQu-lxo6hx0jHZMc2AVaTbrbZHfmKYdHmw8m2WBeGyk_GJvHAIMzveyBCKJ7AM6dlNrSfmu7XvGaqPdV69Ok9ZTT770ro9mlfY71fEO54J3mAtM6xaYpyKmU7Pz7VoLN0R8z-WOO_pg3fypL_8OCML7-dMw2DP_hXk_c4Jx736Y0w4JK9geoL6He
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_sym14061145
crossref_primary_10_1016_j_comnet_2020_107445
crossref_primary_10_1002_dac_5106
crossref_primary_10_1007_s11235_023_01077_3
crossref_primary_10_1016_j_seta_2023_103217
crossref_primary_10_32604_cmc_2021_018798
crossref_primary_10_1007_s11277_021_08544_7
crossref_primary_10_3390_s23218963
crossref_primary_10_32604_cmc_2021_014746
crossref_primary_10_1109_ACCESS_2022_3175573
crossref_primary_10_1002_dac_5040
crossref_primary_10_1016_j_phycom_2022_101646
crossref_primary_10_1109_TCOMM_2022_3227304
crossref_primary_10_1002_dac_70197
crossref_primary_10_1109_ACCESS_2021_3113501
crossref_primary_10_3390_en15072429
crossref_primary_10_1109_JIOT_2020_2979169
crossref_primary_10_3233_JIFS_201412
Cites_doi 10.1109/TCOMM.2014.011414.130498
10.1109/JCN.2018.000087
10.1109/MCOM.2014.6736752
10.1017/CBO9780511807213
10.4218/etrij.15.0114.0739
10.1109/JSAC.2014.2328098
10.1186/s13638-018-1222-2
10.1109/TWC.2016.2583436
10.1109/VTCSpring.2016.7504223
10.1109/LWC.2017.2693373
10.1109/TWC.2017.2718503
10.1109/VETECS.2012.6240248
10.1017/CBO9780511804441
10.1002/ett.3548
10.1007/BF02124750
10.1109/ACCESS.2017.2779855
10.1007/s11432-015-5513-5
10.1109/ACCESS.2017.2707550
10.1109/TCCN.2015.2488622
10.1016/j.sigpro.2019.05.010
10.3390/app8040584
10.1002/dac.3434
10.1109/JSAC.2017.2777672
10.1109/ACCESS.2017.2695572
10.1109/TWC.2018.2808490
10.1109/VETECF.2011.6093106
10.1109/TVT.2005.851319
10.1109/TCOMM.2012.071812.110242
10.1109/ICCNC.2016.7440616
10.1109/LCOMM.2017.2753782
10.1155/2017/5120538
10.1109/JSAC.2004.830916
10.13164/re.2015.1077
10.1186/s13638-017-0924-1
10.1109/LWC.2018.2869152
10.1109/SURV.2012.020212.00049
10.1109/VTCFall.2013.6692185
10.1109/VTCSpring.2016.7504219
10.1109/TWC.2009.12.090394
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2958640
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (selected full-text)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1326
ExternalDocumentID oai_doaj_org_article_b6bc1519bcc44e669a2bda7b84bda2ff
10_1109_ACCESS_2019_2958640
8930526
Genre orig-research
GrantInformation_xml – fundername: Universiti Tun Hussein Onn Malaysia
  funderid: 10.13039/100007837
– fundername: Ministry of Education, Malaysia (MOE), under the Fundamental Research Grant Scheme (FRGS) Vot K096
– fundername: Universiti Malaysia Pahang
  grantid: FRGS/1/2018/TK04/UMP/02/11 (RDU190133)
  funderid: 10.13039/501100005605
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-53a8c68cc2e9f4fb8ffb5cdcf67fa68bf916917c05a88eacfb69c7e0e317364c3
IEDL.DBID DOA
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000507293900106&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:46 EDT 2025
Sun Jun 29 16:00:10 EDT 2025
Tue Nov 18 20:53:16 EST 2025
Sat Nov 29 02:41:38 EST 2025
Wed Aug 27 03:00:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-53a8c68cc2e9f4fb8ffb5cdcf67fa68bf916917c05a88eacfb69c7e0e317364c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0623-2286
0000-0002-0958-4474
0000-0002-5100-818X
0000-0001-8759-0426
0000-0002-0838-0277
0000-0001-5164-8403
OpenAccessLink https://doaj.org/article/b6bc1519bcc44e669a2bda7b84bda2ff
PQID 2454794502
PQPubID 4845423
PageCount 13
ParticipantIDs ieee_primary_8930526
doaj_primary_oai_doaj_org_article_b6bc1519bcc44e669a2bda7b84bda2ff
crossref_primary_10_1109_ACCESS_2019_2958640
proquest_journals_2454794502
crossref_citationtrail_10_1109_ACCESS_2019_2958640
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref19
ref18
ha (ref7) 2013
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
yu (ref12) 2017
ref21
ref28
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
ref40
vilni (ref16) 2018
References_xml – ident: ref33
  doi: 10.1109/TCOMM.2014.011414.130498
– ident: ref13
  doi: 10.1109/JCN.2018.000087
– ident: ref1
  doi: 10.1109/MCOM.2014.6736752
– ident: ref32
  doi: 10.1017/CBO9780511807213
– ident: ref36
  doi: 10.4218/etrij.15.0114.0739
– ident: ref2
  doi: 10.1109/JSAC.2014.2328098
– ident: ref4
  doi: 10.1186/s13638-018-1222-2
– ident: ref26
  doi: 10.1109/TWC.2016.2583436
– ident: ref14
  doi: 10.1109/VTCSpring.2016.7504223
– ident: ref5
  doi: 10.1109/LWC.2017.2693373
– ident: ref42
  doi: 10.1109/TWC.2017.2718503
– ident: ref18
  doi: 10.1109/VETECS.2012.6240248
– ident: ref37
  doi: 10.1017/CBO9780511804441
– ident: ref27
  doi: 10.1002/ett.3548
– ident: ref39
  doi: 10.1007/BF02124750
– start-page: 938
  year: 2013
  ident: ref7
  article-title: Energy efficiency analysis with circuit power consumption in massive MIMO systems
  publication-title: Proc IEEE Annu Int Symp Pers Indoor Mobile Radio Commun (PIMRC)
– ident: ref35
  doi: 10.1109/ACCESS.2017.2779855
– ident: ref17
  doi: 10.1007/s11432-015-5513-5
– year: 2018
  ident: ref16
  article-title: Cooperative energy efficient power allocation algorithm for downlink massive MIMO
  publication-title: arXiv 1804 03932
– ident: ref9
  doi: 10.1109/ACCESS.2017.2707550
– ident: ref20
  doi: 10.1109/TCCN.2015.2488622
– ident: ref19
  doi: 10.1016/j.sigpro.2019.05.010
– ident: ref24
  doi: 10.3390/app8040584
– ident: ref28
  doi: 10.1002/dac.3434
– ident: ref29
  doi: 10.1109/JSAC.2017.2777672
– ident: ref23
  doi: 10.1109/ACCESS.2017.2695572
– ident: ref15
  doi: 10.1109/TWC.2018.2808490
– ident: ref41
  doi: 10.1109/VETECF.2011.6093106
– ident: ref31
  doi: 10.1109/TVT.2005.851319
– ident: ref3
  doi: 10.1109/TCOMM.2012.071812.110242
– ident: ref11
  doi: 10.1109/ICCNC.2016.7440616
– year: 2017
  ident: ref12
  article-title: On energy efficient uplink multi-user MIMO with shared LNA control
  publication-title: arXiv 1709 06856
– ident: ref22
  doi: 10.1109/LCOMM.2017.2753782
– ident: ref25
  doi: 10.1155/2017/5120538
– ident: ref34
  doi: 10.1109/JSAC.2004.830916
– ident: ref40
  doi: 10.13164/re.2015.1077
– ident: ref38
  doi: 10.1186/s13638-017-0924-1
– ident: ref21
  doi: 10.1109/LWC.2018.2869152
– ident: ref8
  doi: 10.1109/SURV.2012.020212.00049
– ident: ref10
  doi: 10.1109/VTCFall.2013.6692185
– ident: ref6
  doi: 10.1109/VTCSpring.2016.7504219
– ident: ref30
  doi: 10.1109/TWC.2009.12.090394
SSID ssj0000816957
Score 2.3807282
Snippet Singular value decomposition is highly essential to achieve a higher performance in signal processing using massive multiple-input multiple-output (MIMO)...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1314
SubjectTerms Algorithms
Antenna arrays
Antennas
base station
Circuits
Complexity
Downlinking
EELCA
Energy efficiency
Massive MIMO
Maximum power
MIMO communication
Optimization
Performance evaluation
Power consumption
Power demand
Radio frequency
Resource management
Signal processing
Singular value decomposition
Transmitting antennas
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B4tAe2lJadVuofOBIIJt1_HHcLotapAUOReJm2WNbWgllEbv099fjmIDUqlJPiWI7SvJmPOOJ5w3Akaij4F7yKrQTrHjrk855Ma6s49IKhzJol4tNyMtLdXurr7fgeMiFCSHkzWfhhE7zv3y_wkcKlZ0m20r0JNuwLaXoc7WGeAoVkNCtLMRC41qfTmez9A60e0ufNLpVggIcL4xP5ugvRVX-mImzeTl_-38P9g7eFDeSTXvc92ArdO_h9QtywX2I85zWV80zSUQaz66pIhqb3pH9IjyY7Ty7WC1T082aWp6hYsuO5dxcCmJUZ8SonxatbJFc7TQ9ssWPxRXryc4_wM35_Ofse1WqKlTIa7Wp2olVKBRiE3Tk0akYXYseo5DRCuWiJv4ciXVrlUrTcnRCJ8jqkDyNieA4-Qg73aoLn4C5ZP2skh6Di9yOpbUWaVczahwriX4EzdPnNlgox6nyxZ3JS49amx4jQxiZgtEIjodB9z3jxr-7fyMch65El50vJIBM0T7jktQl10Y7RM6DENo2zlvpFE-HJsYR7BOow00KniM4eJIKU1R7bRqiQNO8rZvPfx_1BV41tCjPcZoD2Nk8PIZD2MVfm-X64WuW2t958u2s
  priority: 102
  providerName: IEEE
Title Energy-Efficient Power Allocation and Joint User Association in Multiuser-Downlink Massive MIMO System
URI https://ieeexplore.ieee.org/document/8930526
https://www.proquest.com/docview/2454794502
https://doaj.org/article/b6bc1519bcc44e669a2bda7b84bda2ff
Volume 8
WOSCitedRecordID wos000507293900106&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (selected full-text)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFLdQtcN2QGxlosCQDxwXSFLHH8eua7UhtfQAEjfLfrGlSigg2u3I3857TtpVQoLLLokU23Hy3vP7kv17jJ3LPEpRK5GFagiZqGpcc7UsMueFctKDCsanYhNqPtd3d2axU-qL9oS18MAt4S49DkCrZDyAEEFK40pfO-W1wFsZI2nfXJmdYCrpYF1IU6kOZqjIzeVoPMY_or1c5qI0lZaU7tgxRQmxvyux8kovJ2MzPWD7nZfIR-3XfWZ7ofnCPu1gB_ZZnKRTe9kkYUCg6eALKnjGR_dknojc3DU1v3pYYtPtilr-cYIvG56O3lKOIvtJgPkYk_IZetKo_fjs9-yat1jmh-x2OrkZ_8q6ogkZiFyvs2roNEgNUAYTRfQ6Rl9BDVGq6KT20RA8joK8clqj1o1eGuRIHtCRGEoBw6-s1zw04Yhxj8bNaVVD8FG4QjnngDYtg4FCK6gHrNzQz0KHKE6FLe5tiixyY1uiWyK67Yg-YN-3gx5bQI23u_8gxmy7Ehp2eoAyYjsZse_JyID1ia3bl6CPRjA3A3a6YbPtVu7KloRwZkSVl8f_Y-oT9rGkCD0lbU5Zb_30J3xjH-Dverl6OktCi9fZ8-QsHT18AW8W9LE
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RWqnlQB9QdYG2PvRIIJt1_Dhut4ugZbccQOJm2WNbWgllK3bh9-NxQorUqlJPiWI7SvLNeMYTzzcAX0QZBfeSF6EeYcFrn3TOi2FhHZdWOJRBu1xsQs7n6vpaX2zAYZ8LE0LIm8_CEZ3mf_l-iXcUKjtOtpXoSZ7B85rzqmyztfqICpWQ0LXsqIWGpT4eTybpLWj_lj6qdK0EhTiemJ_M0t-VVfljLs4G5uT1_z3aG9juHEk2bpF_CxuheQdbT-gFdyBOc2JfMc00EWk8u6CaaGx8QxaMEGG28ez7cpGarlbU8hsstmhYzs6lMEbxjTj107KVzZKznSZINjub_WQt3fkuXJ1MLyenRVdXoUBeqnVRj6xCoRCroCOPTsXoavQYhYxWKBc1MehILGurVJqYoxM6gVaG5GuMBMfRe9hslk34AMwl-2eV9Bhc5HYorbVI-5pR41BJ9AOoHj-3wY50nGpf3Ji8-Ci1aTEyhJHpMBrAYT_oV8u58e_uXwnHvisRZucLCSDT6Z9xSe6Sc6MdIudBCG0r5610iqdDFeMAdgjU_iYdngM4eJQK0yn3ylREgqZ5XVZ7fx_1GV6eXs7OzfnZ_Mc-vKpoiZ6jNgewub69Cx_hBd6vF6vbT1mCHwD12PDz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Efficient+Power+Allocation+and+Joint+User+Association+in+Multiuser-Downlink+Massive+MIMO+System&rft.jtitle=IEEE+access&rft.au=Salh%2C+Adeeb&rft.au=Shah%2C+Nor+Shahida+M.&rft.au=Audah%2C+Lukman&rft.au=Abdullah%2C+Qazwan&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=1314&rft.epage=1326&rft_id=info:doi/10.1109%2FACCESS.2019.2958640&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2958640
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon