Approximate Uncertain Program
Chance constrained program where one seeks to minimize an objective over decisions which satisfy randomly disturbed constraints with a given probability is computationally intractable. This paper proposes an approximate approach to address chance constrained program. Firstly, a single layer neural-n...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 7; S. 182357 - 182365 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Chance constrained program where one seeks to minimize an objective over decisions which satisfy randomly disturbed constraints with a given probability is computationally intractable. This paper proposes an approximate approach to address chance constrained program. Firstly, a single layer neural-network is used to approximate the function from decision domain to violation probability domain. The algorithm for updating parameters in single layer neural-network adopts sequential extreme learning machine. Based on the neural violation probability approximate model, a randomized algorithm is then proposed to approach the optimizer in the probabilistic feasible domain of decision. In the randomized algorithm, samples are extracted from decision domain uniformly at first. Then, violation probabilities of all samples are calculated according to neural violation probability approximate model. The ones with violation probability higher than the required level are discarded. The minimizer in the remained feasible decision samples is used to update sampling policy. The policy converges to the optimal feasible decision. Numerical simulations are implemented to validate the proposed method for non-convex problems comparing with scenario approach and parallel randomized algorithm. The results show that proposed method have improved performance. |
|---|---|
| AbstractList | Chance constrained program where one seeks to minimize an objective over decisions which satisfy randomly disturbed constraints with a given probability is computationally intractable. This paper proposes an approximate approach to address chance constrained program. Firstly, a single layer neural-network is used to approximate the function from decision domain to violation probability domain. The algorithm for updating parameters in single layer neural-network adopts sequential extreme learning machine. Based on the neural violation probability approximate model, a randomized algorithm is then proposed to approach the optimizer in the probabilistic feasible domain of decision. In the randomized algorithm, samples are extracted from decision domain uniformly at first. Then, violation probabilities of all samples are calculated according to neural violation probability approximate model. The ones with violation probability higher than the required level are discarded. The minimizer in the remained feasible decision samples is used to update sampling policy. The policy converges to the optimal feasible decision. Numerical simulations are implemented to validate the proposed method for non-convex problems comparing with scenario approach and parallel randomized algorithm. The results show that proposed method have improved performance. |
| Author | Zhuang, Jiancang Zhang, Xingguo Shen, Xun |
| Author_xml | – sequence: 1 givenname: Xun orcidid: 0000-0002-8827-5791 surname: Shen fullname: Shen, Xun email: shen.xun@ism.ac.jp organization: Department of Statistical Sciences, The Graduate University for Advanced Studies, Tokyo, Japan – sequence: 2 givenname: Jiancang orcidid: 0000-0002-9708-3871 surname: Zhuang fullname: Zhuang, Jiancang organization: Department of Statistical Sciences, The Graduate University for Advanced Studies, Tokyo, Japan – sequence: 3 givenname: Xingguo orcidid: 0000-0001-8390-642X surname: Zhang fullname: Zhang, Xingguo organization: Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan |
| BookMark | eNp9kE9LAzEQxYNUsNZ-giIUPG_N_02OpVQtFBRqzyGbnZQt7aZmU9Bv79atIh6cywzD_B5v3jXq1aEGhEYETwjB-n46m81XqwnFRE-oFkpScoH6lEidMcFk79d8hYZNs8VtqXYl8j66nR4OMbxXe5tgvK4dxGSrevwSwyba_Q269HbXwPDcB2j9MH-dPWXL58fFbLrMHMcqZQITUTosZE5dXjKvNAiuPLVKUUq887rIHS6xFOALywrKOeOANZau4NxzNkCLTrcMdmsOsbUTP0ywlflahLgxNqbK7cA4zyRIzoQrJCcOrAcrBAZcukJTZlutu06r_evtCE0y23CMdWvfUC6EZIxj0l7p7srF0DQRvHFVsqkKdYq22hmCzSlc04VrTuGac7gty_6w347_p0YdVQHAD6E0w1xK9gkQDYWg |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_TII_2021_3107406 crossref_primary_10_1109_TNNLS_2021_3102323 crossref_primary_10_1016_j_ifacol_2021_10_179 |
| Cites_doi | 10.1287/mnsc.6.1.73 10.1109/TAC.2006.875041 10.1137/15M1049750 10.1007/BF00935752 10.1109/TNN.2003.809401 10.1109/72.655045 10.1016/j.neucom.2005.12.126 10.1109/72.557662 10.1007/s10994-010-5183-x 10.1007/s10957-009-9523-6 10.1109/TFUZZ.2018.2849701 10.1016/j.automatica.2014.10.035 10.1007/BF00934526 10.1109/TCST.2017.2658193 10.1287/moor.6.1.19 10.1016/S0167-6377(99)00016-4 10.1007/s10957-010-9754-6 10.9746/jcmsi.11.365 10.1137/070702928 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2019.2958621 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals (WRLC) |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 182365 |
| ExternalDocumentID | oai_doaj_org_article_cf36e6435cb641ceafea550e0dcb923a 10_1109_ACCESS_2019_2958621 8930466 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Institute of Statistical Mathematics through risk Network of Excellence Project, and The Graduate University for Advanced Studies through SOKENDAI Publication Grant |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-5015dc05672c7d3f89e548f2a88221fcf9b7c0d065efba3b24434e0906cb44f43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509516700040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:50:42 EDT 2025 Sun Oct 05 00:22:08 EDT 2025 Tue Nov 18 21:17:27 EST 2025 Sat Nov 29 02:41:38 EST 2025 Wed Aug 27 02:29:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-5015dc05672c7d3f89e548f2a88221fcf9b7c0d065efba3b24434e0906cb44f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9708-3871 0000-0001-8390-642X 0000-0002-8827-5791 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/8930466 |
| PQID | 2455633401 |
| PQPubID | 4845423 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2019_2958621 doaj_primary_oai_doaj_org_article_cf36e6435cb641ceafea550e0dcb923a proquest_journals_2455633401 crossref_citationtrail_10_1109_ACCESS_2019_2958621 ieee_primary_8930466 |
| PublicationCentury | 2000 |
| PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 20190000 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref14 ref11 ref10 ref1 ref17 shen (ref16) 2019 ref19 mátyáš (ref25) 1965; 26 cannon (ref12) 2018 gramacy (ref15) 2010 chong (ref24) 2001 feller (ref29) 1968 picheny (ref18) 2016 campi (ref8) 2019 ref26 prekopa (ref2) 1970 ref20 rao (ref23) 1972 ref22 ref21 ref28 ref27 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – start-page: 243 year: 1968 ident: ref29 publication-title: An Introduction to Probability Theory and Its Applications – year: 2019 ident: ref16 article-title: Parallel randomized algorithm for chance constrained program publication-title: arXiv 1911 00192v3 – ident: ref3 doi: 10.1287/mnsc.6.1.73 – year: 2018 ident: ref12 article-title: Chance-constrained optimization with tight confidence bounds publication-title: arXiv 1711 03747 – year: 2010 ident: ref15 article-title: Optimization under unknown constraints publication-title: arXiv 1004 4027 – ident: ref9 doi: 10.1109/TAC.2006.875041 – start-page: 113 year: 1970 ident: ref2 article-title: On probabilistic constrained programming publication-title: Proc Princeton Symp Math Prog – ident: ref14 doi: 10.1137/15M1049750 – ident: ref26 doi: 10.1007/BF00935752 – ident: ref19 doi: 10.1109/TNN.2003.809401 – ident: ref20 doi: 10.1109/72.655045 – ident: ref22 doi: 10.1016/j.neucom.2005.12.126 – start-page: 227 year: 2001 ident: ref24 publication-title: An Introduction to Optimization – year: 1972 ident: ref23 publication-title: Generalized Inverse of Matrices and its Applications – start-page: 1 year: 2019 ident: ref8 publication-title: Introduction to the Scenario Approach – ident: ref21 doi: 10.1109/72.557662 – ident: ref7 doi: 10.1007/s10994-010-5183-x – ident: ref13 doi: 10.1007/s10957-009-9523-6 – ident: ref17 doi: 10.1109/TFUZZ.2018.2849701 – ident: ref4 doi: 10.1016/j.automatica.2014.10.035 – ident: ref27 doi: 10.1007/BF00934526 – volume: 26 start-page: 246 year: 1965 ident: ref25 article-title: Random optimization publication-title: Autom Remote Control – ident: ref5 doi: 10.1109/TCST.2017.2658193 – ident: ref28 doi: 10.1287/moor.6.1.19 – year: 2016 ident: ref18 article-title: Bayesian optimization under mixed constraints with a slack-variable augmented Lagrangian publication-title: arXiv 1605 09466 – ident: ref1 doi: 10.1016/S0167-6377(99)00016-4 – ident: ref11 doi: 10.1007/s10957-010-9754-6 – ident: ref6 doi: 10.9746/jcmsi.11.365 – ident: ref10 doi: 10.1137/070702928 |
| SSID | ssj0000816957 |
| Score | 2.171463 |
| Snippet | Chance constrained program where one seeks to minimize an objective over decisions which satisfy randomly disturbed constraints with a given probability is... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 182357 |
| SubjectTerms | Algorithms Approximation algorithms Artificial neural networks Chance constrained program Constraints Domains extreme learning machine Indexes Machine learning Mathematical models Neural networks Optimization Probabilistic logic Probability randomized optimization Statistical analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (WRLC) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA0iHvQgahVXW9mDR9cm2exHjrVYPJUeLPQWktkEClKlreLPd5JNS0XQi9cl-5F5u5k3m-E9Qm6l0F5CpMgssvlMgGOZ5kAzDkb7baLSgQhmE9V4XM9mcrJj9eV7wlp54DZwfXB5aTFtFmBKwcBqZzWyaksbMEhOAjWildwppsIaXLNSFlWUGWJU9gfDIc7I93LJey4LJPLsWyoKiv3RYuXHuhySzeiEHEeWmA7apzsle3ZxRo52tAM7pDfwauCfc2ScNp0idGFrP520_VbnZDp6fB4-ZdHrIANB63VWYFpuANlIxaFqcldLi7WE4xoZMGcOnDQV0AYJg3VG5wazci4slbQEI4QT-QXZX7wu7CVJy8owkzNuvN2esdKAYb5KtIYKoWWeEL6ZtoIoBO79KF5UKAioVG2slI-VirFKyN32pLdWB-P34Q8-ntuhXsQ6HEBoVYRW_QVtQjoeje1FkFphNV8mpLtBR8UPbqW48EpnOVaLV_9x62ty6KfT_mvpkv318t32yAF8rOer5U14174APw_UZg priority: 102 providerName: Directory of Open Access Journals |
| Title | Approximate Uncertain Program |
| URI | https://ieeexplore.ieee.org/document/8930466 https://www.proquest.com/docview/2455633401 https://doaj.org/article/cf36e6435cb641ceafea550e0dcb923a |
| Volume | 7 |
| WOSCitedRecordID | wos000509516700040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB1UPOjBb3HVlT14tJqmabs5rouLF8WDgreQTCcgyCq6iid_u5M0FkURvJRSkpLMNJ338vEG4FArGyREyowYzWcKfZ5ZiSKT6GxYJqo8qphsor68HN7e6qs5OOrOwhBR3HxGx-E2ruU3D_gSpspOOLYynavmYb6uq_asVjefEhJI6LJOwkK50Cej8Zj7EHZv6WOpS4bu-bfgEzX6U1KVH3_iGF4mq_9r2BqsJBg5GLV-X4c5mm7A8hdxwU3oj4Jc-NsdQ1Ia3LBv49r_4KrdkLUFN5Oz6_F5lpIhZKjEcJaVHLcbZLhSS6ybwg81Mdnw0jJElrlHr12NomFEQd7ZwnHYLhQJLSp0SnlVbMPC9GFKOzCoape7Ipcu5ONzpB26PNBIckIpq4seyE8rGUxK4SFhxb2JjEFo05rWBNOaZNoeHHWVHluhjL-Lnwbzd0WDynV8wHY1adAY9EVFDJlKdJXKkawny4yKRIOOgantwWbwRfeS5IYe7H8606QR-WykClJoBdPJ3d9r7cFSaGA7vbIPC7OnF-rDIr7O7p6fDiJX5-vF-9lB_PA-APQm0i4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB_UE9SH-9AT13N1H-7Rapqm7eZxbznZw3XZBwXfQjKdgCDroetxf76TNBYPRbi3UpKSzjSd33zkNwDftbKBQqTMiNF8ptDnmZUoMonOhjRR5VHFZhP1bDa8vtbzFTjuzsIQUSw-o5NwGXP5zR0-hlDZKdtWdueqVfhQKiVFe1qri6iEFhK6rBO1UC706Wg85rcI9Vv6ROqSwXv-j_mJLP2prcqrf3E0MGef_m9pn-FjApKDUav5L7BCi23YekEvuAP9USAM_3vDoJQGV6zdmP0fzNuSrK9wdfbzcjzJUjuEDJUYLrOSLXeDDFhqiXVT-KEmdje8tAySZe7Ra1ejaBhTkHe2cGy4C0VCiwqdUl4Vu7C2uFvQHgyq2uWuyKULHfkcaYcuD44kOaGU1UUP5LOUDCau8NCy4tZEn0Fo04rWBNGaJNoeHHeTfrdUGe8P_xHE3w0NPNfxBsvVpG1j0BcVMWgq0VUqR7KeLPtUJBp0DE1tD3aCLrqHJDX04OBZmSbtyQcjVSBDK9ih3H971hFsTC4vpmb6a3b-DTbDYttgywGsLe8fqQ_r-Gd583B_GD-8JyPG008 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+Uncertain+Program&rft.jtitle=IEEE+access&rft.au=Shen%2C+Xun&rft.au=Zhuang%2C+Jiancang&rft.au=Zhang%2C+Xingguo&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=182357&rft.epage=182365&rft_id=info:doi/10.1109%2FACCESS.2019.2958621&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2958621 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |