Approximate Uncertain Program

Chance constrained program where one seeks to minimize an objective over decisions which satisfy randomly disturbed constraints with a given probability is computationally intractable. This paper proposes an approximate approach to address chance constrained program. Firstly, a single layer neural-n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 7; S. 182357 - 182365
Hauptverfasser: Shen, Xun, Zhuang, Jiancang, Zhang, Xingguo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Chance constrained program where one seeks to minimize an objective over decisions which satisfy randomly disturbed constraints with a given probability is computationally intractable. This paper proposes an approximate approach to address chance constrained program. Firstly, a single layer neural-network is used to approximate the function from decision domain to violation probability domain. The algorithm for updating parameters in single layer neural-network adopts sequential extreme learning machine. Based on the neural violation probability approximate model, a randomized algorithm is then proposed to approach the optimizer in the probabilistic feasible domain of decision. In the randomized algorithm, samples are extracted from decision domain uniformly at first. Then, violation probabilities of all samples are calculated according to neural violation probability approximate model. The ones with violation probability higher than the required level are discarded. The minimizer in the remained feasible decision samples is used to update sampling policy. The policy converges to the optimal feasible decision. Numerical simulations are implemented to validate the proposed method for non-convex problems comparing with scenario approach and parallel randomized algorithm. The results show that proposed method have improved performance.
AbstractList Chance constrained program where one seeks to minimize an objective over decisions which satisfy randomly disturbed constraints with a given probability is computationally intractable. This paper proposes an approximate approach to address chance constrained program. Firstly, a single layer neural-network is used to approximate the function from decision domain to violation probability domain. The algorithm for updating parameters in single layer neural-network adopts sequential extreme learning machine. Based on the neural violation probability approximate model, a randomized algorithm is then proposed to approach the optimizer in the probabilistic feasible domain of decision. In the randomized algorithm, samples are extracted from decision domain uniformly at first. Then, violation probabilities of all samples are calculated according to neural violation probability approximate model. The ones with violation probability higher than the required level are discarded. The minimizer in the remained feasible decision samples is used to update sampling policy. The policy converges to the optimal feasible decision. Numerical simulations are implemented to validate the proposed method for non-convex problems comparing with scenario approach and parallel randomized algorithm. The results show that proposed method have improved performance.
Author Zhuang, Jiancang
Zhang, Xingguo
Shen, Xun
Author_xml – sequence: 1
  givenname: Xun
  orcidid: 0000-0002-8827-5791
  surname: Shen
  fullname: Shen, Xun
  email: shen.xun@ism.ac.jp
  organization: Department of Statistical Sciences, The Graduate University for Advanced Studies, Tokyo, Japan
– sequence: 2
  givenname: Jiancang
  orcidid: 0000-0002-9708-3871
  surname: Zhuang
  fullname: Zhuang, Jiancang
  organization: Department of Statistical Sciences, The Graduate University for Advanced Studies, Tokyo, Japan
– sequence: 3
  givenname: Xingguo
  orcidid: 0000-0001-8390-642X
  surname: Zhang
  fullname: Zhang, Xingguo
  organization: Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
BookMark eNp9kE9LAzEQxYNUsNZ-giIUPG_N_02OpVQtFBRqzyGbnZQt7aZmU9Bv79atIh6cywzD_B5v3jXq1aEGhEYETwjB-n46m81XqwnFRE-oFkpScoH6lEidMcFk79d8hYZNs8VtqXYl8j66nR4OMbxXe5tgvK4dxGSrevwSwyba_Q269HbXwPDcB2j9MH-dPWXL58fFbLrMHMcqZQITUTosZE5dXjKvNAiuPLVKUUq887rIHS6xFOALywrKOeOANZau4NxzNkCLTrcMdmsOsbUTP0ywlflahLgxNqbK7cA4zyRIzoQrJCcOrAcrBAZcukJTZlutu06r_evtCE0y23CMdWvfUC6EZIxj0l7p7srF0DQRvHFVsqkKdYq22hmCzSlc04VrTuGac7gty_6w347_p0YdVQHAD6E0w1xK9gkQDYWg
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_TII_2021_3107406
crossref_primary_10_1109_TNNLS_2021_3102323
crossref_primary_10_1016_j_ifacol_2021_10_179
Cites_doi 10.1287/mnsc.6.1.73
10.1109/TAC.2006.875041
10.1137/15M1049750
10.1007/BF00935752
10.1109/TNN.2003.809401
10.1109/72.655045
10.1016/j.neucom.2005.12.126
10.1109/72.557662
10.1007/s10994-010-5183-x
10.1007/s10957-009-9523-6
10.1109/TFUZZ.2018.2849701
10.1016/j.automatica.2014.10.035
10.1007/BF00934526
10.1109/TCST.2017.2658193
10.1287/moor.6.1.19
10.1016/S0167-6377(99)00016-4
10.1007/s10957-010-9754-6
10.9746/jcmsi.11.365
10.1137/070702928
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2958621
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 182365
ExternalDocumentID oai_doaj_org_article_cf36e6435cb641ceafea550e0dcb923a
10_1109_ACCESS_2019_2958621
8930466
Genre orig-research
GrantInformation_xml – fundername: Institute of Statistical Mathematics through risk Network of Excellence Project, and The Graduate University for Advanced Studies through SOKENDAI Publication Grant
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-5015dc05672c7d3f89e548f2a88221fcf9b7c0d065efba3b24434e0906cb44f43
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509516700040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:42 EDT 2025
Sun Oct 05 00:22:08 EDT 2025
Tue Nov 18 21:17:27 EST 2025
Sat Nov 29 02:41:38 EST 2025
Wed Aug 27 02:29:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-5015dc05672c7d3f89e548f2a88221fcf9b7c0d065efba3b24434e0906cb44f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9708-3871
0000-0001-8390-642X
0000-0002-8827-5791
OpenAccessLink https://ieeexplore.ieee.org/document/8930466
PQID 2455633401
PQPubID 4845423
PageCount 9
ParticipantIDs crossref_primary_10_1109_ACCESS_2019_2958621
doaj_primary_oai_doaj_org_article_cf36e6435cb641ceafea550e0dcb923a
proquest_journals_2455633401
crossref_citationtrail_10_1109_ACCESS_2019_2958621
ieee_primary_8930466
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref14
ref11
ref10
ref1
ref17
shen (ref16) 2019
ref19
mátyáš (ref25) 1965; 26
cannon (ref12) 2018
gramacy (ref15) 2010
chong (ref24) 2001
feller (ref29) 1968
picheny (ref18) 2016
campi (ref8) 2019
ref26
prekopa (ref2) 1970
ref20
rao (ref23) 1972
ref22
ref21
ref28
ref27
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – start-page: 243
  year: 1968
  ident: ref29
  publication-title: An Introduction to Probability Theory and Its Applications
– year: 2019
  ident: ref16
  article-title: Parallel randomized algorithm for chance constrained program
  publication-title: arXiv 1911 00192v3
– ident: ref3
  doi: 10.1287/mnsc.6.1.73
– year: 2018
  ident: ref12
  article-title: Chance-constrained optimization with tight confidence bounds
  publication-title: arXiv 1711 03747
– year: 2010
  ident: ref15
  article-title: Optimization under unknown constraints
  publication-title: arXiv 1004 4027
– ident: ref9
  doi: 10.1109/TAC.2006.875041
– start-page: 113
  year: 1970
  ident: ref2
  article-title: On probabilistic constrained programming
  publication-title: Proc Princeton Symp Math Prog
– ident: ref14
  doi: 10.1137/15M1049750
– ident: ref26
  doi: 10.1007/BF00935752
– ident: ref19
  doi: 10.1109/TNN.2003.809401
– ident: ref20
  doi: 10.1109/72.655045
– ident: ref22
  doi: 10.1016/j.neucom.2005.12.126
– start-page: 227
  year: 2001
  ident: ref24
  publication-title: An Introduction to Optimization
– year: 1972
  ident: ref23
  publication-title: Generalized Inverse of Matrices and its Applications
– start-page: 1
  year: 2019
  ident: ref8
  publication-title: Introduction to the Scenario Approach
– ident: ref21
  doi: 10.1109/72.557662
– ident: ref7
  doi: 10.1007/s10994-010-5183-x
– ident: ref13
  doi: 10.1007/s10957-009-9523-6
– ident: ref17
  doi: 10.1109/TFUZZ.2018.2849701
– ident: ref4
  doi: 10.1016/j.automatica.2014.10.035
– ident: ref27
  doi: 10.1007/BF00934526
– volume: 26
  start-page: 246
  year: 1965
  ident: ref25
  article-title: Random optimization
  publication-title: Autom Remote Control
– ident: ref5
  doi: 10.1109/TCST.2017.2658193
– ident: ref28
  doi: 10.1287/moor.6.1.19
– year: 2016
  ident: ref18
  article-title: Bayesian optimization under mixed constraints with a slack-variable augmented Lagrangian
  publication-title: arXiv 1605 09466
– ident: ref1
  doi: 10.1016/S0167-6377(99)00016-4
– ident: ref11
  doi: 10.1007/s10957-010-9754-6
– ident: ref6
  doi: 10.9746/jcmsi.11.365
– ident: ref10
  doi: 10.1137/070702928
SSID ssj0000816957
Score 2.171463
Snippet Chance constrained program where one seeks to minimize an objective over decisions which satisfy randomly disturbed constraints with a given probability is...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 182357
SubjectTerms Algorithms
Approximation algorithms
Artificial neural networks
Chance constrained program
Constraints
Domains
extreme learning machine
Indexes
Machine learning
Mathematical models
Neural networks
Optimization
Probabilistic logic
Probability
randomized optimization
Statistical analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (WRLC)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA0iHvQgahVXW9mDR9cm2exHjrVYPJUeLPQWktkEClKlreLPd5JNS0XQi9cl-5F5u5k3m-E9Qm6l0F5CpMgssvlMgGOZ5kAzDkb7baLSgQhmE9V4XM9mcrJj9eV7wlp54DZwfXB5aTFtFmBKwcBqZzWyaksbMEhOAjWildwppsIaXLNSFlWUGWJU9gfDIc7I93LJey4LJPLsWyoKiv3RYuXHuhySzeiEHEeWmA7apzsle3ZxRo52tAM7pDfwauCfc2ScNp0idGFrP520_VbnZDp6fB4-ZdHrIANB63VWYFpuANlIxaFqcldLi7WE4xoZMGcOnDQV0AYJg3VG5wazci4slbQEI4QT-QXZX7wu7CVJy8owkzNuvN2esdKAYb5KtIYKoWWeEL6ZtoIoBO79KF5UKAioVG2slI-VirFKyN32pLdWB-P34Q8-ntuhXsQ6HEBoVYRW_QVtQjoeje1FkFphNV8mpLtBR8UPbqW48EpnOVaLV_9x62ty6KfT_mvpkv318t32yAF8rOer5U14174APw_UZg
  priority: 102
  providerName: Directory of Open Access Journals
Title Approximate Uncertain Program
URI https://ieeexplore.ieee.org/document/8930466
https://www.proquest.com/docview/2455633401
https://doaj.org/article/cf36e6435cb641ceafea550e0dcb923a
Volume 7
WOSCitedRecordID wos000509516700040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB1UPOjBb3HVlT14tJqmabs5rouLF8WDgreQTCcgyCq6iid_u5M0FkURvJRSkpLMNJ338vEG4FArGyREyowYzWcKfZ5ZiSKT6GxYJqo8qphsor68HN7e6qs5OOrOwhBR3HxGx-E2ruU3D_gSpspOOLYynavmYb6uq_asVjefEhJI6LJOwkK50Cej8Zj7EHZv6WOpS4bu-bfgEzX6U1KVH3_iGF4mq_9r2BqsJBg5GLV-X4c5mm7A8hdxwU3oj4Jc-NsdQ1Ia3LBv49r_4KrdkLUFN5Oz6_F5lpIhZKjEcJaVHLcbZLhSS6ybwg81Mdnw0jJElrlHr12NomFEQd7ZwnHYLhQJLSp0SnlVbMPC9GFKOzCoape7Ipcu5ONzpB26PNBIckIpq4seyE8rGUxK4SFhxb2JjEFo05rWBNOaZNoeHHWVHluhjL-Lnwbzd0WDynV8wHY1adAY9EVFDJlKdJXKkawny4yKRIOOgantwWbwRfeS5IYe7H8606QR-WykClJoBdPJ3d9r7cFSaGA7vbIPC7OnF-rDIr7O7p6fDiJX5-vF-9lB_PA-APQm0i4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB_UE9SH-9AT13N1H-7Rapqm7eZxbznZw3XZBwXfQjKdgCDroetxf76TNBYPRbi3UpKSzjSd33zkNwDftbKBQqTMiNF8ptDnmZUoMonOhjRR5VHFZhP1bDa8vtbzFTjuzsIQUSw-o5NwGXP5zR0-hlDZKdtWdueqVfhQKiVFe1qri6iEFhK6rBO1UC706Wg85rcI9Vv6ROqSwXv-j_mJLP2prcqrf3E0MGef_m9pn-FjApKDUav5L7BCi23YekEvuAP9USAM_3vDoJQGV6zdmP0fzNuSrK9wdfbzcjzJUjuEDJUYLrOSLXeDDFhqiXVT-KEmdje8tAySZe7Ra1ejaBhTkHe2cGy4C0VCiwqdUl4Vu7C2uFvQHgyq2uWuyKULHfkcaYcuD44kOaGU1UUP5LOUDCau8NCy4tZEn0Fo04rWBNGaJNoeHHeTfrdUGe8P_xHE3w0NPNfxBsvVpG1j0BcVMWgq0VUqR7KeLPtUJBp0DE1tD3aCLrqHJDX04OBZmSbtyQcjVSBDK9ih3H971hFsTC4vpmb6a3b-DTbDYttgywGsLe8fqQ_r-Gd583B_GD-8JyPG008
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+Uncertain+Program&rft.jtitle=IEEE+access&rft.au=Shen%2C+Xun&rft.au=Zhuang%2C+Jiancang&rft.au=Zhang%2C+Xingguo&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=182357&rft.epage=182365&rft_id=info:doi/10.1109%2FACCESS.2019.2958621&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2958621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon