Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark on a Mesos Big Data Cloud Computing Software Framework for Mobile Robotic Intelligent Fault Recognition
An accurate and efficient intelligent fault diagnosis of mobile robotic roller bearings can significantly enhance the reliability and safety of mechanical systems. To improve the efficiency of intelligent fault classification of mobile robotic roller bearings, this paper proposes a parallel machine...
Uloženo v:
| Vydáno v: | IEEE access Ročník 8; s. 131885 - 131900 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | An accurate and efficient intelligent fault diagnosis of mobile robotic roller bearings can significantly enhance the reliability and safety of mechanical systems. To improve the efficiency of intelligent fault classification of mobile robotic roller bearings, this paper proposes a parallel machine learning algorithm using fine-grained-mode Spark on a Mesos big data cloud computing software framework. Through the segmentation of datasets and the support of a parallel framework, the parallel processing technology Spark is combined with a support vector machine (SVM), and a parallel single-SVM algorithm is realized using Scala language. In this approach, empirical mode decomposition (EMD) is applied to extract the energy of the acceleration vibration signal in different frequency bands as features. The parallel EMD-SVM approach is applied to detect faults in mobile robotic roller bearings from fault vibration signals. The experimental results show that it can accurately and effectively identify the faults, and it outperforms existing methods based on parallel deep belief network (DBN) and parallel radial basis function neural network under different training set sizes. Fault classification tests are conducted on outer-race and inner-race faults: in both cases, the proposed parallel EMD-SVM outperforms the serial EMD-SVM in terms of the classification accuracy and classification time under different test sizes. For a small number of nodes, the processing time of the proposed Spark model is less than that of Hadoop but close to that of Storm. For 17 slave nodes, the average precision, average recall, and average F1 score of Spark on Mesos in the fine-grained mode reach 97.3, 97.8, and 97.9%, respectively. The parallel EMD-SVM algorithm in the big data Spark cloud computing framework can improve the accuracy of intelligent fault classification, albeit by a small margin, with higher processing speed and learning convergence rate. |
|---|---|
| AbstractList | An accurate and efficient intelligent fault diagnosis of mobile robotic roller bearings can significantly enhance the reliability and safety of mechanical systems. To improve the efficiency of intelligent fault classification of mobile robotic roller bearings, this paper proposes a parallel machine learning algorithm using fine-grained-mode Spark on a Mesos big data cloud computing software framework. Through the segmentation of datasets and the support of a parallel framework, the parallel processing technology Spark is combined with a support vector machine (SVM), and a parallel single-SVM algorithm is realized using Scala language. In this approach, empirical mode decomposition (EMD) is applied to extract the energy of the acceleration vibration signal in different frequency bands as features. The parallel EMD-SVM approach is applied to detect faults in mobile robotic roller bearings from fault vibration signals. The experimental results show that it can accurately and effectively identify the faults, and it outperforms existing methods based on parallel deep belief network (DBN) and parallel radial basis function neural network under different training set sizes. Fault classification tests are conducted on outer-race and inner-race faults: in both cases, the proposed parallel EMD-SVM outperforms the serial EMD-SVM in terms of the classification accuracy and classification time under different test sizes. For a small number of nodes, the processing time of the proposed Spark model is less than that of Hadoop but close to that of Storm. For 17 slave nodes, the average precision, average recall, and average F1 score of Spark on Mesos in the fine-grained mode reach 97.3, 97.8, and 97.9%, respectively. The parallel EMD-SVM algorithm in the big data Spark cloud computing framework can improve the accuracy of intelligent fault classification, albeit by a small margin, with higher processing speed and learning convergence rate. |
| Author | Xian, Guangming |
| Author_xml | – sequence: 1 givenname: Guangming orcidid: 0000-0001-6476-5967 surname: Xian fullname: Xian, Guangming email: xgm20011@sina.com organization: School of Software, South China Normal University, Foshan, China |
| BookMark | eNp9kc1u1DAQxyNUJErpE_RiiXMWf8TZ5LiEbllpV6AuPVuTZJx68dqL41XFI_GWOKQgxAEfPB-e32g8_9fZhfMOs-yG0QVjtH63aprb_X7BKacLQemyqOsX2SVnZZ0LKcqLv_xX2fU4Hmg6VUrJ5WX24zMEsBYt2UH3aBySLUJwxg1kZQcfTHw8kodxitfpNb8LkEyf73yPZH-C8JV4R4DscPQjeW8G8gEikMb6c08afzyd48TuvY5PEJCsAxzxySdM-0B2vjUWyb1vfTQd2biI1poBXSRrONtI7rHzgzPRePcme6nBjnj9bK-yh_Xtl-Zjvv10t2lW27wraBXzomopAvCWSVhSAMqmEHSFui2XvCqFpFrSrmI97dMSWC8rITUTHS04o1JcZZu5b-_hoE7BHCF8Vx6M-pXwYVAQ0rQWVVlx3qLkUFS6oAJa1MBlpeu2KrSol6nX27nXKfhvZxyjOvhzcGl8xQtZlIXgBU9V9VzVBT-OAbXqTITpzzFt2ypG1SS0moVWk9DqWejEin_Y3xP_n7qZKYOIf4iaCSHT9RMCa7dM |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3089251 crossref_primary_10_1109_ACCESS_2021_3072596 crossref_primary_10_1109_TASE_2020_3048056 crossref_primary_10_1016_j_measurement_2021_110058 crossref_primary_10_3390_mi13091538 crossref_primary_10_1007_s00500_023_08112_0 crossref_primary_10_1016_j_jpdc_2022_04_004 crossref_primary_10_1080_10739149_2024_2306462 crossref_primary_10_1007_s11265_023_01845_z |
| Cites_doi | 10.1016/j.jpdc.2018.04.006 10.1109/TNN.2003.820556 10.1109/TNSRE.2008.918422 10.1016/j.neucom.2016.10.041 10.1016/j.neucom.2012.12.001 10.1162/neco_a_01149 10.1016/j.measurement.2014.09.037 10.1016/j.future.2019.11.036 10.1016/j.dsp.2018.04.008 10.1016/j.jpdc.2019.01.002 10.1016/j.jpdc.2020.03.010 10.1016/j.future.2018.01.047 10.1016/j.eswa.2017.03.053 10.1016/j.jmatprotec.2016.07.015 10.1016/j.neucom.2017.03.060 10.1016/j.jpsychires.2019.12.005 10.1016/j.ipl.2019.01.001 10.1016/j.future.2019.05.077 10.1016/j.jocs.2017.04.008 10.1016/j.artmed.2018.04.002 10.1016/j.dam.2016.04.016 10.1016/j.compbiomed.2013.04.002 10.1016/j.camwa.2013.07.015 10.1109/TGRS.2004.827257 10.1016/j.bspc.2016.05.004 10.1016/j.neucom.2020.02.028 10.1007/s11227-019-02894-7 10.1016/j.measurement.2006.10.010 10.1016/j.future.2019.03.044 10.1109/TPWRD.2005.852392 10.1016/j.tcs.2018.09.013 10.1016/j.asej.2015.08.005 10.1016/j.eswa.2014.11.047 10.1016/j.measurement.2012.10.026 10.1016/j.ymssp.2012.09.015 10.1016/j.sigpro.2013.11.012 10.1109/TIE.2019.2934055 10.1007/s11277-018-5301-9 10.1109/TIM.2014.2330494 10.1016/j.neucom.2019.01.038 10.1016/j.dsp.2014.12.015 10.4310/JOC.2018.v9.n1.a2 10.1016/j.jhydrol.2018.11.015 10.1016/j.future.2019.02.047 10.1016/j.oceaneng.2016.05.049 10.1109/TC.2017.2669964 10.1109/TNSRE.2010.2100828 10.1007/BF00994018 10.4018/JOEUC.2020040104 10.1016/j.asoc.2014.04.017 10.1109/TMAG.2005.846231 10.1016/j.future.2019.04.017 10.1146/annurev.fluid.31.1.417 10.1109/MS.2016.18 10.1016/j.jsv.2008.01.020 10.1016/j.neuroimage.2019.05.082 10.1016/j.neucom.2014.05.072 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2020.3007499 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 131900 |
| ExternalDocumentID | oai_doaj_org_article_6822be52a48f403abefa258f9b84f397 10_1109_ACCESS_2020_3007499 9133591 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: South China University of Technology funderid: 10.13039/501100005015 – fundername: National Natural Science Foundation of China, a Computing Model Based on Formal Domain Fusion grantid: 61070015 funderid: 10.13039/501100001809 – fundername: South China Normal University funderid: 10.13039/501100003169 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-48b0eaa2b15a70aa010eaaaf8efb67286350f50c81d0d1691d5835f13c0421053 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552983500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:29:19 EDT 2025 Mon Jun 30 04:37:36 EDT 2025 Sat Nov 29 04:13:55 EST 2025 Tue Nov 18 21:48:01 EST 2025 Wed Aug 27 02:32:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-48b0eaa2b15a70aa010eaaaf8efb67286350f50c81d0d1691d5835f13c0421053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6476-5967 |
| OpenAccessLink | https://doaj.org/article/6822be52a48f403abefa258f9b84f397 |
| PQID | 2454643242 |
| PQPubID | 4845423 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2454643242 doaj_primary_oai_doaj_org_article_6822be52a48f403abefa258f9b84f397 ieee_primary_9133591 crossref_citationtrail_10_1109_ACCESS_2020_3007499 crossref_primary_10_1109_ACCESS_2020_3007499 |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref19 ref18 ref51 ref50 ref46 ref45 ref48 corinna (ref16) 1995; 20 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 mohammadi (ref17) 2020; 11 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref1 doi: 10.1016/j.jpdc.2018.04.006 – ident: ref18 doi: 10.1109/TNN.2003.820556 – ident: ref32 doi: 10.1109/TNSRE.2008.918422 – ident: ref37 doi: 10.1016/j.neucom.2016.10.041 – ident: ref6 doi: 10.1016/j.neucom.2012.12.001 – ident: ref29 doi: 10.1162/neco_a_01149 – ident: ref22 doi: 10.1016/j.measurement.2014.09.037 – ident: ref40 doi: 10.1016/j.future.2019.11.036 – ident: ref36 doi: 10.1016/j.dsp.2018.04.008 – ident: ref44 doi: 10.1016/j.jpdc.2019.01.002 – ident: ref39 doi: 10.1016/j.jpdc.2020.03.010 – ident: ref2 doi: 10.1016/j.future.2018.01.047 – ident: ref3 doi: 10.1016/j.eswa.2017.03.053 – ident: ref23 doi: 10.1016/j.jmatprotec.2016.07.015 – ident: ref35 doi: 10.1016/j.neucom.2017.03.060 – ident: ref55 doi: 10.1016/j.jpsychires.2019.12.005 – volume: 11 start-page: 49 year: 2020 ident: ref17 article-title: A comparative study of svm and rf methods for classification of alteration zones using remotely sensed data publication-title: Mining and the Environment – ident: ref27 doi: 10.1016/j.ipl.2019.01.001 – ident: ref41 doi: 10.1016/j.future.2019.05.077 – ident: ref25 doi: 10.1016/j.jocs.2017.04.008 – ident: ref38 doi: 10.1016/j.artmed.2018.04.002 – ident: ref31 doi: 10.1016/j.dam.2016.04.016 – ident: ref21 doi: 10.1016/j.compbiomed.2013.04.002 – ident: ref47 doi: 10.1016/j.camwa.2013.07.015 – ident: ref33 doi: 10.1109/TGRS.2004.827257 – ident: ref4 doi: 10.1016/j.bspc.2016.05.004 – ident: ref49 doi: 10.1016/j.neucom.2020.02.028 – ident: ref5 doi: 10.1007/s11227-019-02894-7 – ident: ref10 doi: 10.1016/j.measurement.2006.10.010 – ident: ref42 doi: 10.1016/j.future.2019.03.044 – ident: ref50 doi: 10.1109/TPWRD.2005.852392 – ident: ref28 doi: 10.1016/j.tcs.2018.09.013 – ident: ref19 doi: 10.1016/j.asej.2015.08.005 – ident: ref26 doi: 10.1016/j.eswa.2014.11.047 – ident: ref9 doi: 10.1016/j.measurement.2012.10.026 – ident: ref11 doi: 10.1016/j.ymssp.2012.09.015 – ident: ref8 doi: 10.1016/j.sigpro.2013.11.012 – ident: ref48 doi: 10.1109/TIE.2019.2934055 – ident: ref46 doi: 10.1007/s11277-018-5301-9 – ident: ref7 doi: 10.1109/TIM.2014.2330494 – ident: ref52 doi: 10.1016/j.neucom.2019.01.038 – ident: ref15 doi: 10.1016/j.dsp.2014.12.015 – ident: ref30 doi: 10.4310/JOC.2018.v9.n1.a2 – ident: ref51 doi: 10.1016/j.jhydrol.2018.11.015 – ident: ref43 doi: 10.1016/j.future.2019.02.047 – ident: ref20 doi: 10.1016/j.oceaneng.2016.05.049 – ident: ref58 doi: 10.1109/TC.2017.2669964 – ident: ref13 doi: 10.1109/TNSRE.2010.2100828 – volume: 20 start-page: 273 year: 1995 ident: ref16 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1007/BF00994018 – ident: ref56 doi: 10.4018/JOEUC.2020040104 – ident: ref14 doi: 10.1016/j.asoc.2014.04.017 – ident: ref34 doi: 10.1109/TMAG.2005.846231 – ident: ref54 doi: 10.1016/j.future.2019.04.017 – ident: ref24 doi: 10.1146/annurev.fluid.31.1.417 – ident: ref57 doi: 10.1109/MS.2016.18 – ident: ref12 doi: 10.1016/j.jsv.2008.01.020 – ident: ref53 doi: 10.1016/j.neuroimage.2019.05.082 – ident: ref45 doi: 10.1016/j.neucom.2014.05.072 |
| SSID | ssj0000816957 |
| Score | 2.299723 |
| Snippet | An accurate and efficient intelligent fault diagnosis of mobile robotic roller bearings can significantly enhance the reliability and safety of mechanical... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 131885 |
| SubjectTerms | Acceleration Accuracy Algorithms Belief networks Big Data big data Spark Classification Cloud computing cloud computing software framework empirical mode decomposition Fault detection Fault diagnosis Feature extraction Frequencies intelligent fault recognition Machine learning Machine learning algorithms Mechanical systems mesos cluster manager mobile robotic roller bearing Neural networks Nodes parallel deep belief network Parallel machine learning algorithm Parallel processing parallel support vector machine Radial basis function Robotics Robots Roller bearings Rolling bearings Segmentation Software Sparks Support vector machines Vibration |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKxQEOfBXEloLmwLGhTmIn8XG7EEBiq6oFqbfITuztihBX2Wz5TfxLxo43IIGQuOXDjhzNZPzGGb9HyGvuGAsaKqKmiLOIZZpFSuV1ZHA-UDzVtdSeZ_ZTfnZWXF2J8z1yPO2F0Vr74jP9xh36f_mNrbduqexEYELF3Vb1O3mejXu1pvUUJyAheB6IhWIqTuaLBb4DpoAJZqZuqvT8rr8mH8_RH0RV_ojEfnopH_7fwB6RBwFGwny0-2Oyp7sn5P5v5IIH5Me57J1QSgtLXzCpIXCprmDermy_Hq6_ga8YgBLvRu-dWIRuIqeOBpc3sv8KtgMJS72xGzhdr-CtHCQsWrttYBSDcH0vMY5_l72GclfmBYiDYWkVxhu4sMriEOHjxPw5QCm37QAXu8ol2z0lX8p3nxcfoiDMENWMFkPECkW1lImKucyplJjT4ak0hTYqy5MCQQw1nNaIhWnj2HgajkDPxGmNIQIBXfqM7He2088JiIw7-heR09owNJsSTOVMM664ilOjZyTZWayqA2u5E89oK5-9UFGNZq6cmatg5hk5njrdjKQd_25-6lxhauoYt_0FtHEVPuAqQySlNE8kKwyjqVTayIQXRqiCGQR1M3Lg_GJ6SHCJGTnaOVYVosOmShhnmaNCTA7_3usFuecGOC71HJH9od_ql-RufTusN_0r7_g_AQP4AZM priority: 102 providerName: IEEE |
| Title | Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark on a Mesos Big Data Cloud Computing Software Framework for Mobile Robotic Intelligent Fault Recognition |
| URI | https://ieeexplore.ieee.org/document/9133591 https://www.proquest.com/docview/2454643242 https://doaj.org/article/6822be52a48f403abefa258f9b84f397 |
| Volume | 8 |
| WOSCitedRecordID | wos000552983500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOCCiIhVLNgSNWncRO7ON2aQCJraoWpN4sO7GXipBU2Szc-D_8S8ZOdlkJCS5cIiWxYzszmQ9r8h4hr0RALKiZorVMcspzx6m1RUU9-gMrMlcZF3FmPxTn5_L6Wl3sUX2FmrARHnh8cSc5ejDrRGq49JxlxjpvUiG9spJ7dKbB-rJC7SVT0QbjyEoUE8xQwtTJfLHAFWFCmGKeGhxnRHv97YoiYv9EsfKHXY7OpnxIHkxRIszH2T0id1z7mNzfww48JD8vTB94UBpYxnpIBxNU6grmzarDnP_zV4gFAVDiXfo2cEG4mgbyM7i6Nf0X6FowsHTrbg2nNyt4YwYDi6bb1DByPYS-V2imv5veQbmt4gIMc2HZWTQncNnZDqcI73fAngOUZtMMcLktTOraJ-RTefZx8Y5OvAu04kwOlEvLnDGpTYQpmDGYsuGp8dJ5mxepxBiFecEqDHVZHcB2aoFxnE-yCi0AxmvZU3LQdq17RkDlIqC7qIJVnqMcrOK24I4LK2ySeTcj6VYEuppAyQM3RqNjcsKUHuWmg9z0JLcZeb3rdDticvy9-WmQ7a5pANSOF1DN9KRm-l9qNiOHQTN2D1GY2wuVzMjRVlP09PGvdcoFzwPSYfr8fwz9gtwLyxn3fY7IwdBv3Etyt_o23Kz746j3eFz-ODuOfy_-AoKIBuQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqggQceBXEQoE5cGyok9h5HLcLoRW7q6otUm-WndjLihBX2Sz8Jv4lYycbkEBI3PKwI0czGX_jjL-PkDfcMRZUNA-qLEwClmgWKJWWgcH5QPFYl1J7ntl5ulxm19f5-R45GvfCaK198Zl-6w79v_zKllu3VHacY0LF3Vb1W5yxiPa7tcYVFSchkfN0oBYKaX48nc3wLTAJjDA3dZOlZ3j9Nf14lv5BVuWPWOwnmOLB_w3tIbk_AEmY9pZ_RPZ085jc-41e8ID8OJetk0qpYeFLJjUMbKormNYr2667z1_B1wxAgXeDD04uQleB00eDyxvZfgHbgISF3tgNnKxX8E52Ema13VbQy0G4vpcYyb_LVkOxK_QCRMKwsAojDlxYZXGIcDZyf3ZQyG3dwcWudsk2T8in4v3V7DQYpBmCktGsC1imqJYyUiGXKZUSszo8lSbTRiVplCGMoYbTEtEwrRwfT8UR6pkwLjFIIKSLn5L9xjb6GYE84Y4AJk9paRiaTeVMpUwzrrgKY6MnJNpZTJQDb7mTz6iFz19oLnozC2dmMZh5Qo7GTjc9bce_m584VxibOs5tfwFtLIZPWCSIpZTmkWSZYTSWShsZ8czkKmMGYd2EHDi_GB8yuMSEHO4cSwzxYSMixlniyBCj53_v9ZrcOb1azMX8bPnxBbnrBtsv_ByS_a7d6pfkdvmtW2_aV_4j-AmF5ATa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Machine+Learning+Algorithm+Using+Fine-Grained-Mode+Spark+on+a+Mesos+Big+Data+Cloud+Computing+Software+Framework+for+Mobile+Robotic+Intelligent+Fault+Recognition&rft.jtitle=IEEE+access&rft.au=Xian%2C+Guangming&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=131885&rft.epage=131900&rft_id=info:doi/10.1109%2FACCESS.2020.3007499&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3007499 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |