Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark on a Mesos Big Data Cloud Computing Software Framework for Mobile Robotic Intelligent Fault Recognition

An accurate and efficient intelligent fault diagnosis of mobile robotic roller bearings can significantly enhance the reliability and safety of mechanical systems. To improve the efficiency of intelligent fault classification of mobile robotic roller bearings, this paper proposes a parallel machine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 8; S. 131885 - 131900
1. Verfasser: Xian, Guangming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract An accurate and efficient intelligent fault diagnosis of mobile robotic roller bearings can significantly enhance the reliability and safety of mechanical systems. To improve the efficiency of intelligent fault classification of mobile robotic roller bearings, this paper proposes a parallel machine learning algorithm using fine-grained-mode Spark on a Mesos big data cloud computing software framework. Through the segmentation of datasets and the support of a parallel framework, the parallel processing technology Spark is combined with a support vector machine (SVM), and a parallel single-SVM algorithm is realized using Scala language. In this approach, empirical mode decomposition (EMD) is applied to extract the energy of the acceleration vibration signal in different frequency bands as features. The parallel EMD-SVM approach is applied to detect faults in mobile robotic roller bearings from fault vibration signals. The experimental results show that it can accurately and effectively identify the faults, and it outperforms existing methods based on parallel deep belief network (DBN) and parallel radial basis function neural network under different training set sizes. Fault classification tests are conducted on outer-race and inner-race faults: in both cases, the proposed parallel EMD-SVM outperforms the serial EMD-SVM in terms of the classification accuracy and classification time under different test sizes. For a small number of nodes, the processing time of the proposed Spark model is less than that of Hadoop but close to that of Storm. For 17 slave nodes, the average precision, average recall, and average F1 score of Spark on Mesos in the fine-grained mode reach 97.3, 97.8, and 97.9%, respectively. The parallel EMD-SVM algorithm in the big data Spark cloud computing framework can improve the accuracy of intelligent fault classification, albeit by a small margin, with higher processing speed and learning convergence rate.
AbstractList An accurate and efficient intelligent fault diagnosis of mobile robotic roller bearings can significantly enhance the reliability and safety of mechanical systems. To improve the efficiency of intelligent fault classification of mobile robotic roller bearings, this paper proposes a parallel machine learning algorithm using fine-grained-mode Spark on a Mesos big data cloud computing software framework. Through the segmentation of datasets and the support of a parallel framework, the parallel processing technology Spark is combined with a support vector machine (SVM), and a parallel single-SVM algorithm is realized using Scala language. In this approach, empirical mode decomposition (EMD) is applied to extract the energy of the acceleration vibration signal in different frequency bands as features. The parallel EMD-SVM approach is applied to detect faults in mobile robotic roller bearings from fault vibration signals. The experimental results show that it can accurately and effectively identify the faults, and it outperforms existing methods based on parallel deep belief network (DBN) and parallel radial basis function neural network under different training set sizes. Fault classification tests are conducted on outer-race and inner-race faults: in both cases, the proposed parallel EMD-SVM outperforms the serial EMD-SVM in terms of the classification accuracy and classification time under different test sizes. For a small number of nodes, the processing time of the proposed Spark model is less than that of Hadoop but close to that of Storm. For 17 slave nodes, the average precision, average recall, and average F1 score of Spark on Mesos in the fine-grained mode reach 97.3, 97.8, and 97.9%, respectively. The parallel EMD-SVM algorithm in the big data Spark cloud computing framework can improve the accuracy of intelligent fault classification, albeit by a small margin, with higher processing speed and learning convergence rate.
Author Xian, Guangming
Author_xml – sequence: 1
  givenname: Guangming
  orcidid: 0000-0001-6476-5967
  surname: Xian
  fullname: Xian, Guangming
  email: xgm20011@sina.com
  organization: School of Software, South China Normal University, Foshan, China
BookMark eNp9kc1u1DAQxyNUJErpE_RiiXMWf8TZ5LiEbllpV6AuPVuTZJx68dqL41XFI_GWOKQgxAEfPB-e32g8_9fZhfMOs-yG0QVjtH63aprb_X7BKacLQemyqOsX2SVnZZ0LKcqLv_xX2fU4Hmg6VUrJ5WX24zMEsBYt2UH3aBySLUJwxg1kZQcfTHw8kodxitfpNb8LkEyf73yPZH-C8JV4R4DscPQjeW8G8gEikMb6c08afzyd48TuvY5PEJCsAxzxySdM-0B2vjUWyb1vfTQd2biI1poBXSRrONtI7rHzgzPRePcme6nBjnj9bK-yh_Xtl-Zjvv10t2lW27wraBXzomopAvCWSVhSAMqmEHSFui2XvCqFpFrSrmI97dMSWC8rITUTHS04o1JcZZu5b-_hoE7BHCF8Vx6M-pXwYVAQ0rQWVVlx3qLkUFS6oAJa1MBlpeu2KrSol6nX27nXKfhvZxyjOvhzcGl8xQtZlIXgBU9V9VzVBT-OAbXqTITpzzFt2ypG1SS0moVWk9DqWejEin_Y3xP_n7qZKYOIf4iaCSHT9RMCa7dM
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3089251
crossref_primary_10_1109_ACCESS_2021_3072596
crossref_primary_10_1109_TASE_2020_3048056
crossref_primary_10_1016_j_measurement_2021_110058
crossref_primary_10_3390_mi13091538
crossref_primary_10_1007_s00500_023_08112_0
crossref_primary_10_1016_j_jpdc_2022_04_004
crossref_primary_10_1080_10739149_2024_2306462
crossref_primary_10_1007_s11265_023_01845_z
Cites_doi 10.1016/j.jpdc.2018.04.006
10.1109/TNN.2003.820556
10.1109/TNSRE.2008.918422
10.1016/j.neucom.2016.10.041
10.1016/j.neucom.2012.12.001
10.1162/neco_a_01149
10.1016/j.measurement.2014.09.037
10.1016/j.future.2019.11.036
10.1016/j.dsp.2018.04.008
10.1016/j.jpdc.2019.01.002
10.1016/j.jpdc.2020.03.010
10.1016/j.future.2018.01.047
10.1016/j.eswa.2017.03.053
10.1016/j.jmatprotec.2016.07.015
10.1016/j.neucom.2017.03.060
10.1016/j.jpsychires.2019.12.005
10.1016/j.ipl.2019.01.001
10.1016/j.future.2019.05.077
10.1016/j.jocs.2017.04.008
10.1016/j.artmed.2018.04.002
10.1016/j.dam.2016.04.016
10.1016/j.compbiomed.2013.04.002
10.1016/j.camwa.2013.07.015
10.1109/TGRS.2004.827257
10.1016/j.bspc.2016.05.004
10.1016/j.neucom.2020.02.028
10.1007/s11227-019-02894-7
10.1016/j.measurement.2006.10.010
10.1016/j.future.2019.03.044
10.1109/TPWRD.2005.852392
10.1016/j.tcs.2018.09.013
10.1016/j.asej.2015.08.005
10.1016/j.eswa.2014.11.047
10.1016/j.measurement.2012.10.026
10.1016/j.ymssp.2012.09.015
10.1016/j.sigpro.2013.11.012
10.1109/TIE.2019.2934055
10.1007/s11277-018-5301-9
10.1109/TIM.2014.2330494
10.1016/j.neucom.2019.01.038
10.1016/j.dsp.2014.12.015
10.4310/JOC.2018.v9.n1.a2
10.1016/j.jhydrol.2018.11.015
10.1016/j.future.2019.02.047
10.1016/j.oceaneng.2016.05.049
10.1109/TC.2017.2669964
10.1109/TNSRE.2010.2100828
10.1007/BF00994018
10.4018/JOEUC.2020040104
10.1016/j.asoc.2014.04.017
10.1109/TMAG.2005.846231
10.1016/j.future.2019.04.017
10.1146/annurev.fluid.31.1.417
10.1109/MS.2016.18
10.1016/j.jsv.2008.01.020
10.1016/j.neuroimage.2019.05.082
10.1016/j.neucom.2014.05.072
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.3007499
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 131900
ExternalDocumentID oai_doaj_org_article_6822be52a48f403abefa258f9b84f397
10_1109_ACCESS_2020_3007499
9133591
Genre orig-research
GrantInformation_xml – fundername: South China University of Technology
  funderid: 10.13039/501100005015
– fundername: National Natural Science Foundation of China, a Computing Model Based on Formal Domain Fusion
  grantid: 61070015
  funderid: 10.13039/501100001809
– fundername: South China Normal University
  funderid: 10.13039/501100003169
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-48b0eaa2b15a70aa010eaaaf8efb67286350f50c81d0d1691d5835f13c0421053
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552983500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:29:19 EDT 2025
Mon Jun 30 04:37:36 EDT 2025
Sat Nov 29 04:13:55 EST 2025
Tue Nov 18 21:48:01 EST 2025
Wed Aug 27 02:32:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-48b0eaa2b15a70aa010eaaaf8efb67286350f50c81d0d1691d5835f13c0421053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6476-5967
OpenAccessLink https://ieeexplore.ieee.org/document/9133591
PQID 2454643242
PQPubID 4845423
PageCount 16
ParticipantIDs proquest_journals_2454643242
doaj_primary_oai_doaj_org_article_6822be52a48f403abefa258f9b84f397
ieee_primary_9133591
crossref_citationtrail_10_1109_ACCESS_2020_3007499
crossref_primary_10_1109_ACCESS_2020_3007499
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref19
ref18
ref51
ref50
ref46
ref45
ref48
corinna (ref16) 1995; 20
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
mohammadi (ref17) 2020; 11
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref1
  doi: 10.1016/j.jpdc.2018.04.006
– ident: ref18
  doi: 10.1109/TNN.2003.820556
– ident: ref32
  doi: 10.1109/TNSRE.2008.918422
– ident: ref37
  doi: 10.1016/j.neucom.2016.10.041
– ident: ref6
  doi: 10.1016/j.neucom.2012.12.001
– ident: ref29
  doi: 10.1162/neco_a_01149
– ident: ref22
  doi: 10.1016/j.measurement.2014.09.037
– ident: ref40
  doi: 10.1016/j.future.2019.11.036
– ident: ref36
  doi: 10.1016/j.dsp.2018.04.008
– ident: ref44
  doi: 10.1016/j.jpdc.2019.01.002
– ident: ref39
  doi: 10.1016/j.jpdc.2020.03.010
– ident: ref2
  doi: 10.1016/j.future.2018.01.047
– ident: ref3
  doi: 10.1016/j.eswa.2017.03.053
– ident: ref23
  doi: 10.1016/j.jmatprotec.2016.07.015
– ident: ref35
  doi: 10.1016/j.neucom.2017.03.060
– ident: ref55
  doi: 10.1016/j.jpsychires.2019.12.005
– volume: 11
  start-page: 49
  year: 2020
  ident: ref17
  article-title: A comparative study of svm and rf methods for classification of alteration zones using remotely sensed data
  publication-title: Mining and the Environment
– ident: ref27
  doi: 10.1016/j.ipl.2019.01.001
– ident: ref41
  doi: 10.1016/j.future.2019.05.077
– ident: ref25
  doi: 10.1016/j.jocs.2017.04.008
– ident: ref38
  doi: 10.1016/j.artmed.2018.04.002
– ident: ref31
  doi: 10.1016/j.dam.2016.04.016
– ident: ref21
  doi: 10.1016/j.compbiomed.2013.04.002
– ident: ref47
  doi: 10.1016/j.camwa.2013.07.015
– ident: ref33
  doi: 10.1109/TGRS.2004.827257
– ident: ref4
  doi: 10.1016/j.bspc.2016.05.004
– ident: ref49
  doi: 10.1016/j.neucom.2020.02.028
– ident: ref5
  doi: 10.1007/s11227-019-02894-7
– ident: ref10
  doi: 10.1016/j.measurement.2006.10.010
– ident: ref42
  doi: 10.1016/j.future.2019.03.044
– ident: ref50
  doi: 10.1109/TPWRD.2005.852392
– ident: ref28
  doi: 10.1016/j.tcs.2018.09.013
– ident: ref19
  doi: 10.1016/j.asej.2015.08.005
– ident: ref26
  doi: 10.1016/j.eswa.2014.11.047
– ident: ref9
  doi: 10.1016/j.measurement.2012.10.026
– ident: ref11
  doi: 10.1016/j.ymssp.2012.09.015
– ident: ref8
  doi: 10.1016/j.sigpro.2013.11.012
– ident: ref48
  doi: 10.1109/TIE.2019.2934055
– ident: ref46
  doi: 10.1007/s11277-018-5301-9
– ident: ref7
  doi: 10.1109/TIM.2014.2330494
– ident: ref52
  doi: 10.1016/j.neucom.2019.01.038
– ident: ref15
  doi: 10.1016/j.dsp.2014.12.015
– ident: ref30
  doi: 10.4310/JOC.2018.v9.n1.a2
– ident: ref51
  doi: 10.1016/j.jhydrol.2018.11.015
– ident: ref43
  doi: 10.1016/j.future.2019.02.047
– ident: ref20
  doi: 10.1016/j.oceaneng.2016.05.049
– ident: ref58
  doi: 10.1109/TC.2017.2669964
– ident: ref13
  doi: 10.1109/TNSRE.2010.2100828
– volume: 20
  start-page: 273
  year: 1995
  ident: ref16
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– ident: ref56
  doi: 10.4018/JOEUC.2020040104
– ident: ref14
  doi: 10.1016/j.asoc.2014.04.017
– ident: ref34
  doi: 10.1109/TMAG.2005.846231
– ident: ref54
  doi: 10.1016/j.future.2019.04.017
– ident: ref24
  doi: 10.1146/annurev.fluid.31.1.417
– ident: ref57
  doi: 10.1109/MS.2016.18
– ident: ref12
  doi: 10.1016/j.jsv.2008.01.020
– ident: ref53
  doi: 10.1016/j.neuroimage.2019.05.082
– ident: ref45
  doi: 10.1016/j.neucom.2014.05.072
SSID ssj0000816957
Score 2.299723
Snippet An accurate and efficient intelligent fault diagnosis of mobile robotic roller bearings can significantly enhance the reliability and safety of mechanical...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131885
SubjectTerms Acceleration
Accuracy
Algorithms
Belief networks
Big Data
big data Spark
Classification
Cloud computing
cloud computing software framework
empirical mode decomposition
Fault detection
Fault diagnosis
Feature extraction
Frequencies
intelligent fault recognition
Machine learning
Machine learning algorithms
Mechanical systems
mesos cluster manager
mobile robotic roller bearing
Neural networks
Nodes
parallel deep belief network
Parallel machine learning algorithm
Parallel processing
parallel support vector machine
Radial basis function
Robotics
Robots
Roller bearings
Rolling bearings
Segmentation
Software
Sparks
Support vector machines
Vibration
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOqFAQS0s1B45EdRI7cY7bpQEOW1UtSL1FY8deKkJSZbPwm_iXjJ3sshISXDjmw4mTGc_MS0bvMfYmtrW0UthI6IJHQqZ1hFTlRtpIh45ntZAmiE3kl5fq9ra42pP68j1hIz3w-OLOMspg2soEhXKCp6itw0QqV2glHCVTH315XuyBqRCDVZwVMp9ohmJenM0XC3oiAoQJ4VSfOAPb6-9UFBj7J4mVP-JySDblIXsyVYkwH2f3lD2w7TP2eI878Ij9vMLe66A0sAz9kBYmqtQVzJtVR5j_yzcIDQFQ0tHovdeCsHXkxc_g5h77r9C1gLC0624N53creIcDwqLpNjWMWg9-7A2F6R_YWyi3XVxAZS4sO03hBK473dEU4eOO2HOAEjfNANfbxqSufc4-lxefFh-iSXchMoKrIRJKc4uY6FhizhEJstEmOmWdzvJEUY3CneSGSl1ee7KdWlId5-LUUASgei19wQ7arrUvGUgjc9SYKm4IGqkYJa1543__xjm5iZmxZGuCykyk5F4bo6kCOOFFNdqt8narJrvN2NvdoPuRk-Pvp5972-5O9YTaYQe5WTW5WfUvN5uxI-8Zu4sUhO1lEc_YydZTqmnxr6tESJF5psPk1f-49TF75B9n_O5zwg6GfmNfs4fm-3C37k-D3_8C0IsFOg
  priority: 102
  providerName: Directory of Open Access Journals
Title Parallel Machine Learning Algorithm Using Fine-Grained-Mode Spark on a Mesos Big Data Cloud Computing Software Framework for Mobile Robotic Intelligent Fault Recognition
URI https://ieeexplore.ieee.org/document/9133591
https://www.proquest.com/docview/2454643242
https://doaj.org/article/6822be52a48f403abefa258f9b84f397
Volume 8
WOSCitedRecordID wos000552983500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKxQEOvApioVRz4NhQJ7HzOG6XBjhsVbUg9RaNHXu7IiRVNgs3_g__krGTDUggJC5RXo4czWT8jTP-PsZeh6aSRgoTCJXzQMi4CpBQbqC0tGh5UgmpvdhEen6eXV_nF3vseFoLY4zxxWfmjdv1__KrVm_dVNlJTgmVdEvV76RpMqzVmuZTnIBELtORWCjk-cl8saB3oBQwoszUDZWe3_XX4OM5-kdRlT8isR9eiof_17FH7MEII2E-2P0x2zPNE3b_N3LBA_bjAjsnlFLD0hdMGhi5VFcwr1dtt-5vvoCvGICCrgbvnFiEqQKnjgZXt9h9hrYBhKXZtBs4Xa_gLfYIi7rdVjCIQbi2VxTHv2FnoNiVeQHhYFi2iuINXLaqpS7Ch4n5s4cCt3UPl7vKpbZ5yj4VZx8X74NRmCHQgmd9IDLFDWKkQokpR6Scjg7RZsaqJI0yAjHcSq4JC_PKsfFUkoCeDWNNIYIAXfyM7TdtY54zkFqmqDDOuKbcKQtRUlDQ7v9wmJIf6RmLdhYr9cha7sQz6tJnLzwvBzOXzszlaOYZO54a3Q6kHf--_dS5wnSrY9z2J8jG5fgBlwkhKWVkhCKzgseojMVIZjZXmbAE6mbswPnF9JDRJWbscOdY5RgdNmUkpEgcFWL04u-tXrJ7roPDVM8h2--7rXnF7uqv_XrTHfl5A9ouv58d-Y_gJ7BuBEE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWqggQ98FUQCwXmwLGhTmJvkuN2IbSiu6raIvUWjR1nWZFuqmwWfhP_krHjDUggJG75cuRoJuM39vg9xt6GppRGChMIlfFAyLgMkFBuoLSssOLjUkjtxCaS-Ty9vs7Od9jhsBfGGOOKz8w7e-jW8stGb-xU2VFGCZW0W9XvSCEi3u_WGmZUrIREJhNPLRTy7GgyndJXUBIYUW5qB0vH8Ppr-HEs_V5W5Y9Y7AaY_OH_de0Re-CBJEx6yz9mO2b1hO39Ri-4z36cY2ulUmqYuZJJA55NdQGTetG0y-7LDbiaAcjpbvDRykWYMrD6aHB5i-1XaFaAMDPrZg3HywW8xw5hWjebEno5CNv2kiL5d2wN5NtCLyAkDLNGUcSBi0Y11EU4Hbg_O8hxU3dwsa1dalZP2ef8w9X0JPDSDIEWPO0CkSpuECMVSkw4ImV1dIpVaio1TqKUYAyvJNeEhnlp-XhKSVCvCmNNQYIgXfyM7a6alXnOQGqZoMI45ZqypzRESWFB2xXiMCFP0iMWbS1WaM9bbuUz6sLlLzwrejMX1syFN_OIHQ6Nbnvajn8_fmxdYXjUcm67C2Tjwv_CxZiwlDIyQpFWgseoTIWRTKtMpaIiWDdi-9Yvhpd4lxixg61jFT4-rItISDG2ZIjRi7-3esPunVzNzoqz0_mnl-y-7Ww_8XPAdrt2Y16xu_pbt1y3r91P8BMUYgVi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Machine+Learning+Algorithm+Using+Fine-Grained-Mode+Spark+on+a+Mesos+Big+Data+Cloud+Computing+Software+Framework+for+Mobile+Robotic+Intelligent+Fault+Recognition&rft.jtitle=IEEE+access&rft.au=Xian%2C+Guangming&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=131885&rft.epage=131900&rft_id=info:doi/10.1109%2FACCESS.2020.3007499&rft.externalDocID=9133591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon