Impact of Incorporating Disturbance Prediction on the Performance of Energy Management Systems in Micro-Grid

The design and implementation of appropriate advanced control strategies is a key factor for the effective integration of micro-grids into the electrical network. In view of this, the study proposes an Adaptive Model-Based Horizon Control technique in the bid to addressing issues related to the Ener...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 8; s. 162855 - 162879
Hlavní autoři: Gbadega, Peter Anuoluwapo, Saha, Akshay Kumar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The design and implementation of appropriate advanced control strategies is a key factor for the effective integration of micro-grids into the electrical network. In view of this, the study proposes an Adaptive Model-Based Horizon Control technique in the bid to addressing issues related to the Energy Management System in micro-grid operations. The main objective of the energy management system is to balance energy generation and demand through energy storage, so as to optimize the operation of the micro-grid with high penetrations of renewable energy sources. This paper further investigates the impacts of considering the prediction of disturbances on the performance of the Energy Management System based on the adaptive model predictive control algorithm in order to improve the operating costs of the micro-grid with hybrid-energy storage systems. The adaptive model predictive control algorithm solves the energy optimization problem in a renewable energy-based micro-grid with various types of energy storage systems that exchange energy with the host grid. More so, this optimization problem is resolved at each sampling period in order to determine the minimum running costs while satisfying demand and taking into account technical and physical constraints. The simulation results under different conditions have demonstrated how the use of an adaptive model predictive control based energy management system can enhance micro-grid operation, provided there is effective forecasting, and consequently minimized the running operating costs of micro-grid. More so, it is evident in the cost function, <inline-formula> <tex-math notation="LaTeX">J </tex-math></inline-formula>, obtained from the three scenarios conducted, that the perfect knowledge of the disturbance prediction is essential for effective micro-grid operations.
AbstractList The design and implementation of appropriate advanced control strategies is a key factor for the effective integration of micro-grids into the electrical network. In view of this, the study proposes an Adaptive Model-Based Horizon Control technique in the bid to addressing issues related to the Energy Management System in micro-grid operations. The main objective of the energy management system is to balance energy generation and demand through energy storage, so as to optimize the operation of the micro-grid with high penetrations of renewable energy sources. This paper further investigates the impacts of considering the prediction of disturbances on the performance of the Energy Management System based on the adaptive model predictive control algorithm in order to improve the operating costs of the micro-grid with hybrid-energy storage systems. The adaptive model predictive control algorithm solves the energy optimization problem in a renewable energy-based micro-grid with various types of energy storage systems that exchange energy with the host grid. More so, this optimization problem is resolved at each sampling period in order to determine the minimum running costs while satisfying demand and taking into account technical and physical constraints. The simulation results under different conditions have demonstrated how the use of an adaptive model predictive control based energy management system can enhance micro-grid operation, provided there is effective forecasting, and consequently minimized the running operating costs of micro-grid. More so, it is evident in the cost function, <inline-formula> <tex-math notation="LaTeX">J </tex-math></inline-formula>, obtained from the three scenarios conducted, that the perfect knowledge of the disturbance prediction is essential for effective micro-grid operations.
The design and implementation of appropriate advanced control strategies is a key factor for the effective integration of micro-grids into the electrical network. In view of this, the study proposes an Adaptive Model-Based Horizon Control technique in the bid to addressing issues related to the Energy Management System in micro-grid operations. The main objective of the energy management system is to balance energy generation and demand through energy storage, so as to optimize the operation of the micro-grid with high penetrations of renewable energy sources. This paper further investigates the impacts of considering the prediction of disturbances on the performance of the Energy Management System based on the adaptive model predictive control algorithm in order to improve the operating costs of the micro-grid with hybrid-energy storage systems. The adaptive model predictive control algorithm solves the energy optimization problem in a renewable energy-based micro-grid with various types of energy storage systems that exchange energy with the host grid. More so, this optimization problem is resolved at each sampling period in order to determine the minimum running costs while satisfying demand and taking into account technical and physical constraints. The simulation results under different conditions have demonstrated how the use of an adaptive model predictive control based energy management system can enhance micro-grid operation, provided there is effective forecasting, and consequently minimized the running operating costs of micro-grid. More so, it is evident in the cost function, [Formula Omitted], obtained from the three scenarios conducted, that the perfect knowledge of the disturbance prediction is essential for effective micro-grid operations.
The design and implementation of appropriate advanced control strategies is a key factor for the effective integration of micro-grids into the electrical network. In view of this, the study proposes an Adaptive Model-Based Horizon Control technique in the bid to addressing issues related to the Energy Management System in micro-grid operations. The main objective of the energy management system is to balance energy generation and demand through energy storage, so as to optimize the operation of the micro-grid with high penetrations of renewable energy sources. This paper further investigates the impacts of considering the prediction of disturbances on the performance of the Energy Management System based on the adaptive model predictive control algorithm in order to improve the operating costs of the micro-grid with hybrid-energy storage systems. The adaptive model predictive control algorithm solves the energy optimization problem in a renewable energy-based micro-grid with various types of energy storage systems that exchange energy with the host grid. More so, this optimization problem is resolved at each sampling period in order to determine the minimum running costs while satisfying demand and taking into account technical and physical constraints. The simulation results under different conditions have demonstrated how the use of an adaptive model predictive control based energy management system can enhance micro-grid operation, provided there is effective forecasting, and consequently minimized the running operating costs of micro-grid. More so, it is evident in the cost function, J, obtained from the three scenarios conducted, that the perfect knowledge of the disturbance prediction is essential for effective micro-grid operations.
Author Gbadega, Peter Anuoluwapo
Saha, Akshay Kumar
Author_xml – sequence: 1
  givenname: Peter Anuoluwapo
  orcidid: 0000-0001-9782-5372
  surname: Gbadega
  fullname: Gbadega, Peter Anuoluwapo
  email: perosman4real1987@yahoo.com
  organization: Department of Electrical, Electronics and Computer Engineering, University of KwaZulu-Natal, Durban, South Africa
– sequence: 2
  givenname: Akshay Kumar
  surname: Saha
  fullname: Saha, Akshay Kumar
  organization: Department of Electrical, Electronics and Computer Engineering, University of KwaZulu-Natal, Durban, South Africa
BookMark eNqFUU1vGyEURFUqNU3zC3JZqed1-dpdOEaOm1pK1ErOHQH7cLG84AI--N8HZ6MoyqUIiadhZt6D-YouQgyA0A3BC0Kw_HG7XK42mwXFFC8YpqST4hO6pKSXLetYf_Gu_oKuc97hukSFuuES7dfTQdvSRNesg43pEJMuPmybO5_LMRkdLDR_EozeFh9DU3f5WxFILqbp5bZKVwHS9tQ86qC3MEEozeaUC0y58aF59DbF9j758Rv67PQ-w_XreYWefq6elr_ah9_36-XtQ2s5FqXlgguQghtLqcO9NER0oPkguLRm7CwMRjgCg-yF6YwcKJDKsERqJqV27AqtZ9sx6p06JD_pdFJRe_UCxLRVOhVv96DMQDRnbuAMWz5SEKMQwhLi-Cio4X31-j57HVL8d4Rc1C4eU6jTK8o73tehBlZZbGbVl-acwL11JVidQ1JzSOocknoNqarkB5X1RZ-_uSTt9__R3sxaDwBv3SQRPaGYPQNP6qFv
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_apenergy_2023_121708
crossref_primary_10_1007_s42107_023_00907_8
crossref_primary_10_1016_j_prime_2024_100800
crossref_primary_10_3390_en18030478
crossref_primary_10_1016_j_prime_2025_101010
crossref_primary_10_1109_ACCESS_2025_3544136
crossref_primary_10_1016_j_rineng_2024_103910
crossref_primary_10_1016_j_enconman_2025_119868
crossref_primary_10_1016_j_egyr_2022_10_080
crossref_primary_10_1016_j_egyr_2024_11_014
crossref_primary_10_1109_ACCESS_2025_3547367
crossref_primary_10_1007_s00202_025_02990_3
crossref_primary_10_3390_wevj15110508
crossref_primary_10_1109_ACCESS_2024_3491100
crossref_primary_10_1016_j_egyr_2023_05_083
crossref_primary_10_1109_ACCESS_2021_3090266
crossref_primary_10_1016_j_ijhydene_2023_08_056
crossref_primary_10_3390_app132312573
crossref_primary_10_1109_ACCESS_2021_3129980
crossref_primary_10_1109_TII_2024_3396343
crossref_primary_10_1016_j_heliyon_2023_e19199
crossref_primary_10_1016_j_energy_2024_130442
crossref_primary_10_1109_JSYST_2021_3066423
crossref_primary_10_1002_acs_3890
crossref_primary_10_1016_j_egyr_2022_10_144
crossref_primary_10_1016_j_egyr_2025_05_067
crossref_primary_10_3390_en18071631
crossref_primary_10_1038_s41598_025_94285_7
crossref_primary_10_1080_23311916_2022_2157982
crossref_primary_10_1109_ACCESS_2025_3574167
crossref_primary_10_1038_s41598_025_87716_y
crossref_primary_10_1109_TASE_2023_3292029
crossref_primary_10_1016_j_egyr_2023_05_095
crossref_primary_10_1016_j_prime_2025_100914
crossref_primary_10_1038_s41598_025_11380_5
crossref_primary_10_1016_j_etran_2024_100393
crossref_primary_10_1016_j_ijhydene_2022_12_345
crossref_primary_10_1038_s41598_025_90062_8
Cites_doi 10.1109/TIE.2015.2412524
10.1109/CDC.2007.4434550
10.1109/ISGT.2019.8791591
10.1109/TIE.2015.2404815
10.1109/TSG.2012.2234769
10.1002/9781119263739
10.1016/j.jprocont.2016.04.008
10.1109/TIE.2009.2031663
10.1016/j.ijhydene.2015.12.079
10.1109/MCS.2016.2602087
10.1109/CDC.2017.8264409
10.1109/TII.2016.2646721
10.1109/SAUPEC/RobMech/PRASA48453.2020.9041136
10.1109/VPPC.2010.5729119
10.1016/j.jpowsour.2011.07.029
10.1109/PES.2009.5275574
10.1109/TIA.2019.2918051
10.1049/iet-rpg.2010.0052
10.1109/TSG.2018.2856524
10.1109/TIA.2019.2959549
10.1109/TSTE.2018.2815502
10.1109/EIConRus.2018.8317170
10.1109/EPEC.2016.7771706
10.1109/TPWRS.2017.2720751
10.1016/j.jclepro.2018.03.058
10.1109/PES.2010.5590140
10.1016/j.ijhydene.2016.06.019
10.1109/SEST.2019.8849047
10.1109/TPWRS.2018.2879451
10.1109/ICNSC.2009.4919363
10.23919/ECC.2013.6669807
10.1007/978-1-4471-3792-4
10.1109/TDC.2014.6863334
10.1109/TSTE.2015.2405935
10.1109/TCST.2014.2361800
10.1016/j.renene.2006.04.013
10.4028/www.scientific.net/JERA.48.133
10.1109/TIE.2019.2956417
10.1016/j.jpowsour.2017.01.015
10.1109/TSG.2016.2623760
10.1109/ACCESS.2019.2947415
10.1016/j.energy.2008.07.012
10.1109/JESTPE.2018.2828803
10.1016/j.jprocont.2009.03.004
10.1016/j.apenergy.2016.01.014
10.1016/j.renene.2013.03.026
10.1109/TCST.2013.2295737
10.1109/TSG.2012.2191580
10.1016/j.ijhydene.2008.06.051
10.1016/j.ijhydene.2013.06.113
10.1109/JESTPE.2020.3012659
10.1007/978-3-030-24570-2
10.1109/TIE.2015.2465355
10.23919/ACC.2017.7963592
10.1109/IECON.2012.6389059
10.1016/j.compchemeng.2019.01.002
10.1002/9781118703274
10.1109/CDC.2009.5399917
10.1109/TSG.2013.2291912
10.1109/TSG.2015.2396294
10.1016/j.ijepes.2014.03.017
10.1016/j.ijepes.2012.06.040
10.1109/TIE.2016.2547870
10.1109/RoboMech.2019.8704846
10.1109/TSG.2010.2078842
10.1049/iet-gtd.2015.1127
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.3021598
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 162879
ExternalDocumentID oai_doaj_org_article_b71a43f7430c4d2e8d888c11f4d82b46
10_1109_ACCESS_2020_3021598
9186120
Genre orig-research
GrantInformation_xml – fundername: University of KwaZulu-Natal, Durban, South Africa
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-4848e984bc22f069b185ea47849cbd5ce7b8f1e7968b5b972e1185c19a399af3
IEDL.DBID DOA
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000572890000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:34 EDT 2025
Mon Jun 30 07:16:17 EDT 2025
Tue Nov 18 21:07:25 EST 2025
Sat Nov 29 04:14:11 EST 2025
Wed Aug 27 02:32:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-4848e984bc22f069b185ea47849cbd5ce7b8f1e7968b5b972e1185c19a399af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9782-5372
OpenAccessLink https://doaj.org/article/b71a43f7430c4d2e8d888c11f4d82b46
PQID 2454678473
PQPubID 4845423
PageCount 25
ParticipantIDs proquest_journals_2454678473
crossref_citationtrail_10_1109_ACCESS_2020_3021598
crossref_primary_10_1109_ACCESS_2020_3021598
ieee_primary_9186120
doaj_primary_oai_doaj_org_article_b71a43f7430c4d2e8d888c11f4d82b46
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
mottus (ref63) 2011
bordons (ref61) 2015; 62
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
gautschi (ref28) 2009
ref8
ref7
(ref50) 2019
ref9
ref4
ref3
ref6
ref5
wen (ref55) 2016
ref40
csáji (ref35) 2014
chalupa (ref72) 2009
ref34
ref37
ref36
ref75
ref31
jun (ref49) 2018; 8
ref74
ref30
ref33
ref76
ref32
ref2
ref1
ref39
ref38
rauschenbach (ref54) 2012
kwan (ref70) 2007
ref71
ref73
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
petrollese (ref43) 2015
ref66
ref22
ref65
ref21
ref27
ref29
ref60
ref62
References_xml – volume: 62
  start-page: 5195
  year: 2015
  ident: ref61
  article-title: Optimal economical schedule of hydrogen-based microgrids with hybrid storage using model predictive control
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2015.2412524
– ident: ref39
  doi: 10.1109/CDC.2007.4434550
– ident: ref36
  doi: 10.1109/ISGT.2019.8791591
– ident: ref76
  doi: 10.1109/TIE.2015.2404815
– ident: ref18
  doi: 10.1109/TSG.2012.2234769
– start-page: 1469
  year: 2016
  ident: ref55
  article-title: Modeling and simulation of energy control strategies in AC microgrid
  publication-title: Proc IEEE PES Asia-Pacific Power Energy Eng Conf (APPEEC)
– year: 2015
  ident: ref43
  article-title: Optimal generation scheduling for renewable microgrids using hydrogen storage systems
– ident: ref32
  doi: 10.1002/9781119263739
– ident: ref21
  doi: 10.1016/j.jprocont.2016.04.008
– start-page: 916
  year: 2007
  ident: ref70
  article-title: Model predictive control of unified power quality conditioner for power quality improvement
  publication-title: Proc IEEE Int Conf Control Appl
– ident: ref40
  doi: 10.1109/TIE.2009.2031663
– ident: ref62
  doi: 10.1016/j.ijhydene.2015.12.079
– ident: ref16
  doi: 10.1109/MCS.2016.2602087
– ident: ref17
  doi: 10.1109/CDC.2017.8264409
– ident: ref34
  doi: 10.1109/TII.2016.2646721
– ident: ref52
  doi: 10.1109/SAUPEC/RobMech/PRASA48453.2020.9041136
– ident: ref48
  doi: 10.1109/VPPC.2010.5729119
– ident: ref31
  doi: 10.1016/j.jpowsour.2011.07.029
– ident: ref44
  doi: 10.1109/PES.2009.5275574
– ident: ref11
  doi: 10.1109/TIA.2019.2918051
– ident: ref26
  doi: 10.1049/iet-rpg.2010.0052
– ident: ref45
  doi: 10.1109/TSG.2018.2856524
– ident: ref10
  doi: 10.1109/TIA.2019.2959549
– ident: ref3
  doi: 10.1109/TSTE.2018.2815502
– ident: ref69
  doi: 10.1109/EIConRus.2018.8317170
– ident: ref6
  doi: 10.1109/EPEC.2016.7771706
– ident: ref71
  doi: 10.1109/TPWRS.2017.2720751
– ident: ref51
  doi: 10.1016/j.jclepro.2018.03.058
– ident: ref27
  doi: 10.1109/PES.2010.5590140
– ident: ref57
  doi: 10.1016/j.ijhydene.2016.06.019
– ident: ref5
  doi: 10.1109/SEST.2019.8849047
– ident: ref33
  doi: 10.1109/TPWRS.2018.2879451
– ident: ref38
  doi: 10.1109/ICNSC.2009.4919363
– ident: ref22
  doi: 10.23919/ECC.2013.6669807
– ident: ref64
  doi: 10.1007/978-1-4471-3792-4
– ident: ref30
  doi: 10.1109/TDC.2014.6863334
– ident: ref14
  doi: 10.1109/TSTE.2015.2405935
– ident: ref13
  doi: 10.1109/TCST.2014.2361800
– ident: ref37
  doi: 10.1016/j.renene.2006.04.013
– ident: ref59
  doi: 10.4028/www.scientific.net/JERA.48.133
– ident: ref9
  doi: 10.1109/TIE.2019.2956417
– ident: ref75
  doi: 10.1016/j.jpowsour.2017.01.015
– ident: ref2
  doi: 10.1109/TSG.2016.2623760
– ident: ref7
  doi: 10.1109/ACCESS.2019.2947415
– ident: ref29
  doi: 10.1016/j.energy.2008.07.012
– volume: 8
  start-page: 861
  year: 2018
  ident: ref49
  article-title: Online energy management strategy based on adaptive model predictive control for microgrid with hydrogen storage
  publication-title: Int J Renew Energy Res
– ident: ref60
  doi: 10.1109/JESTPE.2018.2828803
– ident: ref47
  doi: 10.1016/j.jprocont.2009.03.004
– year: 2012
  ident: ref54
  publication-title: Solar Cell Array Design Handbook The Principles and Technology of Photovoltaic Energy Conversion
– ident: ref73
  doi: 10.1016/j.apenergy.2016.01.014
– ident: ref8
  doi: 10.1016/j.renene.2013.03.026
– ident: ref1
  doi: 10.1109/TCST.2013.2295737
– ident: ref25
  doi: 10.1109/TSG.2012.2191580
– ident: ref58
  doi: 10.1016/j.ijhydene.2008.06.051
– year: 2009
  ident: ref28
  article-title: Simulation of an agent based vehicle-to-grid (V2G) implementation
– ident: ref41
  doi: 10.1016/j.ijhydene.2013.06.113
– ident: ref67
  doi: 10.1109/JESTPE.2020.3012659
– ident: ref4
  doi: 10.1007/978-3-030-24570-2
– ident: ref15
  doi: 10.1109/TIE.2015.2465355
– ident: ref19
  doi: 10.23919/ACC.2017.7963592
– ident: ref46
  doi: 10.1109/IECON.2012.6389059
– ident: ref74
  doi: 10.1016/j.compchemeng.2019.01.002
– ident: ref56
  doi: 10.1002/9781118703274
– start-page: 418
  year: 2009
  ident: ref72
  article-title: Predictive control using self tuning model predictive controllers library
  publication-title: Proc 17th Int Conf Process Control
– year: 2011
  ident: ref63
  article-title: Photosynthetically active radiation: Measurement and modeling
  publication-title: Encyclopedia of Sustainability Science and Technology
– ident: ref68
  doi: 10.1109/CDC.2009.5399917
– ident: ref12
  doi: 10.1109/TSG.2013.2291912
– ident: ref66
  doi: 10.1109/TSG.2015.2396294
– ident: ref20
  doi: 10.1016/j.ijepes.2014.03.017
– ident: ref24
  doi: 10.1016/j.ijepes.2012.06.040
– start-page: 1
  year: 2014
  ident: ref35
  article-title: Adaptive aggregated predictions for renewable energy systems
  publication-title: Proc IEEE Symp Adapt Dyn Program Reinforcement Learn (ADPRL)
– ident: ref42
  doi: 10.1109/TIE.2016.2547870
– ident: ref53
  doi: 10.1109/RoboMech.2019.8704846
– ident: ref65
  doi: 10.1109/TSG.2010.2078842
– start-page: 322
  year: 2019
  ident: ref50
  article-title: Effects and performance indicators evaluation of PV array topologies on PV systems operation under partial shading conditions
  publication-title: Proc Southern Afr Universities Power Eng Conf /Robot Mechtron /Pattern Recognit Assoc South Afr (SAUPEC/RobMech/PRASA)
– ident: ref23
  doi: 10.1049/iet-gtd.2015.1127
SSID ssj0000816957
Score 2.4248424
Snippet The design and implementation of appropriate advanced control strategies is a key factor for the effective integration of micro-grids into the electrical...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 162855
SubjectTerms Adaptive algorithms
Adaptive control
adaptive model predictive control (AMPC)
Alternative energy sources
Constraint modelling
Control algorithms
Control theory
Cost function
Distributed generation
disturbance predictions
Electrical networks
Energy management
Energy management system (EMS)
Energy management systems
Energy storage
energy storage system (ESS)
Hybrid systems
MATLAB simulation
Operating costs
Optimization
prediction horizon
Predictive control
Predictive models
Renewable energy sources
Renewable resources
Stochastic processes
Storage systems
Uncertainty
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH4CxGEcBoxNdGPIhx3JiF2nto_QtYC0oR44cLNix5YqoRaFlt-_9xwTNoGQkHKIEjty8tl577P9vgfwQ7ogtaRV_wYpivTcFfVQu4LU3bD_1KGKCenf6vpa396a2Qac9LEwIYS0-Sz8pNO0lt8s_Zqmyk4N12iQkaBvKjXqYrX6-RRKIGEqlYWFeGlOz8ZjfAekgAKZKZk2o_8zPkmjPydVefEnTuZluvu-hu3Bx-xGsrMO933YCItPsPOPuOAB3F2lAEi2jOyKxCqTYDHeYb8Q2XXrCG42a2mhhsBheKAzyGbPkQRUdZJiA9nzLhmWNc7ZfMH-0G6-4qKdN5_hZjq5GV8WObdC4WWpVwUCpIPR0nkhYjkyDu12qKXS0njXVD4opyMPyoy0q5xRIiATqTw3NXo0dRx-ga3FchEOgXHRUL4OpaIOkhyeWjrkXQ6rROQjegDi6Ztbn3XHKf3FnU38ozS2A8oSUDYDNYCTvtJ9J7vxdvFzArMvSprZ6QKiZPMQtE7xWg4jukyll40IukH27zmPstHCydEADgjZ_iEZ1AEcPXUNm8f3gxWyQguDln349fVa3-ADNbCbrDmCrVW7Dt9h2z-u5g_tceq6fwHQiOsG
  priority: 102
  providerName: IEEE
Title Impact of Incorporating Disturbance Prediction on the Performance of Energy Management Systems in Micro-Grid
URI https://ieeexplore.ieee.org/document/9186120
https://www.proquest.com/docview/2454678473
https://doaj.org/article/b71a43f7430c4d2e8d888c11f4d82b46
Volume 8
WOSCitedRecordID wos000572890000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx4YiYhdp7ZHKC1UAtShQzcrdmypEiooFEZ-O3eOaYuQYEGKMiR2Et9dcvfFvu8IORfWCyVw1r8CiCIcs1nZUTZDdjewn9IXIWr6Xj4-qslEj1ZKfeGasIYeuBHcpZWsFJ0Aji53ouJeVYDZHGNBVIpbEcm2c6lXwFT8BivW1YVMNEMs15dXvR6MCAAhB5yKjk6rb64oMvanEis_vsvR2Qy2yVaKEulV83Q7ZM3PdsnmCnfgHnkaxvxG-hzoELkoIx8xnKE3oLi32qI26ajGeRiUPYUNYj06WiYKYNd-TP2jy0UwNFGY0-mMPuBivey2nlb7ZDzoj3t3WSqdkDmRq3kG8ldeK2Ed5yHvagtu2ZdCKqGdrQrnpVWBeam7yhZWS-4BaBSO6RICljJ0Dkhr9jzzh4QyXmE5DimD8gLjmVJYgFUWugSAG6pN-JcQjUu04ljd4slEeJFr00jeoORNknybXCw6vTSsGr83v0btLJoiJXY8AIZikqGYvwylTfZQt4uLaKYgusvb5ORL1ya9vq-GiwIcCDjuztF_3PqYbOBwmj83J6Q1r9_8KVl37_Ppa30WLRf2Dx_9s5h_-AnL-u_x
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH5CbNLGYb8YWoENH3YkI3ad2j5CB6OiVD30wM2KHVuqhNoptPz9vOeawDQ0aVIOUWJHTj4773223_cAvksXpJa06t8gRZGeu6Lua1eQuhv2nzpUMSE9VpOJvrkx0y047mJhQghp81n4QadpLb9Z-jVNlZ0YrtEgI0F_RZmzcrRWN6NCKSRMpbK0EC_NyelwiG-BJFAgNyXjZvQf5iep9Oe0Kn_9i5OBuXj_f037AO-yI8lON8h_hK2w-AQ7z-QFd-F2lEIg2TKyEclVJslivMN-Irbr1hHgbNrSUg3Bw_BAd5BNn2IJqOp5ig5kT_tkWFY5Z_MFu6b9fMWvdt58htnF-Wx4WeTsCoWXpV4VCJEORkvnhYjlwDi03KGWSkvjXVP5oJyOPCgz0K5yRomAXKTy3NTo09Sxvwfbi-UifAHGRUMZO5SKOkhyeWrpkHk5rBKRkegeiMdvbn1WHqcEGLc2MZDS2A1QloCyGageHHeVfm-EN_5d_IzA7IqSana6gCjZPAitU7yW_YhOU-llI4JukP97zqNstHBy0INdQrZ7SAa1B4ePXcPmEX5nhazQxqBt7--_XOsI3lzOrsd2PJpcHcBbauxm6uYQtlftOnyF1_5-Nb9rv6Vu_AAy1e5P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Incorporating+Disturbance+Prediction+on+the+Performance+of+Energy+Management+Systems+in+Micro-Grid&rft.jtitle=IEEE+access&rft.au=Gbadega%2C+Peter+Anuoluwapo&rft.au=Saha%2C+Akshay+Kumar&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=162855&rft.epage=162879&rft_id=info:doi/10.1109%2FACCESS.2020.3021598&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3021598
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon