Impact of Incorporating Disturbance Prediction on the Performance of Energy Management Systems in Micro-Grid
The design and implementation of appropriate advanced control strategies is a key factor for the effective integration of micro-grids into the electrical network. In view of this, the study proposes an Adaptive Model-Based Horizon Control technique in the bid to addressing issues related to the Ener...
Uloženo v:
| Vydáno v: | IEEE access Ročník 8; s. 162855 - 162879 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The design and implementation of appropriate advanced control strategies is a key factor for the effective integration of micro-grids into the electrical network. In view of this, the study proposes an Adaptive Model-Based Horizon Control technique in the bid to addressing issues related to the Energy Management System in micro-grid operations. The main objective of the energy management system is to balance energy generation and demand through energy storage, so as to optimize the operation of the micro-grid with high penetrations of renewable energy sources. This paper further investigates the impacts of considering the prediction of disturbances on the performance of the Energy Management System based on the adaptive model predictive control algorithm in order to improve the operating costs of the micro-grid with hybrid-energy storage systems. The adaptive model predictive control algorithm solves the energy optimization problem in a renewable energy-based micro-grid with various types of energy storage systems that exchange energy with the host grid. More so, this optimization problem is resolved at each sampling period in order to determine the minimum running costs while satisfying demand and taking into account technical and physical constraints. The simulation results under different conditions have demonstrated how the use of an adaptive model predictive control based energy management system can enhance micro-grid operation, provided there is effective forecasting, and consequently minimized the running operating costs of micro-grid. More so, it is evident in the cost function, <inline-formula> <tex-math notation="LaTeX">J </tex-math></inline-formula>, obtained from the three scenarios conducted, that the perfect knowledge of the disturbance prediction is essential for effective micro-grid operations. |
|---|---|
| AbstractList | The design and implementation of appropriate advanced control strategies is a key factor for the effective integration of micro-grids into the electrical network. In view of this, the study proposes an Adaptive Model-Based Horizon Control technique in the bid to addressing issues related to the Energy Management System in micro-grid operations. The main objective of the energy management system is to balance energy generation and demand through energy storage, so as to optimize the operation of the micro-grid with high penetrations of renewable energy sources. This paper further investigates the impacts of considering the prediction of disturbances on the performance of the Energy Management System based on the adaptive model predictive control algorithm in order to improve the operating costs of the micro-grid with hybrid-energy storage systems. The adaptive model predictive control algorithm solves the energy optimization problem in a renewable energy-based micro-grid with various types of energy storage systems that exchange energy with the host grid. More so, this optimization problem is resolved at each sampling period in order to determine the minimum running costs while satisfying demand and taking into account technical and physical constraints. The simulation results under different conditions have demonstrated how the use of an adaptive model predictive control based energy management system can enhance micro-grid operation, provided there is effective forecasting, and consequently minimized the running operating costs of micro-grid. More so, it is evident in the cost function, <inline-formula> <tex-math notation="LaTeX">J </tex-math></inline-formula>, obtained from the three scenarios conducted, that the perfect knowledge of the disturbance prediction is essential for effective micro-grid operations. The design and implementation of appropriate advanced control strategies is a key factor for the effective integration of micro-grids into the electrical network. In view of this, the study proposes an Adaptive Model-Based Horizon Control technique in the bid to addressing issues related to the Energy Management System in micro-grid operations. The main objective of the energy management system is to balance energy generation and demand through energy storage, so as to optimize the operation of the micro-grid with high penetrations of renewable energy sources. This paper further investigates the impacts of considering the prediction of disturbances on the performance of the Energy Management System based on the adaptive model predictive control algorithm in order to improve the operating costs of the micro-grid with hybrid-energy storage systems. The adaptive model predictive control algorithm solves the energy optimization problem in a renewable energy-based micro-grid with various types of energy storage systems that exchange energy with the host grid. More so, this optimization problem is resolved at each sampling period in order to determine the minimum running costs while satisfying demand and taking into account technical and physical constraints. The simulation results under different conditions have demonstrated how the use of an adaptive model predictive control based energy management system can enhance micro-grid operation, provided there is effective forecasting, and consequently minimized the running operating costs of micro-grid. More so, it is evident in the cost function, [Formula Omitted], obtained from the three scenarios conducted, that the perfect knowledge of the disturbance prediction is essential for effective micro-grid operations. The design and implementation of appropriate advanced control strategies is a key factor for the effective integration of micro-grids into the electrical network. In view of this, the study proposes an Adaptive Model-Based Horizon Control technique in the bid to addressing issues related to the Energy Management System in micro-grid operations. The main objective of the energy management system is to balance energy generation and demand through energy storage, so as to optimize the operation of the micro-grid with high penetrations of renewable energy sources. This paper further investigates the impacts of considering the prediction of disturbances on the performance of the Energy Management System based on the adaptive model predictive control algorithm in order to improve the operating costs of the micro-grid with hybrid-energy storage systems. The adaptive model predictive control algorithm solves the energy optimization problem in a renewable energy-based micro-grid with various types of energy storage systems that exchange energy with the host grid. More so, this optimization problem is resolved at each sampling period in order to determine the minimum running costs while satisfying demand and taking into account technical and physical constraints. The simulation results under different conditions have demonstrated how the use of an adaptive model predictive control based energy management system can enhance micro-grid operation, provided there is effective forecasting, and consequently minimized the running operating costs of micro-grid. More so, it is evident in the cost function, J, obtained from the three scenarios conducted, that the perfect knowledge of the disturbance prediction is essential for effective micro-grid operations. |
| Author | Gbadega, Peter Anuoluwapo Saha, Akshay Kumar |
| Author_xml | – sequence: 1 givenname: Peter Anuoluwapo orcidid: 0000-0001-9782-5372 surname: Gbadega fullname: Gbadega, Peter Anuoluwapo email: perosman4real1987@yahoo.com organization: Department of Electrical, Electronics and Computer Engineering, University of KwaZulu-Natal, Durban, South Africa – sequence: 2 givenname: Akshay Kumar surname: Saha fullname: Saha, Akshay Kumar organization: Department of Electrical, Electronics and Computer Engineering, University of KwaZulu-Natal, Durban, South Africa |
| BookMark | eNqFUU1vGyEURFUqNU3zC3JZqed1-dpdOEaOm1pK1ErOHQH7cLG84AI--N8HZ6MoyqUIiadhZt6D-YouQgyA0A3BC0Kw_HG7XK42mwXFFC8YpqST4hO6pKSXLetYf_Gu_oKuc97hukSFuuES7dfTQdvSRNesg43pEJMuPmybO5_LMRkdLDR_EozeFh9DU3f5WxFILqbp5bZKVwHS9tQ86qC3MEEozeaUC0y58aF59DbF9j758Rv67PQ-w_XreYWefq6elr_ah9_36-XtQ2s5FqXlgguQghtLqcO9NER0oPkguLRm7CwMRjgCg-yF6YwcKJDKsERqJqV27AqtZ9sx6p06JD_pdFJRe_UCxLRVOhVv96DMQDRnbuAMWz5SEKMQwhLi-Cio4X31-j57HVL8d4Rc1C4eU6jTK8o73tehBlZZbGbVl-acwL11JVidQ1JzSOocknoNqarkB5X1RZ-_uSTt9__R3sxaDwBv3SQRPaGYPQNP6qFv |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2023_121708 crossref_primary_10_1007_s42107_023_00907_8 crossref_primary_10_1016_j_prime_2024_100800 crossref_primary_10_3390_en18030478 crossref_primary_10_1016_j_prime_2025_101010 crossref_primary_10_1109_ACCESS_2025_3544136 crossref_primary_10_1016_j_rineng_2024_103910 crossref_primary_10_1016_j_enconman_2025_119868 crossref_primary_10_1016_j_egyr_2022_10_080 crossref_primary_10_1016_j_egyr_2024_11_014 crossref_primary_10_1109_ACCESS_2025_3547367 crossref_primary_10_1007_s00202_025_02990_3 crossref_primary_10_3390_wevj15110508 crossref_primary_10_1109_ACCESS_2024_3491100 crossref_primary_10_1016_j_egyr_2023_05_083 crossref_primary_10_1109_ACCESS_2021_3090266 crossref_primary_10_1016_j_ijhydene_2023_08_056 crossref_primary_10_3390_app132312573 crossref_primary_10_1109_ACCESS_2021_3129980 crossref_primary_10_1109_TII_2024_3396343 crossref_primary_10_1016_j_heliyon_2023_e19199 crossref_primary_10_1016_j_energy_2024_130442 crossref_primary_10_1109_JSYST_2021_3066423 crossref_primary_10_1002_acs_3890 crossref_primary_10_1016_j_egyr_2022_10_144 crossref_primary_10_1016_j_egyr_2025_05_067 crossref_primary_10_3390_en18071631 crossref_primary_10_1038_s41598_025_94285_7 crossref_primary_10_1080_23311916_2022_2157982 crossref_primary_10_1109_ACCESS_2025_3574167 crossref_primary_10_1038_s41598_025_87716_y crossref_primary_10_1109_TASE_2023_3292029 crossref_primary_10_1016_j_egyr_2023_05_095 crossref_primary_10_1016_j_prime_2025_100914 crossref_primary_10_1038_s41598_025_11380_5 crossref_primary_10_1016_j_etran_2024_100393 crossref_primary_10_1016_j_ijhydene_2022_12_345 crossref_primary_10_1038_s41598_025_90062_8 |
| Cites_doi | 10.1109/TIE.2015.2412524 10.1109/CDC.2007.4434550 10.1109/ISGT.2019.8791591 10.1109/TIE.2015.2404815 10.1109/TSG.2012.2234769 10.1002/9781119263739 10.1016/j.jprocont.2016.04.008 10.1109/TIE.2009.2031663 10.1016/j.ijhydene.2015.12.079 10.1109/MCS.2016.2602087 10.1109/CDC.2017.8264409 10.1109/TII.2016.2646721 10.1109/SAUPEC/RobMech/PRASA48453.2020.9041136 10.1109/VPPC.2010.5729119 10.1016/j.jpowsour.2011.07.029 10.1109/PES.2009.5275574 10.1109/TIA.2019.2918051 10.1049/iet-rpg.2010.0052 10.1109/TSG.2018.2856524 10.1109/TIA.2019.2959549 10.1109/TSTE.2018.2815502 10.1109/EIConRus.2018.8317170 10.1109/EPEC.2016.7771706 10.1109/TPWRS.2017.2720751 10.1016/j.jclepro.2018.03.058 10.1109/PES.2010.5590140 10.1016/j.ijhydene.2016.06.019 10.1109/SEST.2019.8849047 10.1109/TPWRS.2018.2879451 10.1109/ICNSC.2009.4919363 10.23919/ECC.2013.6669807 10.1007/978-1-4471-3792-4 10.1109/TDC.2014.6863334 10.1109/TSTE.2015.2405935 10.1109/TCST.2014.2361800 10.1016/j.renene.2006.04.013 10.4028/www.scientific.net/JERA.48.133 10.1109/TIE.2019.2956417 10.1016/j.jpowsour.2017.01.015 10.1109/TSG.2016.2623760 10.1109/ACCESS.2019.2947415 10.1016/j.energy.2008.07.012 10.1109/JESTPE.2018.2828803 10.1016/j.jprocont.2009.03.004 10.1016/j.apenergy.2016.01.014 10.1016/j.renene.2013.03.026 10.1109/TCST.2013.2295737 10.1109/TSG.2012.2191580 10.1016/j.ijhydene.2008.06.051 10.1016/j.ijhydene.2013.06.113 10.1109/JESTPE.2020.3012659 10.1007/978-3-030-24570-2 10.1109/TIE.2015.2465355 10.23919/ACC.2017.7963592 10.1109/IECON.2012.6389059 10.1016/j.compchemeng.2019.01.002 10.1002/9781118703274 10.1109/CDC.2009.5399917 10.1109/TSG.2013.2291912 10.1109/TSG.2015.2396294 10.1016/j.ijepes.2014.03.017 10.1016/j.ijepes.2012.06.040 10.1109/TIE.2016.2547870 10.1109/RoboMech.2019.8704846 10.1109/TSG.2010.2078842 10.1049/iet-gtd.2015.1127 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2020.3021598 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 162879 |
| ExternalDocumentID | oai_doaj_org_article_b71a43f7430c4d2e8d888c11f4d82b46 10_1109_ACCESS_2020_3021598 9186120 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: University of KwaZulu-Natal, Durban, South Africa |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-4848e984bc22f069b185ea47849cbd5ce7b8f1e7968b5b972e1185c19a399af3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 49 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000572890000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:34 EDT 2025 Mon Jun 30 07:16:17 EDT 2025 Tue Nov 18 21:07:25 EST 2025 Sat Nov 29 04:14:11 EST 2025 Wed Aug 27 02:32:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-4848e984bc22f069b185ea47849cbd5ce7b8f1e7968b5b972e1185c19a399af3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9782-5372 |
| OpenAccessLink | https://doaj.org/article/b71a43f7430c4d2e8d888c11f4d82b46 |
| PQID | 2454678473 |
| PQPubID | 4845423 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_2454678473 crossref_citationtrail_10_1109_ACCESS_2020_3021598 crossref_primary_10_1109_ACCESS_2020_3021598 ieee_primary_9186120 doaj_primary_oai_doaj_org_article_b71a43f7430c4d2e8d888c11f4d82b46 |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 mottus (ref63) 2011 bordons (ref61) 2015; 62 ref51 ref46 ref45 ref48 ref47 ref42 ref41 ref44 gautschi (ref28) 2009 ref8 ref7 (ref50) 2019 ref9 ref4 ref3 ref6 ref5 wen (ref55) 2016 ref40 csáji (ref35) 2014 chalupa (ref72) 2009 ref34 ref37 ref36 ref75 ref31 jun (ref49) 2018; 8 ref74 ref30 ref33 ref76 ref32 ref2 ref1 ref39 ref38 rauschenbach (ref54) 2012 kwan (ref70) 2007 ref71 ref73 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 petrollese (ref43) 2015 ref66 ref22 ref65 ref21 ref27 ref29 ref60 ref62 |
| References_xml | – volume: 62 start-page: 5195 year: 2015 ident: ref61 article-title: Optimal economical schedule of hydrogen-based microgrids with hybrid storage using model predictive control publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2015.2412524 – ident: ref39 doi: 10.1109/CDC.2007.4434550 – ident: ref36 doi: 10.1109/ISGT.2019.8791591 – ident: ref76 doi: 10.1109/TIE.2015.2404815 – ident: ref18 doi: 10.1109/TSG.2012.2234769 – start-page: 1469 year: 2016 ident: ref55 article-title: Modeling and simulation of energy control strategies in AC microgrid publication-title: Proc IEEE PES Asia-Pacific Power Energy Eng Conf (APPEEC) – year: 2015 ident: ref43 article-title: Optimal generation scheduling for renewable microgrids using hydrogen storage systems – ident: ref32 doi: 10.1002/9781119263739 – ident: ref21 doi: 10.1016/j.jprocont.2016.04.008 – start-page: 916 year: 2007 ident: ref70 article-title: Model predictive control of unified power quality conditioner for power quality improvement publication-title: Proc IEEE Int Conf Control Appl – ident: ref40 doi: 10.1109/TIE.2009.2031663 – ident: ref62 doi: 10.1016/j.ijhydene.2015.12.079 – ident: ref16 doi: 10.1109/MCS.2016.2602087 – ident: ref17 doi: 10.1109/CDC.2017.8264409 – ident: ref34 doi: 10.1109/TII.2016.2646721 – ident: ref52 doi: 10.1109/SAUPEC/RobMech/PRASA48453.2020.9041136 – ident: ref48 doi: 10.1109/VPPC.2010.5729119 – ident: ref31 doi: 10.1016/j.jpowsour.2011.07.029 – ident: ref44 doi: 10.1109/PES.2009.5275574 – ident: ref11 doi: 10.1109/TIA.2019.2918051 – ident: ref26 doi: 10.1049/iet-rpg.2010.0052 – ident: ref45 doi: 10.1109/TSG.2018.2856524 – ident: ref10 doi: 10.1109/TIA.2019.2959549 – ident: ref3 doi: 10.1109/TSTE.2018.2815502 – ident: ref69 doi: 10.1109/EIConRus.2018.8317170 – ident: ref6 doi: 10.1109/EPEC.2016.7771706 – ident: ref71 doi: 10.1109/TPWRS.2017.2720751 – ident: ref51 doi: 10.1016/j.jclepro.2018.03.058 – ident: ref27 doi: 10.1109/PES.2010.5590140 – ident: ref57 doi: 10.1016/j.ijhydene.2016.06.019 – ident: ref5 doi: 10.1109/SEST.2019.8849047 – ident: ref33 doi: 10.1109/TPWRS.2018.2879451 – ident: ref38 doi: 10.1109/ICNSC.2009.4919363 – ident: ref22 doi: 10.23919/ECC.2013.6669807 – ident: ref64 doi: 10.1007/978-1-4471-3792-4 – ident: ref30 doi: 10.1109/TDC.2014.6863334 – ident: ref14 doi: 10.1109/TSTE.2015.2405935 – ident: ref13 doi: 10.1109/TCST.2014.2361800 – ident: ref37 doi: 10.1016/j.renene.2006.04.013 – ident: ref59 doi: 10.4028/www.scientific.net/JERA.48.133 – ident: ref9 doi: 10.1109/TIE.2019.2956417 – ident: ref75 doi: 10.1016/j.jpowsour.2017.01.015 – ident: ref2 doi: 10.1109/TSG.2016.2623760 – ident: ref7 doi: 10.1109/ACCESS.2019.2947415 – ident: ref29 doi: 10.1016/j.energy.2008.07.012 – volume: 8 start-page: 861 year: 2018 ident: ref49 article-title: Online energy management strategy based on adaptive model predictive control for microgrid with hydrogen storage publication-title: Int J Renew Energy Res – ident: ref60 doi: 10.1109/JESTPE.2018.2828803 – ident: ref47 doi: 10.1016/j.jprocont.2009.03.004 – year: 2012 ident: ref54 publication-title: Solar Cell Array Design Handbook The Principles and Technology of Photovoltaic Energy Conversion – ident: ref73 doi: 10.1016/j.apenergy.2016.01.014 – ident: ref8 doi: 10.1016/j.renene.2013.03.026 – ident: ref1 doi: 10.1109/TCST.2013.2295737 – ident: ref25 doi: 10.1109/TSG.2012.2191580 – ident: ref58 doi: 10.1016/j.ijhydene.2008.06.051 – year: 2009 ident: ref28 article-title: Simulation of an agent based vehicle-to-grid (V2G) implementation – ident: ref41 doi: 10.1016/j.ijhydene.2013.06.113 – ident: ref67 doi: 10.1109/JESTPE.2020.3012659 – ident: ref4 doi: 10.1007/978-3-030-24570-2 – ident: ref15 doi: 10.1109/TIE.2015.2465355 – ident: ref19 doi: 10.23919/ACC.2017.7963592 – ident: ref46 doi: 10.1109/IECON.2012.6389059 – ident: ref74 doi: 10.1016/j.compchemeng.2019.01.002 – ident: ref56 doi: 10.1002/9781118703274 – start-page: 418 year: 2009 ident: ref72 article-title: Predictive control using self tuning model predictive controllers library publication-title: Proc 17th Int Conf Process Control – year: 2011 ident: ref63 article-title: Photosynthetically active radiation: Measurement and modeling publication-title: Encyclopedia of Sustainability Science and Technology – ident: ref68 doi: 10.1109/CDC.2009.5399917 – ident: ref12 doi: 10.1109/TSG.2013.2291912 – ident: ref66 doi: 10.1109/TSG.2015.2396294 – ident: ref20 doi: 10.1016/j.ijepes.2014.03.017 – ident: ref24 doi: 10.1016/j.ijepes.2012.06.040 – start-page: 1 year: 2014 ident: ref35 article-title: Adaptive aggregated predictions for renewable energy systems publication-title: Proc IEEE Symp Adapt Dyn Program Reinforcement Learn (ADPRL) – ident: ref42 doi: 10.1109/TIE.2016.2547870 – ident: ref53 doi: 10.1109/RoboMech.2019.8704846 – ident: ref65 doi: 10.1109/TSG.2010.2078842 – start-page: 322 year: 2019 ident: ref50 article-title: Effects and performance indicators evaluation of PV array topologies on PV systems operation under partial shading conditions publication-title: Proc Southern Afr Universities Power Eng Conf /Robot Mechtron /Pattern Recognit Assoc South Afr (SAUPEC/RobMech/PRASA) – ident: ref23 doi: 10.1049/iet-gtd.2015.1127 |
| SSID | ssj0000816957 |
| Score | 2.4248424 |
| Snippet | The design and implementation of appropriate advanced control strategies is a key factor for the effective integration of micro-grids into the electrical... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 162855 |
| SubjectTerms | Adaptive algorithms Adaptive control adaptive model predictive control (AMPC) Alternative energy sources Constraint modelling Control algorithms Control theory Cost function Distributed generation disturbance predictions Electrical networks Energy management Energy management system (EMS) Energy management systems Energy storage energy storage system (ESS) Hybrid systems MATLAB simulation Operating costs Optimization prediction horizon Predictive control Predictive models Renewable energy sources Renewable resources Stochastic processes Storage systems Uncertainty |
| SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH4CxGEcBoxNdGPIhx3JiF2nto_QtYC0oR44cLNix5YqoRaFlt-_9xwTNoGQkHKIEjty8tl577P9vgfwQ7ogtaRV_wYpivTcFfVQu4LU3bD_1KGKCenf6vpa396a2Qac9LEwIYS0-Sz8pNO0lt8s_Zqmyk4N12iQkaBvKjXqYrX6-RRKIGEqlYWFeGlOz8ZjfAekgAKZKZk2o_8zPkmjPydVefEnTuZluvu-hu3Bx-xGsrMO933YCItPsPOPuOAB3F2lAEi2jOyKxCqTYDHeYb8Q2XXrCG42a2mhhsBheKAzyGbPkQRUdZJiA9nzLhmWNc7ZfMH-0G6-4qKdN5_hZjq5GV8WObdC4WWpVwUCpIPR0nkhYjkyDu12qKXS0njXVD4opyMPyoy0q5xRIiATqTw3NXo0dRx-ga3FchEOgXHRUL4OpaIOkhyeWjrkXQ6rROQjegDi6Ztbn3XHKf3FnU38ozS2A8oSUDYDNYCTvtJ9J7vxdvFzArMvSprZ6QKiZPMQtE7xWg4jukyll40IukH27zmPstHCydEADgjZ_iEZ1AEcPXUNm8f3gxWyQguDln349fVa3-ADNbCbrDmCrVW7Dt9h2z-u5g_tceq6fwHQiOsG priority: 102 providerName: IEEE |
| Title | Impact of Incorporating Disturbance Prediction on the Performance of Energy Management Systems in Micro-Grid |
| URI | https://ieeexplore.ieee.org/document/9186120 https://www.proquest.com/docview/2454678473 https://doaj.org/article/b71a43f7430c4d2e8d888c11f4d82b46 |
| Volume | 8 |
| WOSCitedRecordID | wos000572890000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx4YiYhdp7ZHKC1UAtShQzcrdmypEiooFEZ-O3eOaYuQYEGKMiR2Et9dcvfFvu8IORfWCyVw1r8CiCIcs1nZUTZDdjewn9IXIWr6Xj4-qslEj1ZKfeGasIYeuBHcpZWsFJ0Aji53ouJeVYDZHGNBVIpbEcm2c6lXwFT8BivW1YVMNEMs15dXvR6MCAAhB5yKjk6rb64oMvanEis_vsvR2Qy2yVaKEulV83Q7ZM3PdsnmCnfgHnkaxvxG-hzoELkoIx8xnKE3oLi32qI26ajGeRiUPYUNYj06WiYKYNd-TP2jy0UwNFGY0-mMPuBivey2nlb7ZDzoj3t3WSqdkDmRq3kG8ldeK2Ed5yHvagtu2ZdCKqGdrQrnpVWBeam7yhZWS-4BaBSO6RICljJ0Dkhr9jzzh4QyXmE5DimD8gLjmVJYgFUWugSAG6pN-JcQjUu04ljd4slEeJFr00jeoORNknybXCw6vTSsGr83v0btLJoiJXY8AIZikqGYvwylTfZQt4uLaKYgusvb5ORL1ya9vq-GiwIcCDjuztF_3PqYbOBwmj83J6Q1r9_8KVl37_Ppa30WLRf2Dx_9s5h_-AnL-u_x |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH5CbNLGYb8YWoENH3YkI3ad2j5CB6OiVD30wM2KHVuqhNoptPz9vOeawDQ0aVIOUWJHTj4773223_cAvksXpJa06t8gRZGeu6Lua1eQuhv2nzpUMSE9VpOJvrkx0y047mJhQghp81n4QadpLb9Z-jVNlZ0YrtEgI0F_RZmzcrRWN6NCKSRMpbK0EC_NyelwiG-BJFAgNyXjZvQf5iep9Oe0Kn_9i5OBuXj_f037AO-yI8lON8h_hK2w-AQ7z-QFd-F2lEIg2TKyEclVJslivMN-Irbr1hHgbNrSUg3Bw_BAd5BNn2IJqOp5ig5kT_tkWFY5Z_MFu6b9fMWvdt58htnF-Wx4WeTsCoWXpV4VCJEORkvnhYjlwDi03KGWSkvjXVP5oJyOPCgz0K5yRomAXKTy3NTo09Sxvwfbi-UifAHGRUMZO5SKOkhyeWrpkHk5rBKRkegeiMdvbn1WHqcEGLc2MZDS2A1QloCyGageHHeVfm-EN_5d_IzA7IqSana6gCjZPAitU7yW_YhOU-llI4JukP97zqNstHBy0INdQrZ7SAa1B4ePXcPmEX5nhazQxqBt7--_XOsI3lzOrsd2PJpcHcBbauxm6uYQtlftOnyF1_5-Nb9rv6Vu_AAy1e5P |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Incorporating+Disturbance+Prediction+on+the+Performance+of+Energy+Management+Systems+in+Micro-Grid&rft.jtitle=IEEE+access&rft.au=Gbadega%2C+Peter+Anuoluwapo&rft.au=Saha%2C+Akshay+Kumar&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=162855&rft.epage=162879&rft_id=info:doi/10.1109%2FACCESS.2020.3021598&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3021598 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |