Multi-dimensional Data Compression and Query Processing in Array Databases

In recent times, the production of multidimensional data in various domains and their storage in array databases has witnessed a sharp increase; this rapid growth in data volumes necessitates compression in array databases. However, existing compression schemes used in array databases are general-pu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 10; s. 1
Hlavní autoři: Kim, Minsoo, Lee, Hyubjin, Chung, Yon Dohn
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In recent times, the production of multidimensional data in various domains and their storage in array databases has witnessed a sharp increase; this rapid growth in data volumes necessitates compression in array databases. However, existing compression schemes used in array databases are general-purpose and not designed specifically for the databases. They could degrade query performance with complex analytical tasks, which incur huge computing costs. Thus, a compression scheme that considers the workflow of array databases is required. This study presents a compression scheme, SEACOW, for storing and querying multidimensional array data. The scheme is specially designed to be efficient for both dimension-based and value-based exploration. It considers data access patterns for exploration queries and embeds a synopsis, which can be utilized as an index, in the compressed array. In addition, we implement an array storage system, namely MSDB, to perform experiments. We evaluate query performance on real scientific datasets and compared it with those of existing compression schemes. Finally, our experiments demonstrate that SEACOW provides high compression rates compared to existing compression schemes, and the synopsis improves analytical query processing performance.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3215525