Multi-Objective Reactive Power Optimization Based on Improved Particle Swarm Optimization With ε-Greedy Strategy and Pareto Archive Algorithm
This paper proposes combining an improved particle swarm optimization and Pareto archive algorithm to solve the multi-objective reactive power optimization problem. The idea of <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula> -gre...
Saved in:
| Published in: | IEEE access Vol. 9; pp. 65650 - 65659 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes combining an improved particle swarm optimization and Pareto archive algorithm to solve the multi-objective reactive power optimization problem. The idea of <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula> -greedy strategy is adopted and designed to improve particle swarm optimization algorithm. It makes some particles have stronger global search capability, meanwhile, others have stronger local search capability during the whole iteration process. Henceforth, the strategy significantly explores the possibility of optimal solution in local space at the early stage of the iteration, in addition, it mitigates the tendency to fall into the local optimal solution at the later stage of the iteration. The Pareto optimal solution selection problem is solved by minimizing the sum of the difference between each objective function and its optimal solution. The proposed approach is tested on IEEE39-bus and IEEE118-bus system, and it is demonstrated that the proposed approach not only restores the nodes voltage to the normal range and achieves better value for each objective function, but also outperforms other algorithms including standard particle swarm optimization and non-dominated sorting genetic algorithm II(NSGA-II). |
|---|---|
| AbstractList | This paper proposes combining an improved particle swarm optimization and Pareto archive algorithm to solve the multi-objective reactive power optimization problem. The idea of <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula> -greedy strategy is adopted and designed to improve particle swarm optimization algorithm. It makes some particles have stronger global search capability, meanwhile, others have stronger local search capability during the whole iteration process. Henceforth, the strategy significantly explores the possibility of optimal solution in local space at the early stage of the iteration, in addition, it mitigates the tendency to fall into the local optimal solution at the later stage of the iteration. The Pareto optimal solution selection problem is solved by minimizing the sum of the difference between each objective function and its optimal solution. The proposed approach is tested on IEEE39-bus and IEEE118-bus system, and it is demonstrated that the proposed approach not only restores the nodes voltage to the normal range and achieves better value for each objective function, but also outperforms other algorithms including standard particle swarm optimization and non-dominated sorting genetic algorithm II(NSGA-II). This paper proposes combining an improved particle swarm optimization and Pareto archive algorithm to solve the multi-objective reactive power optimization problem. The idea of <tex-math notation="LaTeX">$\varepsilon $ </tex-math>-greedy strategy is adopted and designed to improve particle swarm optimization algorithm. It makes some particles have stronger global search capability, meanwhile, others have stronger local search capability during the whole iteration process. Henceforth, the strategy significantly explores the possibility of optimal solution in local space at the early stage of the iteration, in addition, it mitigates the tendency to fall into the local optimal solution at the later stage of the iteration. The Pareto optimal solution selection problem is solved by minimizing the sum of the difference between each objective function and its optimal solution. The proposed approach is tested on IEEE39-bus and IEEE118-bus system, and it is demonstrated that the proposed approach not only restores the nodes voltage to the normal range and achieves better value for each objective function, but also outperforms other algorithms including standard particle swarm optimization and non-dominated sorting genetic algorithm II(NSGA-II). This paper proposes combining an improved particle swarm optimization and Pareto archive algorithm to solve the multi-objective reactive power optimization problem. The idea of [Formula Omitted] -greedy strategy is adopted and designed to improve particle swarm optimization algorithm. It makes some particles have stronger global search capability, meanwhile, others have stronger local search capability during the whole iteration process. Henceforth, the strategy significantly explores the possibility of optimal solution in local space at the early stage of the iteration, in addition, it mitigates the tendency to fall into the local optimal solution at the later stage of the iteration. The Pareto optimal solution selection problem is solved by minimizing the sum of the difference between each objective function and its optimal solution. The proposed approach is tested on IEEE39-bus and IEEE118-bus system, and it is demonstrated that the proposed approach not only restores the nodes voltage to the normal range and achieves better value for each objective function, but also outperforms other algorithms including standard particle swarm optimization and non-dominated sorting genetic algorithm II(NSGA-II). |
| Author | Liu, Xiaofei Fang, Hui Zhang, Pei Zhou, Yinglu |
| Author_xml | – sequence: 1 givenname: Xiaofei orcidid: 0000-0003-2467-8409 surname: Liu fullname: Liu, Xiaofei organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing, China – sequence: 2 givenname: Pei orcidid: 0000-0001-9706-2854 surname: Zhang fullname: Zhang, Pei email: peizhang166@qq.com organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing, China – sequence: 3 givenname: Hui surname: Fang fullname: Fang, Hui organization: State Grid Chongqing Electric Power Research Institute, Chongqing, China – sequence: 4 givenname: Yinglu surname: Zhou fullname: Zhou, Yinglu organization: State Grid Chongqing Electric Power Company, Chongqing, China |
| BookMark | eNp9UdFu0zAUtdCQGNu-YC-ReE6xncSOH0s1tkpDndYhHi3bue5cJXFx3E3lI_gbfoNvwm0KAh5mWfLR1TnnXt_zFp30vgeELgmeEILF--lsdrVcTiimZFJgXnHOX6FTSpjIi6pgJ3_hN-hiGNY4nTqVKn6Kvn_attHlC70GE90TZPegRnDnnyFki010nfumovN99kEN0GQJzLtN8E8J36kQnWkhWz6r0P3L_uLiY_bzR34dAJpdtoxBRVjtMtUfdBB9Ng3mcd9r2q58SPTuHL22qh3g4vieoc8frx5mN_nt4no-m97mpsR1zEtWlaCZ4bbBRNSEakLAmsIoooXQYFNHqDnTYAQtS1EQi4UA3DADVBtdnKH56Nt4tZab4DoVdtIrJw8FH1by-DNpmdK6xoRhi0uLqeaMaVJRTmzNFK-T17vRK-3k6xaGKNd-G_o0vqQVpZRwLGhiiZFlgh-GAFYaFw-LSntxrSRY7tOUY5pyn6Y8ppm0xX_a3xO_rLocVQ4A_ihESVi6xS_yr7Bd |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1049_rpg2_12868 crossref_primary_10_1002_jnm_70013 crossref_primary_10_1109_ACCESS_2024_3426104 crossref_primary_10_3390_pr13082455 crossref_primary_10_1016_j_energy_2022_125635 crossref_primary_10_3390_pr10071401 crossref_primary_10_3390_en17092001 crossref_primary_10_1016_j_asoc_2024_111548 crossref_primary_10_1016_j_swevo_2025_102006 crossref_primary_10_3390_act14010009 crossref_primary_10_3390_en17246454 crossref_primary_10_3390_en17112774 crossref_primary_10_1002_jnm_70085 crossref_primary_10_1088_1742_6596_2833_1_012017 crossref_primary_10_1109_TIV_2024_3352581 crossref_primary_10_1186_s42162_024_00341_3 crossref_primary_10_1109_TCAD_2024_3485575 crossref_primary_10_1002_jnm_3204 crossref_primary_10_1007_s10586_024_04542_z crossref_primary_10_1109_ACCESS_2024_3445143 crossref_primary_10_1016_j_enbenv_2022_12_001 crossref_primary_10_1109_ACCESS_2022_3158666 crossref_primary_10_1016_j_rser_2024_114282 crossref_primary_10_1109_ACCESS_2023_3289856 crossref_primary_10_1109_TIA_2024_3379489 |
| Cites_doi | 10.1007/BFb0040811 10.1109/TPWRS.2019.2941134 10.1016/j.ijepes.2008.04.005 10.1016/j.ijepes.2012.05.032 10.1109/ICEMS.2017.8055969 10.1109/SIS.2003.1202264 10.3390/en9020107 10.1016/j.ijepes.2016.03.024 10.1109/ICNN.1995.488968 10.1016/j.asoc.2020.106516 10.1109/TSG.2019.2962625 10.1109/ICITSI.2016.7858224 10.1016/j.cor.2004.08.012 10.1007/978-3-540-31989-4_26 10.1155/2015/754582 10.1016/j.asoc.2012.01.006 10.1007/s13369-012-0297-z 10.1109/APPEEC.2016.7779630 10.1049/iet-gtd.2014.0469 10.1109/ACCESS.2020.2974961 10.1007/s10489-018-1319-7 10.1109/ICEC.1998.699146 10.1109/TSG.2014.2329842 10.1109/ACCESS.2021.3056423 10.1109/4235.996017 10.1109/ACCESS.2018.2852941 10.1109/TEVC.2007.892759 10.1162/evco.1994.2.3.221 10.1109/ACCESS.2020.3018484 10.1109/CEC.2004.1330905 10.1109/TPWRS.2010.2051168 10.1109/ACCESS.2021.3053640 10.3390/en13225871 10.1109/CEC.1999.781913 10.1109/4235.797969 10.1109/TSG.2013.2256938 10.1016/j.ijepes.2016.03.007 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2021.3075777 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 65659 |
| ExternalDocumentID | oai_doaj_org_article_f6abb80160f04f02b766b15271f86a78 10_1109_ACCESS_2021_3075777 9416416 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-4654eb6c7fd019812b11efc3ca1b99befeede876bec9244931f099e0d6ce2bcb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000647306500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:19 EDT 2025 Sun Jun 29 15:31:21 EDT 2025 Sat Nov 29 06:12:12 EST 2025 Tue Nov 18 22:13:27 EST 2025 Wed Aug 27 02:40:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-4654eb6c7fd019812b11efc3ca1b99befeede876bec9244931f099e0d6ce2bcb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9706-2854 0000-0003-2467-8409 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9416416 |
| PQID | 2522217092 |
| PQPubID | 4845423 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2021_3075777 proquest_journals_2522217092 ieee_primary_9416416 doaj_primary_oai_doaj_org_article_f6abb80160f04f02b766b15271f86a78 crossref_primary_10_1109_ACCESS_2021_3075777 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref37 ref15 soldevilla (ref29) 2019 ref36 ref14 ref31 ref33 zhou (ref10) 2020; 95 ref11 ref32 ref2 guo (ref44) 2018 ref1 ref38 ref19 ref18 eberhart (ref35) 2002 shi (ref34) 1998 trivedi (ref17) 2017; 21 (ref46) 2019 ref24 ref45 ref23 ref26 ref20 ref42 ref41 ref22 huang (ref30) 2019 ref21 ref43 zhang (ref39) 2012; 36 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 jeyanthy (ref25) 2010; 2 ref40 li (ref16) 2007; 11 |
| References_xml | – ident: ref32 doi: 10.1007/BFb0040811 – ident: ref6 doi: 10.1109/TPWRS.2019.2941134 – ident: ref22 doi: 10.1016/j.ijepes.2008.04.005 – ident: ref23 doi: 10.1016/j.ijepes.2012.05.032 – volume: 2 start-page: 2715 year: 2010 ident: ref25 article-title: Multi-objective genetic algorithm for reactive power optimization inclusing voltage stabilityy publication-title: Int J Eng Sci Technol – ident: ref31 doi: 10.1109/ICEMS.2017.8055969 – year: 2019 ident: ref46 publication-title: Matpower – volume: 36 start-page: 158 year: 2012 ident: ref39 article-title: Reactive power optimization for medium voltage distribution network based on improved particle swarm optimization publication-title: Power Syst Technol – start-page: 591 year: 1998 ident: ref34 article-title: Parameter selection in particle swarm optimization publication-title: Proc Int Conf Evol Program – ident: ref38 doi: 10.1109/SIS.2003.1202264 – ident: ref13 doi: 10.3390/en9020107 – ident: ref9 doi: 10.1016/j.ijepes.2016.03.024 – ident: ref43 doi: 10.1109/ICNN.1995.488968 – start-page: 189 year: 2019 ident: ref30 article-title: Reactive power optimization for distribution network based on improved bacterial chemotaxis particle swarm optimization publication-title: Proc Int Symp Comput Intell Design – volume: 95 start-page: 1 year: 2020 ident: ref10 article-title: Nonlinear systems modelling based on self-organizing fuzzy neural network with hierarchical pruning scheme publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106516 – ident: ref5 doi: 10.1109/TSG.2019.2962625 – ident: ref20 doi: 10.1109/ICITSI.2016.7858224 – ident: ref36 doi: 10.1016/j.cor.2004.08.012 – ident: ref41 doi: 10.1007/978-3-540-31989-4_26 – ident: ref40 doi: 10.1155/2015/754582 – ident: ref8 doi: 10.1016/j.asoc.2012.01.006 – ident: ref27 doi: 10.1007/s13369-012-0297-z – ident: ref24 doi: 10.1109/APPEEC.2016.7779630 – ident: ref28 doi: 10.1049/iet-gtd.2014.0469 – start-page: 1 year: 2019 ident: ref29 article-title: Minimization of losses in power systems by reactive power dispatch using particle swarm optimization publication-title: Proc Int Univ Power Eng Conf – ident: ref7 doi: 10.1109/ACCESS.2020.2974961 – ident: ref18 doi: 10.1007/s10489-018-1319-7 – ident: ref33 doi: 10.1109/ICEC.1998.699146 – ident: ref12 doi: 10.1109/TSG.2014.2329842 – ident: ref3 doi: 10.1109/ACCESS.2021.3056423 – ident: ref15 doi: 10.1109/4235.996017 – ident: ref4 doi: 10.1109/ACCESS.2018.2852941 – start-page: 28 year: 2018 ident: ref44 publication-title: Deep Understanding Reinforcement Learning An Introduction to Principles – volume: 21 start-page: 440 year: 2017 ident: ref17 article-title: A survey of multiobjective evolutionary algorithms based on decomposition publication-title: IEEE Trans Evol Comput – volume: 11 start-page: 712 year: 2007 ident: ref16 article-title: MOEA/D: A multi-objective evolutionary algorithm based on decomposition publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.892759 – ident: ref14 doi: 10.1162/evco.1994.2.3.221 – ident: ref42 doi: 10.1109/ACCESS.2020.3018484 – ident: ref37 doi: 10.1109/CEC.2004.1330905 – start-page: 84 year: 2002 ident: ref35 article-title: Comparing inertia weights and constriction factors in particle swarm optimization publication-title: Proc Congr Evol Comput – ident: ref45 doi: 10.1109/TPWRS.2010.2051168 – ident: ref2 doi: 10.1109/ACCESS.2021.3053640 – ident: ref11 doi: 10.3390/en13225871 – ident: ref21 doi: 10.1109/CEC.1999.781913 – ident: ref19 doi: 10.1109/4235.797969 – ident: ref1 doi: 10.1109/TSG.2013.2256938 – ident: ref26 doi: 10.1016/j.ijepes.2016.03.007 |
| SSID | ssj0000816957 |
| Score | 2.3473418 |
| Snippet | This paper proposes combining an improved particle swarm optimization and Pareto archive algorithm to solve the multi-objective reactive power optimization... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 65650 |
| SubjectTerms | Algorithms Archives & records Genetic algorithms Heuristic algorithms Iterative methods Linear programming Multi-objective reactive power optimization Multiple objective analysis Optimization Pareto archive algorithm Pareto optimization Pareto optimum Particle swarm optimization Power system stability Reactive power Sorting algorithms voltage control ε-<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">greedy strategy |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELUQ4gAHxCrKJh84ErCTNI6PbUXFAUHFIrhZtmOziLaoBBA_wd_wG3wT44WqCAkuSDlY0TiJPZNZLPs9hHYKzSEJMVUiSSWTHGJWwq0hoBCqZcZzo5VnLTlix8fl1RXvTVB9uT1hAR44TNy-LaRSpcNBsyS3JFWsKJTjYqW2LCTzx3wJ4xPFlPfBJS14k0WYIUr4fqvTgRFBQZjSPbDrJmPsWyjyiP2RYuWHX_bBpruA5mOWiFvh6xbRlBksobkJ7MBl9OaPziYn6i64LHxqZGj0HPEZPgFf0I-HLHEbYlWFoRHWEKDdiyPHZy9y1P8ufXlb3-CP98TtyalecQSwfcVy4PuZeogjYC1u3V8PRyDeX0EX3YPzzmESyRUSnZOyThyOmlGFZraCLA_CvKLUWJ1pSRXnylh4gwFXCTqGEi3nGbWQTBpSOQoxpVW2iqYHw4FZQ7gJJWFR5lTRDPKR0kgowiqWaecrQPusgdKveRY6Io87Aox74SsQwkVQjnDKEVE5DbQ77vQQgDd-F287BY5FHWq2vwG2JOKMir9sqYGWnfrHD-GQrcLVQJtf5iDiH_4oUkhcoZwjPF3_j1dvoFk3nLC4s4mm69GT2UIz-rm-fRxte-P-BO3T_EE priority: 102 providerName: Directory of Open Access Journals |
| Title | Multi-Objective Reactive Power Optimization Based on Improved Particle Swarm Optimization With ε-Greedy Strategy and Pareto Archive Algorithm |
| URI | https://ieeexplore.ieee.org/document/9416416 https://www.proquest.com/docview/2522217092 https://doaj.org/article/f6abb80160f04f02b766b15271f86a78 |
| Volume | 9 |
| WOSCitedRecordID | wos000647306500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB4B6qE99A-qLqXIhx4J2Ek2jo_LCtRDCysoKjfLdsZAxe5WS6Di0kfo2_Q1-kwdOyYqoqpUKYqsyE6cfKPxzMTzDcC7yikyQrDJDG9MVtKalSmPnAARzhSqRGdj1ZIP8uCgPj1VkyXY6nNhEDFuPsPt0Iz_8pu5uw6hsh1F1gMdy7AsZdXlavXxlFBAQg1lIhYSXO2MxmN6B3IBc7FNkjyUUt5bfCJHfyqq8kATx-Vl_9n_Tew5PE1mJBt1uL-AJZy9hCd_kAuuwo-YW5sd2i-dTmNHaLrGJFRGY4ekLKYpC5Pt0mLWMGp0QQZqT5JMseNvZjG93_vzRXvOfv3Mwqad5pYlhttbZmZxHLZzlhht2ejybL6g7tM1ONnf-zR-n6XqC5kred1mgWgNbeWkb8gMJDvACoHeFc4Iq5RFT09A0qUkBOTDlaoQnqxN5E2oMWadLV7Bymw-w9fAhuQzVnUprCjIYKnRkJfWyMIFZULiIQeQ38GiXaImDxUyLnV0UbjSHZY6YKkTlgPY6gd97Zg5_t19N-Dddw202vECAanTF9W-MtbWgXTP89Lz3MqqsqHwr_B1ZWQ9gNUAfn-ThPsANu6kRycVcKVzsmzJ3-MqX__7qDfwOEywi-dswEq7uMa38MjdtBdXi80YHKDzx-97m1HSfwPVfPwq |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6VggQc-GsRCwV84Ni0dpKN4-N2RVXEsl1BEb1ZtjOGou4u2qagvgRvw2vwTIwdN6ICISHlYEV24uQbjWcm8fcBvKicoiAEm8zwxmQlrVmZ8sgJEOFMoUp0NqqWTOR0Wh8fq9kabPd7YRAx_nyGO6EZv-U3S3ceSmW7iqIHOq7B9aCclXZr9RWVICGhhjJRCwmudkfjMT0FJYG52CFbHkopryw_kaU_yar84YvjArN_9_-mdg_upECSjTrk78MaLh7A7d_oBTfge9xdmx3az51XY2_RdI1Z0EZjh-Qu5mkfJtuj5axh1OjKDNSeJati776Z1fxq7w8n7Sf280cWfttpLljiuL1gZhHHYbtkidOWjU4_LlfUfb4J7_dfHo0PsqS_kLmS120WqNbQVk76hgJBigSsEOhd4YywSln0dAckb0pmQFlcqQrhKd5E3gSVMets8RDWF8sFPgI2pKyxqkthRUEhS42G8rRGFi64EzIQOYD8EhbtEjl50Mg41TFJ4Up3WOqApU5YDmC7H_Sl4-b4d_e9gHffNRBrxxMEpE5vVPvKWFsH2j3PS89zK6vKBulf4evKyHoAGwH8_iIJ9wFsXVqPTk7gTOcU21LGx1X--O-jnsPNg6M3Ez15NX39BG6FyXbVnS1Yb1fn-BRuuK_tydnqWbT0XzT2_U0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Reactive+Power+Optimization+Based+on+Improved+Particle+Swarm+Optimization+With+%CE%B5-Greedy+Strategy+and+Pareto+Archive+Algorithm&rft.jtitle=IEEE+access&rft.au=Liu%2C+Xiaofei&rft.au=Zhang%2C+Pei&rft.au=Fang%2C+Hui&rft.au=Zhou%2C+Yinglu&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=65650&rft.epage=65659&rft_id=info:doi/10.1109%2FACCESS.2021.3075777&rft.externalDocID=9416416 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |