Multi-Objective Reactive Power Optimization Based on Improved Particle Swarm Optimization With ε-Greedy Strategy and Pareto Archive Algorithm

This paper proposes combining an improved particle swarm optimization and Pareto archive algorithm to solve the multi-objective reactive power optimization problem. The idea of <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula> -gre...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 9; pp. 65650 - 65659
Main Authors: Liu, Xiaofei, Zhang, Pei, Fang, Hui, Zhou, Yinglu
Format: Journal Article
Language:English
Published: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes combining an improved particle swarm optimization and Pareto archive algorithm to solve the multi-objective reactive power optimization problem. The idea of <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula> -greedy strategy is adopted and designed to improve particle swarm optimization algorithm. It makes some particles have stronger global search capability, meanwhile, others have stronger local search capability during the whole iteration process. Henceforth, the strategy significantly explores the possibility of optimal solution in local space at the early stage of the iteration, in addition, it mitigates the tendency to fall into the local optimal solution at the later stage of the iteration. The Pareto optimal solution selection problem is solved by minimizing the sum of the difference between each objective function and its optimal solution. The proposed approach is tested on IEEE39-bus and IEEE118-bus system, and it is demonstrated that the proposed approach not only restores the nodes voltage to the normal range and achieves better value for each objective function, but also outperforms other algorithms including standard particle swarm optimization and non-dominated sorting genetic algorithm II(NSGA-II).
AbstractList This paper proposes combining an improved particle swarm optimization and Pareto archive algorithm to solve the multi-objective reactive power optimization problem. The idea of <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula> -greedy strategy is adopted and designed to improve particle swarm optimization algorithm. It makes some particles have stronger global search capability, meanwhile, others have stronger local search capability during the whole iteration process. Henceforth, the strategy significantly explores the possibility of optimal solution in local space at the early stage of the iteration, in addition, it mitigates the tendency to fall into the local optimal solution at the later stage of the iteration. The Pareto optimal solution selection problem is solved by minimizing the sum of the difference between each objective function and its optimal solution. The proposed approach is tested on IEEE39-bus and IEEE118-bus system, and it is demonstrated that the proposed approach not only restores the nodes voltage to the normal range and achieves better value for each objective function, but also outperforms other algorithms including standard particle swarm optimization and non-dominated sorting genetic algorithm II(NSGA-II).
This paper proposes combining an improved particle swarm optimization and Pareto archive algorithm to solve the multi-objective reactive power optimization problem. The idea of <tex-math notation="LaTeX">$\varepsilon $ </tex-math>-greedy strategy is adopted and designed to improve particle swarm optimization algorithm. It makes some particles have stronger global search capability, meanwhile, others have stronger local search capability during the whole iteration process. Henceforth, the strategy significantly explores the possibility of optimal solution in local space at the early stage of the iteration, in addition, it mitigates the tendency to fall into the local optimal solution at the later stage of the iteration. The Pareto optimal solution selection problem is solved by minimizing the sum of the difference between each objective function and its optimal solution. The proposed approach is tested on IEEE39-bus and IEEE118-bus system, and it is demonstrated that the proposed approach not only restores the nodes voltage to the normal range and achieves better value for each objective function, but also outperforms other algorithms including standard particle swarm optimization and non-dominated sorting genetic algorithm II(NSGA-II).
This paper proposes combining an improved particle swarm optimization and Pareto archive algorithm to solve the multi-objective reactive power optimization problem. The idea of [Formula Omitted] -greedy strategy is adopted and designed to improve particle swarm optimization algorithm. It makes some particles have stronger global search capability, meanwhile, others have stronger local search capability during the whole iteration process. Henceforth, the strategy significantly explores the possibility of optimal solution in local space at the early stage of the iteration, in addition, it mitigates the tendency to fall into the local optimal solution at the later stage of the iteration. The Pareto optimal solution selection problem is solved by minimizing the sum of the difference between each objective function and its optimal solution. The proposed approach is tested on IEEE39-bus and IEEE118-bus system, and it is demonstrated that the proposed approach not only restores the nodes voltage to the normal range and achieves better value for each objective function, but also outperforms other algorithms including standard particle swarm optimization and non-dominated sorting genetic algorithm II(NSGA-II).
Author Liu, Xiaofei
Fang, Hui
Zhang, Pei
Zhou, Yinglu
Author_xml – sequence: 1
  givenname: Xiaofei
  orcidid: 0000-0003-2467-8409
  surname: Liu
  fullname: Liu, Xiaofei
  organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing, China
– sequence: 2
  givenname: Pei
  orcidid: 0000-0001-9706-2854
  surname: Zhang
  fullname: Zhang, Pei
  email: peizhang166@qq.com
  organization: School of Electrical Engineering, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: Hui
  surname: Fang
  fullname: Fang, Hui
  organization: State Grid Chongqing Electric Power Research Institute, Chongqing, China
– sequence: 4
  givenname: Yinglu
  surname: Zhou
  fullname: Zhou, Yinglu
  organization: State Grid Chongqing Electric Power Company, Chongqing, China
BookMark eNp9UdFu0zAUtdCQGNu-YC-ReE6xncSOH0s1tkpDndYhHi3bue5cJXFx3E3lI_gbfoNvwm0KAh5mWfLR1TnnXt_zFp30vgeELgmeEILF--lsdrVcTiimZFJgXnHOX6FTSpjIi6pgJ3_hN-hiGNY4nTqVKn6Kvn_attHlC70GE90TZPegRnDnnyFki010nfumovN99kEN0GQJzLtN8E8J36kQnWkhWz6r0P3L_uLiY_bzR34dAJpdtoxBRVjtMtUfdBB9Ng3mcd9r2q58SPTuHL22qh3g4vieoc8frx5mN_nt4no-m97mpsR1zEtWlaCZ4bbBRNSEakLAmsIoooXQYFNHqDnTYAQtS1EQi4UA3DADVBtdnKH56Nt4tZab4DoVdtIrJw8FH1by-DNpmdK6xoRhi0uLqeaMaVJRTmzNFK-T17vRK-3k6xaGKNd-G_o0vqQVpZRwLGhiiZFlgh-GAFYaFw-LSntxrSRY7tOUY5pyn6Y8ppm0xX_a3xO_rLocVQ4A_ihESVi6xS_yr7Bd
CODEN IAECCG
CitedBy_id crossref_primary_10_1049_rpg2_12868
crossref_primary_10_1002_jnm_70013
crossref_primary_10_1109_ACCESS_2024_3426104
crossref_primary_10_3390_pr13082455
crossref_primary_10_1016_j_energy_2022_125635
crossref_primary_10_3390_pr10071401
crossref_primary_10_3390_en17092001
crossref_primary_10_1016_j_asoc_2024_111548
crossref_primary_10_1016_j_swevo_2025_102006
crossref_primary_10_3390_act14010009
crossref_primary_10_3390_en17246454
crossref_primary_10_3390_en17112774
crossref_primary_10_1002_jnm_70085
crossref_primary_10_1088_1742_6596_2833_1_012017
crossref_primary_10_1109_TIV_2024_3352581
crossref_primary_10_1186_s42162_024_00341_3
crossref_primary_10_1109_TCAD_2024_3485575
crossref_primary_10_1002_jnm_3204
crossref_primary_10_1007_s10586_024_04542_z
crossref_primary_10_1109_ACCESS_2024_3445143
crossref_primary_10_1016_j_enbenv_2022_12_001
crossref_primary_10_1109_ACCESS_2022_3158666
crossref_primary_10_1016_j_rser_2024_114282
crossref_primary_10_1109_ACCESS_2023_3289856
crossref_primary_10_1109_TIA_2024_3379489
Cites_doi 10.1007/BFb0040811
10.1109/TPWRS.2019.2941134
10.1016/j.ijepes.2008.04.005
10.1016/j.ijepes.2012.05.032
10.1109/ICEMS.2017.8055969
10.1109/SIS.2003.1202264
10.3390/en9020107
10.1016/j.ijepes.2016.03.024
10.1109/ICNN.1995.488968
10.1016/j.asoc.2020.106516
10.1109/TSG.2019.2962625
10.1109/ICITSI.2016.7858224
10.1016/j.cor.2004.08.012
10.1007/978-3-540-31989-4_26
10.1155/2015/754582
10.1016/j.asoc.2012.01.006
10.1007/s13369-012-0297-z
10.1109/APPEEC.2016.7779630
10.1049/iet-gtd.2014.0469
10.1109/ACCESS.2020.2974961
10.1007/s10489-018-1319-7
10.1109/ICEC.1998.699146
10.1109/TSG.2014.2329842
10.1109/ACCESS.2021.3056423
10.1109/4235.996017
10.1109/ACCESS.2018.2852941
10.1109/TEVC.2007.892759
10.1162/evco.1994.2.3.221
10.1109/ACCESS.2020.3018484
10.1109/CEC.2004.1330905
10.1109/TPWRS.2010.2051168
10.1109/ACCESS.2021.3053640
10.3390/en13225871
10.1109/CEC.1999.781913
10.1109/4235.797969
10.1109/TSG.2013.2256938
10.1016/j.ijepes.2016.03.007
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3075777
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 65659
ExternalDocumentID oai_doaj_org_article_f6abb80160f04f02b766b15271f86a78
10_1109_ACCESS_2021_3075777
9416416
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-4654eb6c7fd019812b11efc3ca1b99befeede876bec9244931f099e0d6ce2bcb3
IEDL.DBID RIE
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000647306500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:19 EDT 2025
Sun Jun 29 15:31:21 EDT 2025
Sat Nov 29 06:12:12 EST 2025
Tue Nov 18 22:13:27 EST 2025
Wed Aug 27 02:40:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-4654eb6c7fd019812b11efc3ca1b99befeede876bec9244931f099e0d6ce2bcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9706-2854
0000-0003-2467-8409
OpenAccessLink https://ieeexplore.ieee.org/document/9416416
PQID 2522217092
PQPubID 4845423
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2021_3075777
proquest_journals_2522217092
ieee_primary_9416416
doaj_primary_oai_doaj_org_article_f6abb80160f04f02b766b15271f86a78
crossref_primary_10_1109_ACCESS_2021_3075777
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
ref15
soldevilla (ref29) 2019
ref36
ref14
ref31
ref33
zhou (ref10) 2020; 95
ref11
ref32
ref2
guo (ref44) 2018
ref1
ref38
ref19
ref18
eberhart (ref35) 2002
shi (ref34) 1998
trivedi (ref17) 2017; 21
(ref46) 2019
ref24
ref45
ref23
ref26
ref20
ref42
ref41
ref22
huang (ref30) 2019
ref21
ref43
zhang (ref39) 2012; 36
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
jeyanthy (ref25) 2010; 2
ref40
li (ref16) 2007; 11
References_xml – ident: ref32
  doi: 10.1007/BFb0040811
– ident: ref6
  doi: 10.1109/TPWRS.2019.2941134
– ident: ref22
  doi: 10.1016/j.ijepes.2008.04.005
– ident: ref23
  doi: 10.1016/j.ijepes.2012.05.032
– volume: 2
  start-page: 2715
  year: 2010
  ident: ref25
  article-title: Multi-objective genetic algorithm for reactive power optimization inclusing voltage stabilityy
  publication-title: Int J Eng Sci Technol
– ident: ref31
  doi: 10.1109/ICEMS.2017.8055969
– year: 2019
  ident: ref46
  publication-title: Matpower
– volume: 36
  start-page: 158
  year: 2012
  ident: ref39
  article-title: Reactive power optimization for medium voltage distribution network based on improved particle swarm optimization
  publication-title: Power Syst Technol
– start-page: 591
  year: 1998
  ident: ref34
  article-title: Parameter selection in particle swarm optimization
  publication-title: Proc Int Conf Evol Program
– ident: ref38
  doi: 10.1109/SIS.2003.1202264
– ident: ref13
  doi: 10.3390/en9020107
– ident: ref9
  doi: 10.1016/j.ijepes.2016.03.024
– ident: ref43
  doi: 10.1109/ICNN.1995.488968
– start-page: 189
  year: 2019
  ident: ref30
  article-title: Reactive power optimization for distribution network based on improved bacterial chemotaxis particle swarm optimization
  publication-title: Proc Int Symp Comput Intell Design
– volume: 95
  start-page: 1
  year: 2020
  ident: ref10
  article-title: Nonlinear systems modelling based on self-organizing fuzzy neural network with hierarchical pruning scheme
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106516
– ident: ref5
  doi: 10.1109/TSG.2019.2962625
– ident: ref20
  doi: 10.1109/ICITSI.2016.7858224
– ident: ref36
  doi: 10.1016/j.cor.2004.08.012
– ident: ref41
  doi: 10.1007/978-3-540-31989-4_26
– ident: ref40
  doi: 10.1155/2015/754582
– ident: ref8
  doi: 10.1016/j.asoc.2012.01.006
– ident: ref27
  doi: 10.1007/s13369-012-0297-z
– ident: ref24
  doi: 10.1109/APPEEC.2016.7779630
– ident: ref28
  doi: 10.1049/iet-gtd.2014.0469
– start-page: 1
  year: 2019
  ident: ref29
  article-title: Minimization of losses in power systems by reactive power dispatch using particle swarm optimization
  publication-title: Proc Int Univ Power Eng Conf
– ident: ref7
  doi: 10.1109/ACCESS.2020.2974961
– ident: ref18
  doi: 10.1007/s10489-018-1319-7
– ident: ref33
  doi: 10.1109/ICEC.1998.699146
– ident: ref12
  doi: 10.1109/TSG.2014.2329842
– ident: ref3
  doi: 10.1109/ACCESS.2021.3056423
– ident: ref15
  doi: 10.1109/4235.996017
– ident: ref4
  doi: 10.1109/ACCESS.2018.2852941
– start-page: 28
  year: 2018
  ident: ref44
  publication-title: Deep Understanding Reinforcement Learning An Introduction to Principles
– volume: 21
  start-page: 440
  year: 2017
  ident: ref17
  article-title: A survey of multiobjective evolutionary algorithms based on decomposition
  publication-title: IEEE Trans Evol Comput
– volume: 11
  start-page: 712
  year: 2007
  ident: ref16
  article-title: MOEA/D: A multi-objective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892759
– ident: ref14
  doi: 10.1162/evco.1994.2.3.221
– ident: ref42
  doi: 10.1109/ACCESS.2020.3018484
– ident: ref37
  doi: 10.1109/CEC.2004.1330905
– start-page: 84
  year: 2002
  ident: ref35
  article-title: Comparing inertia weights and constriction factors in particle swarm optimization
  publication-title: Proc Congr Evol Comput
– ident: ref45
  doi: 10.1109/TPWRS.2010.2051168
– ident: ref2
  doi: 10.1109/ACCESS.2021.3053640
– ident: ref11
  doi: 10.3390/en13225871
– ident: ref21
  doi: 10.1109/CEC.1999.781913
– ident: ref19
  doi: 10.1109/4235.797969
– ident: ref1
  doi: 10.1109/TSG.2013.2256938
– ident: ref26
  doi: 10.1016/j.ijepes.2016.03.007
SSID ssj0000816957
Score 2.3473418
Snippet This paper proposes combining an improved particle swarm optimization and Pareto archive algorithm to solve the multi-objective reactive power optimization...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 65650
SubjectTerms Algorithms
Archives & records
Genetic algorithms
Heuristic algorithms
Iterative methods
Linear programming
Multi-objective reactive power optimization
Multiple objective analysis
Optimization
Pareto archive algorithm
Pareto optimization
Pareto optimum
Particle swarm optimization
Power system stability
Reactive power
Sorting algorithms
voltage control
ε-<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">greedy strategy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELUQ4gAHxCrKJh84ErCTNI6PbUXFAUHFIrhZtmOziLaoBBA_wd_wG3wT44WqCAkuSDlY0TiJPZNZLPs9hHYKzSEJMVUiSSWTHGJWwq0hoBCqZcZzo5VnLTlix8fl1RXvTVB9uT1hAR44TNy-LaRSpcNBsyS3JFWsKJTjYqW2LCTzx3wJ4xPFlPfBJS14k0WYIUr4fqvTgRFBQZjSPbDrJmPsWyjyiP2RYuWHX_bBpruA5mOWiFvh6xbRlBksobkJ7MBl9OaPziYn6i64LHxqZGj0HPEZPgFf0I-HLHEbYlWFoRHWEKDdiyPHZy9y1P8ufXlb3-CP98TtyalecQSwfcVy4PuZeogjYC1u3V8PRyDeX0EX3YPzzmESyRUSnZOyThyOmlGFZraCLA_CvKLUWJ1pSRXnylh4gwFXCTqGEi3nGbWQTBpSOQoxpVW2iqYHw4FZQ7gJJWFR5lTRDPKR0kgowiqWaecrQPusgdKveRY6Io87Aox74SsQwkVQjnDKEVE5DbQ77vQQgDd-F287BY5FHWq2vwG2JOKMir9sqYGWnfrHD-GQrcLVQJtf5iDiH_4oUkhcoZwjPF3_j1dvoFk3nLC4s4mm69GT2UIz-rm-fRxte-P-BO3T_EE
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-Objective Reactive Power Optimization Based on Improved Particle Swarm Optimization With ε-Greedy Strategy and Pareto Archive Algorithm
URI https://ieeexplore.ieee.org/document/9416416
https://www.proquest.com/docview/2522217092
https://doaj.org/article/f6abb80160f04f02b766b15271f86a78
Volume 9
WOSCitedRecordID wos000647306500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB4B6qE99A-qLqXIhx4J2Ek2jo_LCtRDCysoKjfLdsZAxe5WS6Di0kfo2_Q1-kwdOyYqoqpUKYqsyE6cfKPxzMTzDcC7yikyQrDJDG9MVtKalSmPnAARzhSqRGdj1ZIP8uCgPj1VkyXY6nNhEDFuPsPt0Iz_8pu5uw6hsh1F1gMdy7AsZdXlavXxlFBAQg1lIhYSXO2MxmN6B3IBc7FNkjyUUt5bfCJHfyqq8kATx-Vl_9n_Tew5PE1mJBt1uL-AJZy9hCd_kAuuwo-YW5sd2i-dTmNHaLrGJFRGY4ekLKYpC5Pt0mLWMGp0QQZqT5JMseNvZjG93_vzRXvOfv3Mwqad5pYlhttbZmZxHLZzlhht2ejybL6g7tM1ONnf-zR-n6XqC5kred1mgWgNbeWkb8gMJDvACoHeFc4Iq5RFT09A0qUkBOTDlaoQnqxN5E2oMWadLV7Bymw-w9fAhuQzVnUprCjIYKnRkJfWyMIFZULiIQeQ38GiXaImDxUyLnV0UbjSHZY6YKkTlgPY6gd97Zg5_t19N-Dddw202vECAanTF9W-MtbWgXTP89Lz3MqqsqHwr_B1ZWQ9gNUAfn-ThPsANu6kRycVcKVzsmzJ3-MqX__7qDfwOEywi-dswEq7uMa38MjdtBdXi80YHKDzx-97m1HSfwPVfPwq
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6VggQc-GsRCwV84Ni0dpKN4-N2RVXEsl1BEb1ZtjOGou4u2qagvgRvw2vwTIwdN6ICISHlYEV24uQbjWcm8fcBvKicoiAEm8zwxmQlrVmZ8sgJEOFMoUp0NqqWTOR0Wh8fq9kabPd7YRAx_nyGO6EZv-U3S3ceSmW7iqIHOq7B9aCclXZr9RWVICGhhjJRCwmudkfjMT0FJYG52CFbHkopryw_kaU_yar84YvjArN_9_-mdg_upECSjTrk78MaLh7A7d_oBTfge9xdmx3az51XY2_RdI1Z0EZjh-Qu5mkfJtuj5axh1OjKDNSeJati776Z1fxq7w8n7Sf280cWfttpLljiuL1gZhHHYbtkidOWjU4_LlfUfb4J7_dfHo0PsqS_kLmS120WqNbQVk76hgJBigSsEOhd4YywSln0dAckb0pmQFlcqQrhKd5E3gSVMets8RDWF8sFPgI2pKyxqkthRUEhS42G8rRGFi64EzIQOYD8EhbtEjl50Mg41TFJ4Up3WOqApU5YDmC7H_Sl4-b4d_e9gHffNRBrxxMEpE5vVPvKWFsH2j3PS89zK6vKBulf4evKyHoAGwH8_iIJ9wFsXVqPTk7gTOcU21LGx1X--O-jnsPNg6M3Ez15NX39BG6FyXbVnS1Yb1fn-BRuuK_tydnqWbT0XzT2_U0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Reactive+Power+Optimization+Based+on+Improved+Particle+Swarm+Optimization+With+%CE%B5-Greedy+Strategy+and+Pareto+Archive+Algorithm&rft.jtitle=IEEE+access&rft.au=Liu%2C+Xiaofei&rft.au=Zhang%2C+Pei&rft.au=Fang%2C+Hui&rft.au=Zhou%2C+Yinglu&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=65650&rft.epage=65659&rft_id=info:doi/10.1109%2FACCESS.2021.3075777&rft.externalDocID=9416416
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon