This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction ALgorithms-Theory and Practice

Observations in many applications consist of counts of discrete events, such as photons hitting a detector, which cannot be effectively modeled using an additive bounded or Gaussian noise model, and instead require a Poisson noise model. As a result, accurate reconstruction of a spatially or tempora...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 21; číslo 3; s. 1084 - 1096
Hlavní autoři: Harmany, Z. T., Marcia, R. F., Willett, R. M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.03.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Observations in many applications consist of counts of discrete events, such as photons hitting a detector, which cannot be effectively modeled using an additive bounded or Gaussian noise model, and instead require a Poisson noise model. As a result, accurate reconstruction of a spatially or temporally distributed phenomenon ( f* ) from Poisson data ( y ) cannot be effectively accomplished by minimizing a conventional penalized least-squares objective function. The problem addressed in this paper is the estimation of f* from y in an inverse problem setting, where the number of unknowns may potentially be larger than the number of observations and f* admits sparse approximation. The optimization formulation considered in this paper uses a penalized negative Poisson log-likelihood objective function with nonnegativity constraints (since Poisson intensities are naturally nonnegative). In particular, the proposed approach incorporates key ideas of using separable quadratic approximations to the objective function at each iteration and penalization terms related to l 1 norms of coefficient vectors, total variation seminorms, and partition-based multiscale estimation methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2011.2168410