AIR-PolSAR-Seg: A Large-Scale Data Set for Terrain Segmentation in Complex-Scene PolSAR Images

Polarimetric synthetic aperture radar (PolSAR) terrain segmentation is a fundamental research topic in PolSAR image interpretation. Recently, many studies have been investigated to handle this task. However, the existing data for PolSAR terrain segmentation have relatively limited scale and their sc...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing Vol. 15; pp. 3830 - 3841
Main Authors: Wang, Zhirui, Zeng, Xuan, Yan, Zhiyuan, Kang, Jian, Sun, Xian
Format: Journal Article
Language:English
Published: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1939-1404, 2151-1535
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Polarimetric synthetic aperture radar (PolSAR) terrain segmentation is a fundamental research topic in PolSAR image interpretation. Recently, many studies have been investigated to handle this task. However, the existing data for PolSAR terrain segmentation have relatively limited scale and their scene complexity is relatively simple. These issues greatly restrict the development of algorithms. Therefore, there is a strong requirement for establishing a large-scale data set for terrain segmentation in complex-scene PolSAR images. In this paper, we present a benchmark data set containing a PolSAR amplitude image with a 9082×9805-pixel region and 2000 image patches with a size of 512×512 for PolSAR terrain segmentation, which is called AIR-PolSAR-Seg. We collect the PolSAR image with a resolution of 8 m from the GaoFen-3 satellite, and it is equipped with pixel-wise annotation which covers six categories. Compared with the previous data resources, AIR-PolSAR-Seg preserves some specific properties. First, AIR-PolSAR-Seg owns a large-size PolSAR image and provides a large quantity of image patches. It offers the research community a complete data resource with adequate training examples and reliable validation results. Second, AIR-PolSAR-Seg is established upon a PolSAR image with high scene complexity. This characteristic motivates robust and advanced segmentation approaches to facilitate complex-scene PolSAR image analysis. Based on AIR-PolSAR-Seg, three tasks are introduced: multi-category segmentation, water body segmentation, and building segmentation. Moreover, a performance analysis of traditional approaches and deep learning-based approaches are conducted, which can be regarded as baselines and provide references for future research.
AbstractList Polarimetric synthetic aperture radar (PolSAR) terrain segmentation is a fundamental research topic in PolSAR image interpretation. Recently, many studies have been investigated to handle this task. However, the existing data for PolSAR terrain segmentation have relatively limited scale and their scene complexity is relatively simple. These issues greatly restrict the development of algorithms. Therefore, there is a strong requirement for establishing a large-scale data set for terrain segmentation in complex-scene PolSAR images. In this paper, we present a benchmark data set containing a PolSAR amplitude image with a 9082×9805-pixel region and 2000 image patches with a size of 512×512 for PolSAR terrain segmentation, which is called AIR-PolSAR-Seg. We collect the PolSAR image with a resolution of 8 m from the GaoFen-3 satellite, and it is equipped with pixel-wise annotation which covers six categories. Compared with the previous data resources, AIR-PolSAR-Seg preserves some specific properties. First, AIR-PolSAR-Seg owns a large-size PolSAR image and provides a large quantity of image patches. It offers the research community a complete data resource with adequate training examples and reliable validation results. Second, AIR-PolSAR-Seg is established upon a PolSAR image with high scene complexity. This characteristic motivates robust and advanced segmentation approaches to facilitate complex-scene PolSAR image analysis. Based on AIR-PolSAR-Seg, three tasks are introduced: multi-category segmentation, water body segmentation, and building segmentation. Moreover, a performance analysis of traditional approaches and deep learning-based approaches are conducted, which can be regarded as baselines and provide references for future research.
Author Yan, Zhiyuan
Wang, Zhirui
Zeng, Xuan
Sun, Xian
Kang, Jian
Author_xml – sequence: 1
  givenname: Zhirui
  orcidid: 0000-0003-2877-0384
  surname: Wang
  fullname: Wang, Zhirui
  email: zhirui1990@126.com
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Xuan
  orcidid: 0000-0001-5047-3488
  surname: Zeng
  fullname: Zeng, Xuan
  email: sunxian@aircas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Zhiyuan
  orcidid: 0000-0002-4264-6868
  surname: Yan
  fullname: Yan, Zhiyuan
  email: yanzy@aircas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Jian
  orcidid: 0000-0001-6284-3044
  surname: Kang
  fullname: Kang, Jian
  email: kangjian_1991@outlook.com
  organization: School of Electronic and Information Engineering, Soochow University, Suzhou, China
– sequence: 5
  givenname: Xian
  orcidid: 0000-0002-0038-9816
  surname: Sun
  fullname: Sun, Xian
  email: zengxuan19@mails.ucas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
BookMark eNqFkU1v2zAMhoWiA5Z2-wW9CNjZmST6S70Z2VeGAC3i7DqBlinDgWNlsgt0_37KXPSwy04Eifd5SfC9YdejH4mxOynWUgr98Xt9qPb1Wgml1iALASq_YislM5nIDLJrtpIadCJTkb5lN9N0FCJXhYYV-1lt98mjH-pqn9TU3fOK7zB0lNQWB-KfcEZe08ydD_xAIWA_xr470Tjj3PuRx37jT-eBniNCI_HFjG9P2NH0jr1xOEz0_qXesh9fPh8235Ldw9ftptolNhXlnKQKoXW5tpIyFNQCOu0Kl7fOocraVmMD0qUIWVpAgWDTeH4JWSN02QhUcMu2i2_r8WjOoT9h-G089ubvwIfOYJh7O5Cxsk2bworG5ZCWoHQrpby4QVNaq4vo9WHxOgf_64mm2Rz9Uxjj-UbleSGiXIuogkVlg5-mQO51qxTmEopZQjGXUMxLKJHS_1C2Xx45x9cO_2HvFrYnotdtusgzKDX8Abb2mfw
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1109_TAES_2024_3382622
crossref_primary_10_1109_TGRS_2022_3204705
crossref_primary_10_1109_TGRS_2023_3332219
crossref_primary_10_1109_TGRS_2024_3517878
crossref_primary_10_1109_TGRS_2025_3603998
crossref_primary_10_1016_j_patcog_2025_111895
crossref_primary_10_1109_LGRS_2025_3568837
crossref_primary_10_3390_rs15143662
crossref_primary_10_1016_j_isprsjprs_2025_08_023
crossref_primary_10_1109_JSTARS_2025_3600810
crossref_primary_10_1109_TGRS_2024_3517594
crossref_primary_10_1109_TAES_2024_3388373
crossref_primary_10_3390_rs16071150
crossref_primary_10_3390_app13042520
crossref_primary_10_1016_j_ophoto_2023_100047
crossref_primary_10_1109_JSTARS_2025_3579753
crossref_primary_10_1109_TGRS_2023_3333431
crossref_primary_10_3390_electronics14040791
crossref_primary_10_3390_rs15194802
crossref_primary_10_3390_rs16020296
crossref_primary_10_1109_TGRS_2025_3607445
Cites_doi 10.1109/TGRS.2019.2954328
10.1109/TGRS.2012.2194787
10.1109/JSTARS.2017.2728067
10.1109/LGRS.2020.3038240
10.1109/TGRS.2018.2879984
10.1109/TGRS.2021.3130174
10.1109/TGRS.2019.2952236
10.1109/LGRS.2018.2833492
10.1109/TGRS.2007.905103
10.1109/TGRS.2014.2349575
10.1109/ICCV.2019.00068
10.1109/TGRS.2019.2923738
10.1016/j.isprsjprs.2018.02.006
10.1109/CVPR.2017.660
10.1109/JSTARS.2021.3076085
10.1109/CVPR.2015.7298965
10.1109/LGRS.2019.2953203
10.1007/3-540-45054-8_27
10.1162/neco.1989.1.4.541
10.1109/CVPR.2018.00747
10.1109/TGRS.2012.2203358
10.1023/b:visi.0000029664.99615.94
10.1109/JSTARS.2020.3019418
10.1109/LGRS.2018.2886559
10.1109/TGRS.2017.2675906
10.1109/ICCVW.2019.00246
10.1109/TGRS.2019.2926434
10.1109/ICCV.2019.00926
10.1109/TIP.2020.2992177
10.1109/TGRS.2020.3012276
10.1109/CVPR.2016.90
10.1109/CVPR.2019.00326
10.1007/978-3-030-01234-2_49
10.1109/TGRS.2019.2949066
10.1007/s12524-018-0891-y
10.1109/TGRS.2021.3079438
10.1109/JSTARS.2021.3140101
10.1109/IVS.2010.5547996
10.1109/LGRS.2021.3079925
10.1109/JSTARS.2018.2873417
10.1109/JSTARS.2015.2492552
10.1109/JSTARS.2021.3116062
10.1109/IGARSS.2019.8900267
10.3390/rs13163132
10.1007/978-3-030-01240-3_17
10.1007/978-3-031-14903-0_23
10.1109/TGRS.2020.3023928
10.1109/TGRS.2020.3020165
10.1109/IASP.2009.5054605
10.1109/ICCV.2019.00069
10.1109/CVPR.2018.00813
10.1109/TGRS.2020.3005151
10.1109/TNNLS.2018.2885799
10.1109/TNNLS.2020.2979546
10.1109/JSTARS.2021.3063797
10.1109/TGRS.2017.2728186
10.1109/TGRS.2017.2685945
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2022.3170326
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 3841
ExternalDocumentID oai_doaj_org_article_c1d4b7c0bf6348329d11127833b8cc97
10_1109_JSTARS_2022_3170326
9765389
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61725105; 62076241; 62171436; 62101371
  funderid: 10.13039/501100001809
– fundername: Jiangsu Province Science Foundation for Youths
  grantid: BK20210707
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c408t-42a3df69c1e5a0ed3af9f7f6dffa25dd9ab31f4a354737a3c4627835b098b0a23
IEDL.DBID DOA
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798194300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:50:03 EDT 2025
Mon Jul 28 14:10:38 EDT 2025
Sat Nov 29 04:51:12 EST 2025
Tue Nov 18 21:51:47 EST 2025
Wed Aug 27 02:37:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-42a3df69c1e5a0ed3af9f7f6dffa25dd9ab31f4a354737a3c4627835b098b0a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6284-3044
0000-0001-5047-3488
0000-0002-4264-6868
0000-0002-0038-9816
0000-0003-2877-0384
OpenAccessLink https://doaj.org/article/c1d4b7c0bf6348329d11127833b8cc97
PQID 2667011190
PQPubID 75722
PageCount 12
ParticipantIDs ieee_primary_9765389
doaj_primary_oai_doaj_org_article_c1d4b7c0bf6348329d11127833b8cc97
crossref_primary_10_1109_JSTARS_2022_3170326
proquest_journals_2667011190
crossref_citationtrail_10_1109_JSTARS_2022_3170326
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref16
ref19
ref18
Mohammadimanesh (ref17) 2019; 151
ref51
ref50
ref46
ref45
ref47
ref42
Xie (ref3) 2020; 388
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref5
ref40
Sun (ref34) 2021; 173
ref35
Sun (ref30) 2022; 184
ref37
ref36
ref31
ref33
ref32
Contributors (ref61) 2020
ref2
ref1
ref39
ref38
Liu (ref6) 2016; 59
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref65
ref28
ref27
ref29
Suykens (ref48) 1999; 9
ref60
ref62
M (ref49) 2005; 26
References_xml – volume: 9
  start-page: 293
  issue: 3
  volume-title: Neural Process. Lett.
  year: 1999
  ident: ref48
  article-title: Least squares support vector machine classifiers
– ident: ref32
  doi: 10.1109/TGRS.2019.2954328
– year: 2020
  ident: ref61
  article-title: MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark
– ident: ref15
  doi: 10.1109/TGRS.2012.2194787
– ident: ref41
  doi: 10.1109/JSTARS.2017.2728067
– ident: ref42
  doi: 10.1109/LGRS.2020.3038240
– ident: ref5
  doi: 10.1109/TGRS.2018.2879984
– ident: ref25
  doi: 10.1109/TGRS.2021.3130174
– ident: ref4
  doi: 10.1109/TGRS.2019.2952236
– ident: ref20
  doi: 10.1109/LGRS.2018.2833492
– volume: 173
  start-page: 50
  volume-title: ISPRS J. Photogrammetry Remote Sens.
  year: 2021
  ident: ref34
  article-title: PBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery
– ident: ref8
  doi: 10.1109/TGRS.2007.905103
– ident: ref21
  doi: 10.1109/TGRS.2014.2349575
– ident: ref53
  doi: 10.1109/ICCV.2019.00068
– ident: ref23
  doi: 10.1109/TGRS.2019.2923738
– ident: ref39
  doi: 10.1016/j.isprsjprs.2018.02.006
– ident: ref51
  doi: 10.1109/CVPR.2017.660
– ident: ref64
  doi: 10.1109/JSTARS.2021.3076085
– ident: ref50
  doi: 10.1109/CVPR.2015.7298965
– ident: ref12
  doi: 10.1109/LGRS.2019.2953203
– ident: ref47
  doi: 10.1007/3-540-45054-8_27
– ident: ref62
  doi: 10.1162/neco.1989.1.4.541
– ident: ref58
  doi: 10.1109/CVPR.2018.00747
– ident: ref9
  doi: 10.1109/TGRS.2012.2203358
– ident: ref45
  doi: 10.1023/b:visi.0000029664.99615.94
– ident: ref65
  doi: 10.1109/JSTARS.2020.3019418
– ident: ref18
  doi: 10.1109/LGRS.2018.2886559
– volume: 59
  start-page: 325
  volume-title: Pattern Recognit.
  year: 2016
  ident: ref6
  article-title: Hierarchical semantic model and scattering mechanism based PolSAR image classification
– volume: 151
  start-page: 223
  volume-title: ISPRS J. Photogrammetry Remote Sens.
  year: 2019
  ident: ref17
  article-title: A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem
– ident: ref10
  doi: 10.1109/TGRS.2017.2675906
– volume: 184
  volume-title: ISPRS J. Photogrammetry Remote Sens.
  year: 2022
  ident: ref30
  article-title: FAIR1M: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery
– ident: ref60
  doi: 10.1109/ICCVW.2019.00246
– ident: ref22
  doi: 10.1109/TGRS.2019.2926434
– ident: ref57
  doi: 10.1109/ICCV.2019.00926
– ident: ref19
  doi: 10.1109/TIP.2020.2992177
– ident: ref7
  doi: 10.1109/TGRS.2020.3012276
– ident: ref36
  doi: 10.1109/CVPR.2016.90
– ident: ref55
  doi: 10.1109/CVPR.2019.00326
– volume: 26
  start-page: 217
  issue: 1
  volume-title: Int. J. Remote Sens.
  year: 2005
  ident: ref49
  article-title: Random forest classifier for remote sensing classification
– ident: ref52
  doi: 10.1007/978-3-030-01234-2_49
– ident: ref26
  doi: 10.1109/TGRS.2019.2949066
– ident: ref43
  doi: 10.1007/s12524-018-0891-y
– ident: ref13
  doi: 10.1109/TGRS.2021.3079438
– ident: ref27
  doi: 10.1109/JSTARS.2021.3140101
– volume: 388
  start-page: 255
  volume-title: Neurocomputing
  year: 2020
  ident: ref3
  article-title: PolSAR image classification via a novel semi-supervised recurrent complex-valued convolution neural network
– ident: ref46
  doi: 10.1109/IVS.2010.5547996
– ident: ref35
  doi: 10.1109/LGRS.2021.3079925
– ident: ref2
  doi: 10.1109/JSTARS.2018.2873417
– ident: ref16
  doi: 10.1109/JSTARS.2015.2492552
– ident: ref24
  doi: 10.1109/JSTARS.2021.3116062
– ident: ref40
  doi: 10.1109/IGARSS.2019.8900267
– ident: ref14
  doi: 10.3390/rs13163132
– ident: ref59
  doi: 10.1007/978-3-030-01240-3_17
– ident: ref29
  doi: 10.1007/978-3-031-14903-0_23
– ident: ref33
  doi: 10.1109/TGRS.2020.3023928
– ident: ref37
  doi: 10.1109/TGRS.2020.3020165
– ident: ref44
  doi: 10.1109/IASP.2009.5054605
– ident: ref54
  doi: 10.1109/ICCV.2019.00069
– ident: ref56
  doi: 10.1109/CVPR.2018.00813
– ident: ref1
  doi: 10.1109/TGRS.2020.3005151
– ident: ref11
  doi: 10.1109/TNNLS.2018.2885799
– ident: ref38
  doi: 10.1109/TNNLS.2020.2979546
– ident: ref28
  doi: 10.1109/JSTARS.2021.3063797
– ident: ref31
  doi: 10.1109/TGRS.2017.2728186
– ident: ref63
  doi: 10.1109/TGRS.2017.2685945
SSID ssj0062793
Score 2.4110906
Snippet Polarimetric synthetic aperture radar (PolSAR) terrain segmentation is a fundamental research topic in PolSAR image interpretation. Recently, many studies have...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3830
SubjectTerms Air
Algorithms
Annotations
Benchmark data set
Complexity theory
Datasets
Deep learning
Image analysis
Image color analysis
Image processing
Image segmentation
Machine learning
Pixels
polarimetric synthetic aperture radar (PolSAR)
Radar imaging
SAR (radar)
Spatial resolution
Synthetic aperture radar
Task analysis
Task complexity
Terrain
terrain segmentation
Training
Water bodies
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FUhcykdBLBTkA8eaJnYSx9zSQqFSVVWbgnoicvxRIW13q90Uwb9nxvGukEBI3OLItpK88ZuxY78BeFOVuelNVnMSUuGFLxU3iC5XQpiA4b7XUe3zy5k6P6-vrvTFFhxszsJ47-PmM_-WLuO_fLewd7RUdoiuE8en3oZtparxrNaadSuhosAuxiOak2RMUhjKM32IJt5MW5wLCoFTVDRxUlL4zQtFsf6UXeUPSo5-5uTh_z3hI9hN8SRrRgN4DFt-_gTuf4z5en_uwdfmdMovFrO2mfLWX79jDTujvd-8RWw8e28Gw1o_MAxd2aVfUr4ILF_fpBNJc4ZlooyZ_4FNkBfZ2Bk7vUEiWj2FzycfLo8_8ZRSgdsiqwdeCCNdqLTNfWky76QJOqhQuRCMKJ3Tppd5KIyklMTKSFtUlIqj7DNd95kR8hnszBdz_xxYbSonnLalRQ_XO6FJ1rjWauxRygmI9SfubNIbp7QXsy7OOzLdjbh0hEuXcJnAwabR7Si38e_qR4TdpippZccbCEqXhl5nc1f0ymZ9qGSBBKYd8ju9lexra7WawB4BuekkYTiB_bUldGlcrzoMZxQyIkZRL_7e6iU8oAccF2n2YWdY3vlXcM9-H76tlq-jyf4CRlHkrg
  priority: 102
  providerName: IEEE
Title AIR-PolSAR-Seg: A Large-Scale Data Set for Terrain Segmentation in Complex-Scene PolSAR Images
URI https://ieeexplore.ieee.org/document/9765389
https://www.proquest.com/docview/2667011190
https://doaj.org/article/c1d4b7c0bf6348329d11127833b8cc97
Volume 15
WOSCitedRecordID wos000798194300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqRCUuiJaibqHIhx5r4dhJHHMLrxYJIbShFadajh8IaVmq3YDg3zN-7AqpEr1wdBQ7yczn8Uxkfx9C3-qq0L2mDQlEKqR0lSAavEsEY9pDuu9kZPv8fSbOz5urK3nxQuor7AlL9MDJcHumsGUvDO19zUuAn7QwO4M8BO8bY2Q8R06FXBRTKQbXDGCXOYYKKvcA5O24g2qQMShSAeSBS-HFOhTp-rO-yj9BOa40JxtoPaeIuE2v9gG9c9OP6P2PKMH7tIn-tKdjcnE36dox6dz1Pm7xWdjOTTowt8NHetC4cwOGbBRfulmQgID29W0-ZDTF0A5RYOIeoQuEOpwGw6e3EFvmn9Cvk-PLw58kqyQQU9JmICXT3PpamsJVmjrLtZde-Np6r1llrdQ9L3ypeVAZFpqbsg7mq3oqm55qxrfQyvRu6j4j3OjaMitNZWDR6i2Tgam4kSKNyPkIsYXNlMkU4kHJYqJiKUGlSoZWwdAqG3qEvi87_U0MGq_ffhCcsbw10F_HCwAKlUGh_geKEdoMrlwOAjkXBHY5QjsL16o8VecKMhQBQQ4Soy9v8ehttBY-J_2l2UErw-zefUWr5mG4mc92I0p34ynDZ4oP5ek
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH4aA8Qu48eGKBvgA8eZJXYSx9yywVhFqaamoJ2wHNuZkLp2ajME_z3PjlshgZC4xZFtJfmev_fs2N8DeF3kqW50UlIvpEIzlwuqEV0qGNMthvtOBrXPLyMxHpeXl_JiC442Z2Gcc2HzmXvjL8O_fLswt36p7BhdJ45PeQfu5lnGkv601pp3CyaCxC5GJJJ60ZioMZQm8hiNvJrUOBtkDCepaOReS-E3PxTk-mN-lT9IOXias4f_94yPYDdGlKTqTeAxbLn5E7j_IWTs_bkHX6vhhF4sZnU1obW7eksqMvK7v2mN6DjyTnea1K4jGLySqVv6jBFYvrqOZ5LmBMueNGbuBzZBZiR9Z2R4jVS02ofPZ--np-c0JlWgJkvKjmZMc9sW0qQu14mzXLeyFW1h21az3FqpG562meY-KbHQ3GSFT8aRN4ksm0Qz_hS254u5ewak1IVlVprcoI9rLJNe2LiUou-R8wGw9SdWJiqO-8QXMxVmHolUPS7K46IiLgM42jS66QU3_l39xGO3qerVssMNBEXFwadMarNGmKRpC54hhUmLDO_fijelMVIMYM8DuekkYjiAw7UlqDiyVwoDGoGciHHU87-3egUPzqefRmo0HH88gB3_sP2SzSFsd8tb9wLume_dt9XyZTDfX1Os5_U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AIR-PolSAR-Seg%3A+A+Large-Scale+Data+Set+for+Terrain+Segmentation+in+Complex-Scene+PolSAR+Images&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wang%2C+Zhirui&rft.au=Zeng%2C+Xuan&rft.au=Yan%2C+Zhiyuan&rft.au=Kang%2C+Jian&rft.date=2022&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=15&rft.spage=3830&rft.epage=3841&rft_id=info:doi/10.1109%2FJSTARS.2022.3170326&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2022_3170326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon