bSSA: Binary Salp Swarm Algorithm With Hybrid Data Transformation for Feature Selection
Feature selection is a technique commonly used in Data Mining and Machine Learning. Traditional feature selection methods, when applied to large datasets, generate a large number of feature subsets. Selecting optimal features within this high dimensional data space is time-consuming and negatively a...
Saved in:
| Published in: | IEEE access Vol. 9; pp. 14867 - 14882 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Feature selection is a technique commonly used in Data Mining and Machine Learning. Traditional feature selection methods, when applied to large datasets, generate a large number of feature subsets. Selecting optimal features within this high dimensional data space is time-consuming and negatively affects the system's performance. This paper proposes a new binary Salp Swarm Algorithm (bSSA) for selecting the best feature set from transformed datasets. The proposed feature selection method first transforms the original data-set using Principal Component Analysis (PCA) and fast Independent Component Analysis (fastICA) based hybrid data transformation methods; next, a binary Salp Swarm optimizer is used for finding the best features. The proposed feature selection approach improves accuracy and eliminates the selection of irrelevant features. We validate our technique on fifteen different benchmark data sets. We conduct an extensive study to measure the performance and feature selection accuracy of the proposed technique. The proposed bSSA is compared to Binary Genetic Algorithm (bGA), Binary Binomial Cuckoo Search (bBCS), Binary Grey Wolf Optimizer (bGWO), Binary Competitive Swarm Optimizer (bCSO), and Binary Crow Search Algorithm (bCSA). The proposed method attains a mean accuracy of 95.26% with 7.78% features on PCA-fastICA transformed datasets. The results show that bSSA outperforms the existing methods for the majority of the performance measures. |
|---|---|
| AbstractList | Feature selection is a technique commonly used in Data Mining and Machine Learning. Traditional feature selection methods, when applied to large datasets, generate a large number of feature subsets. Selecting optimal features within this high dimensional data space is time-consuming and negatively affects the system's performance. This paper proposes a new binary Salp Swarm Algorithm (bSSA) for selecting the best feature set from transformed datasets. The proposed feature selection method first transforms the original data-set using Principal Component Analysis (PCA) and fast Independent Component Analysis (fastICA) based hybrid data transformation methods; next, a binary Salp Swarm optimizer is used for finding the best features. The proposed feature selection approach improves accuracy and eliminates the selection of irrelevant features. We validate our technique on fifteen different benchmark data sets. We conduct an extensive study to measure the performance and feature selection accuracy of the proposed technique. The proposed bSSA is compared to Binary Genetic Algorithm (bGA), Binary Binomial Cuckoo Search (bBCS), Binary Grey Wolf Optimizer (bGWO), Binary Competitive Swarm Optimizer (bCSO), and Binary Crow Search Algorithm (bCSA). The proposed method attains a mean accuracy of 95.26% with 7.78% features on PCA-fastICA transformed datasets. The results show that bSSA outperforms the existing methods for the majority of the performance measures. |
| Author | Shekhawat, Sayar Singh Kumar, Sandeep Nayyar, Anand Sharma, Harish Qureshi, Basit |
| Author_xml | – sequence: 1 givenname: Sayar Singh orcidid: 0000-0002-4208-1780 surname: Shekhawat fullname: Shekhawat, Sayar Singh organization: Department of Computer Science and Engineering, Rajasthan Technical University, Kota, India – sequence: 2 givenname: Harish surname: Sharma fullname: Sharma, Harish organization: Department of Computer Science and Engineering, Rajasthan Technical University, Kota, India – sequence: 3 givenname: Sandeep orcidid: 0000-0003-4125-4165 surname: Kumar fullname: Kumar, Sandeep organization: Department of Computer Science and Engineering, CHRIST (Deemed to be University), Bengaluru, India – sequence: 4 givenname: Anand orcidid: 0000-0002-9821-6146 surname: Nayyar fullname: Nayyar, Anand email: anandnayyar@duytan.edu.vn organization: Graduate School, Duy Tan University, Da Nang, Vietnam – sequence: 5 givenname: Basit orcidid: 0000-0001-7389-519X surname: Qureshi fullname: Qureshi, Basit email: qureshi@psu.edu.sa organization: Department of Computer Science, Prince Sultan University, Riyadh, Saudi Arabia |
| BookMark | eNqFUU1PGzEUtCqQoMAv4GKp56T-WnvdW5pCQULqYUEcrWevTR1t1qnXUcW_r8MihLjUB_tpNDPv-c1ndDSm0SN0ScmSUqK_rtbrq65bMsLokhOhG6E-oVNGpV7whsujd_UJupimDamnrVCjTtGj7brVN_w9jpCfcQfDDnd_IW_xanhKOZbfW_xYb3zzbHPs8Q8ogO8zjFNIeQslphHXCl97KPvscecH7w7oOToOMEz-4vU9Qw_XV_frm8Xdr5-369XdwgnSlgUPLbcqtE77xmomFdFt70RLCLeNBQUWeC98Lwn4AII5zalUGgKztCfW8TN0O_v2CTZml-O2_sMkiOYFSPnJQC7RDd5YThvHQtsHKQUNTHslVUO04tVXgK9eX2avXU5_9n4qZpP2eazjGyZazgSp_MriM8vlNE3Zh7eulJhDIGYOxBwCMa-BVJX-oHKxvOyvZIjDf7SXszZ679-6HTbBmOT_ACcwme0 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s00366_021_01464_x crossref_primary_10_1007_s12065_022_00726_x crossref_primary_10_1016_j_eswa_2024_123977 crossref_primary_10_1109_THMS_2023_3238113 crossref_primary_10_1109_ACCESS_2024_3366495 crossref_primary_10_3390_biomimetics9110662 crossref_primary_10_1109_ACCESS_2022_3156593 crossref_primary_10_1109_ACCESS_2024_3372859 crossref_primary_10_1186_s40537_024_01015_3 crossref_primary_10_3390_biomimetics10010053 crossref_primary_10_1016_j_future_2023_01_006 crossref_primary_10_1016_j_neucom_2024_129018 crossref_primary_10_3233_JIFS_231389 crossref_primary_10_1002_ett_4953 crossref_primary_10_3390_electronics12102290 crossref_primary_10_1007_s00521_024_09581_6 crossref_primary_10_1007_s13369_024_09113_3 crossref_primary_10_1016_j_neucom_2025_129372 crossref_primary_10_3233_JIFS_221036 crossref_primary_10_1016_j_eswa_2023_122390 crossref_primary_10_1016_j_jhydrol_2022_128995 crossref_primary_10_1007_s10586_022_03706_z crossref_primary_10_1007_s00521_023_08772_x crossref_primary_10_1007_s10723_023_09728_0 crossref_primary_10_1109_JIOT_2023_3328795 crossref_primary_10_1016_j_neucom_2022_06_075 crossref_primary_10_1016_j_matcom_2023_07_032 crossref_primary_10_1007_s00366_021_01448_x crossref_primary_10_1016_j_knosys_2023_110697 crossref_primary_10_1093_jcde_qwac021 crossref_primary_10_1016_j_asoc_2022_109166 crossref_primary_10_1016_j_neucom_2025_130603 |
| Cites_doi | 10.1109/TCBB.2012.33 10.1016/j.asoc.2017.03.002 10.1109/TEVC.2015.2504420 10.1007/978-981-10-3773-3_35 10.1007/s00500-020-05164-4 10.1002/bimj.200510285 10.1007/978-3-540-87527-7_1 10.1109/ICCIT.2008.81 10.1109/ICNN.1995.488968 10.1109/IC3.2016.7880262 10.1109/IC3.2016.7880195 10.1016/j.knosys.2009.02.006 10.1016/j.asoc.2017.04.061 10.1016/j.dss.2011.01.015 10.1007/978-3-319-03680-9_23 10.1002/cem.1180060506 10.1016/j.eswa.2019.06.044 10.1016/j.knosys.2011.04.014 10.1016/j.compeleceng.2013.11.024 10.1016/j.asoc.2014.01.018 10.1109/NABIC.2009.5393690 10.1016/j.ins.2009.03.004 10.1016/j.compbiolchem.2007.09.005 10.1109/ICIIP47207.2019.8985722 10.1186/1752-153X-2-21 10.1016/j.physrep.2004.08.022 10.1109/ICCSE49874.2020.9201790 10.1016/j.ins.2019.05.038 10.1063/1.4954617 10.1186/1471-2105-13-24 10.1109/TNN.2006.880980 10.1109/IVCNZ.2009.5378375 10.1016/j.eswa.2007.08.010 10.1016/S0004-3702(97)00043-X 10.1016/S1088-467X(97)00008-5 10.1016/j.eswa.2020.113572 10.1016/j.patcog.2014.11.010 10.1007/978-3-642-02319-4_67 10.1109/TPAMI.2010.84 10.1016/j.neucom.2017.04.053 10.1007/s00521-017-2988-6 10.1007/978-1-4757-1904-8_7 10.1109/TIE.2016.2527623 10.1109/SIU.2015.7129845 10.1109/ACCESS.2020.2991543 10.1109/IC3.2017.8284285 10.1007/s10489-018-1261-8 10.1109/SIU.2018.8404843 10.1109/ISCON47742.2019.9036293 10.1016/j.patrec.2008.02.006 10.1016/j.asoc.2020.106092 10.1007/s11517-014-1200-8 10.1016/j.advengsoft.2017.07.002 10.1007/s10651-014-0287-2 10.1007/s11042-019-7354-5 10.1109/TNNLS.2014.2314123 10.1137/080736417 10.1137/1.9781611972771.75 10.1109/TKDE.2005.66 10.1016/j.neucom.2015.06.083 10.1109/TSMCB.2005.854499 10.1016/j.ipm.2017.02.004 10.2174/2213275912666190408111828 10.1109/TCBB.2015.2476796 10.1145/1273496.1273641 10.1016/j.asoc.2012.11.042 10.1007/s00500-016-2385-6 10.1007/s12652-019-01330-1 10.1007/s00521-020-05210-0 10.1109/ACCESS.2020.2991968 10.1109/IC3.2018.8530571 10.1109/ACCESS.2019.2919991 10.1007/s12293-015-0173-y 10.1109/PACCS.2010.5627071 10.1007/s12065-019-00218-5 10.1145/2783258.2783345 10.1007/978-3-319-13563-2_43 10.1016/j.asoc.2013.09.018 10.1109/TCYB.2014.2347372 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2021.3049547 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2169-3536 |
| EndPage | 14882 |
| ExternalDocumentID | oai_doaj_org_article_b315c2f8df6641f29e7675097342c4ae 10_1109_ACCESS_2021_3049547 9316226 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Robotics and IoT Laboratory, Prince Sultan University funderid: 10.13039/501100012639 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-3f83b7f8c9e5b9267098dc48003b5ba7aba3d4ed60aefa42c931679af2b1d0bc3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000613204000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:37:54 EDT 2025 Mon Jun 30 05:01:54 EDT 2025 Sat Nov 29 06:11:51 EST 2025 Tue Nov 18 21:07:26 EST 2025 Wed Aug 27 05:54:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-3f83b7f8c9e5b9267098dc48003b5ba7aba3d4ed60aefa42c931679af2b1d0bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4125-4165 0000-0001-7389-519X 0000-0002-4208-1780 0000-0002-9821-6146 |
| OpenAccessLink | https://doaj.org/article/b315c2f8df6641f29e7675097342c4ae |
| PQID | 2483240675 |
| PQPubID | 4845423 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2021_3049547 proquest_journals_2483240675 doaj_primary_oai_doaj_org_article_b315c2f8df6641f29e7675097342c4ae crossref_citationtrail_10_1109_ACCESS_2021_3049547 ieee_primary_9316226 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 chang (ref41) 2014 ref54 ref10 dheeru (ref88) 2020 ref17 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref86 ref42 ref85 ref44 ref87 ref43 ref49 ref8 ref7 ref9 ref4 ref3 hu (ref81) 2020 ref6 ref5 ref82 ref40 ref83 ref80 han (ref35) 2013; 13 ref79 ref78 ref34 ref37 ref75 han (ref33) 2015; 26 ref74 ref30 ref77 ref76 ref32 ref2 ref1 ref39 ref71 ref70 ref73 ref72 he (ref36) 2012 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref65 kaya (ref22) 2017; 28 ref21 ref28 ref27 ref29 hyvärinen (ref84) 2004; 46 lopez-paz (ref16) 2014 wolf (ref38) 2005; 6 ref60 ref62 ref61 peña (ref31) 2010; 32 |
| References_xml | – ident: ref8 doi: 10.1109/TCBB.2012.33 – ident: ref67 doi: 10.1016/j.asoc.2017.03.002 – ident: ref2 doi: 10.1109/TEVC.2015.2504420 – ident: ref40 doi: 10.1007/978-981-10-3773-3_35 – start-page: 1359 year: 2014 ident: ref16 article-title: Randomized nonlinear component analysis publication-title: Proc Int Conf Mach Learn – ident: ref76 doi: 10.1007/s00500-020-05164-4 – ident: ref18 doi: 10.1002/bimj.200510285 – volume: 28 start-page: 7594 year: 2017 ident: ref22 article-title: Effective ECG beat classification using higher order statistic features and genetic feature selection publication-title: Biomed Res – ident: ref51 doi: 10.1007/978-3-540-87527-7_1 – ident: ref65 doi: 10.1109/ICCIT.2008.81 – ident: ref48 doi: 10.1109/ICNN.1995.488968 – ident: ref37 doi: 10.1109/IC3.2016.7880262 – ident: ref50 doi: 10.1109/IC3.2016.7880195 – start-page: 2504 year: 2012 ident: ref36 article-title: L?, 1 Regularized correntropy for robust feature selection publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref7 doi: 10.1016/j.knosys.2009.02.006 – ident: ref4 doi: 10.1016/j.asoc.2017.04.061 – ident: ref42 doi: 10.1016/j.dss.2011.01.015 – ident: ref57 doi: 10.1007/978-3-319-03680-9_23 – ident: ref24 doi: 10.1002/cem.1180060506 – ident: ref80 doi: 10.1016/j.eswa.2019.06.044 – ident: ref13 doi: 10.1016/j.knosys.2011.04.014 – ident: ref9 doi: 10.1016/j.compeleceng.2013.11.024 – ident: ref6 doi: 10.1016/j.asoc.2014.01.018 – ident: ref49 doi: 10.1109/NABIC.2009.5393690 – ident: ref52 doi: 10.1016/j.ins.2009.03.004 – volume: 6 start-page: 1855 year: 2005 ident: ref38 article-title: Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach publication-title: J Mach Learn Res – ident: ref59 doi: 10.1016/j.compbiolchem.2007.09.005 – ident: ref47 doi: 10.1109/ICIIP47207.2019.8985722 – ident: ref62 doi: 10.1186/1752-153X-2-21 – ident: ref85 doi: 10.1016/j.physrep.2004.08.022 – ident: ref83 doi: 10.1109/ICCSE49874.2020.9201790 – ident: ref71 doi: 10.1016/j.ins.2019.05.038 – ident: ref14 doi: 10.1063/1.4954617 – ident: ref19 doi: 10.1186/1471-2105-13-24 – ident: ref23 doi: 10.1109/TNN.2006.880980 – start-page: 1171 year: 2014 ident: ref41 article-title: A convex formulation for semi-supervised multi-label feature selection publication-title: Proc AAAI – ident: ref56 doi: 10.1109/IVCNZ.2009.5378375 – ident: ref53 doi: 10.1016/j.eswa.2007.08.010 – year: 2020 ident: ref81 article-title: Multiobjective particle swarm optimization for feature selection with fuzzy cost publication-title: IEEE Trans Cybern – volume: 46 year: 2004 ident: ref84 publication-title: Independent Component Analysis – ident: ref5 doi: 10.1016/S0004-3702(97)00043-X – ident: ref43 doi: 10.1016/S1088-467X(97)00008-5 – ident: ref73 doi: 10.1016/j.eswa.2020.113572 – ident: ref10 doi: 10.1016/j.patcog.2014.11.010 – ident: ref54 doi: 10.1007/978-3-642-02319-4_67 – volume: 32 start-page: 1517 year: 2010 ident: ref31 article-title: On the complexity of discrete feature selection for optimal classification publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.84 – ident: ref1 doi: 10.1016/j.neucom.2017.04.053 – ident: ref28 doi: 10.1007/s00521-017-2988-6 – ident: ref12 doi: 10.1007/978-1-4757-1904-8_7 – ident: ref66 doi: 10.1109/TIE.2016.2527623 – ident: ref21 doi: 10.1109/SIU.2015.7129845 – ident: ref75 doi: 10.1109/ACCESS.2020.2991543 – ident: ref46 doi: 10.1109/IC3.2017.8284285 – ident: ref69 doi: 10.1007/s10489-018-1261-8 – ident: ref68 doi: 10.1109/SIU.2018.8404843 – ident: ref87 doi: 10.1109/ISCON47742.2019.9036293 – ident: ref61 doi: 10.1016/j.patrec.2008.02.006 – ident: ref72 doi: 10.1016/j.asoc.2020.106092 – ident: ref3 doi: 10.1007/s11517-014-1200-8 – ident: ref86 doi: 10.1016/j.advengsoft.2017.07.002 – ident: ref17 doi: 10.1007/s10651-014-0287-2 – ident: ref78 doi: 10.1007/s11042-019-7354-5 – volume: 26 start-page: 252 year: 2015 ident: ref33 article-title: Semisupervised feature selection via spline regression for video semantic recognition publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2014.2314123 – ident: ref15 doi: 10.1137/080736417 – volume: 13 start-page: 1380 year: 2013 ident: ref35 article-title: Co-regularized ensemble for feature selection publication-title: Proc IJCAI – ident: ref34 doi: 10.1137/1.9781611972771.75 – ident: ref45 doi: 10.1109/TKDE.2005.66 – ident: ref26 doi: 10.1016/j.neucom.2015.06.083 – ident: ref55 doi: 10.1109/TSMCB.2005.854499 – ident: ref39 doi: 10.1016/j.ipm.2017.02.004 – ident: ref27 doi: 10.2174/2213275912666190408111828 – ident: ref79 doi: 10.1109/TCBB.2015.2476796 – ident: ref30 doi: 10.1145/1273496.1273641 – ident: ref63 doi: 10.1016/j.asoc.2012.11.042 – ident: ref25 doi: 10.1007/s00500-016-2385-6 – ident: ref29 doi: 10.1007/s12652-019-01330-1 – ident: ref77 doi: 10.1007/s00521-020-05210-0 – ident: ref82 doi: 10.1109/ACCESS.2020.2991968 – year: 2020 ident: ref88 publication-title: UCI Machine Learning Repository Data Sets – ident: ref20 doi: 10.1109/IC3.2018.8530571 – ident: ref74 doi: 10.1109/ACCESS.2019.2919991 – ident: ref11 doi: 10.1007/s12293-015-0173-y – ident: ref64 doi: 10.1109/PACCS.2010.5627071 – ident: ref70 doi: 10.1007/s12065-019-00218-5 – ident: ref32 doi: 10.1145/2783258.2783345 – ident: ref58 doi: 10.1007/978-3-319-13563-2_43 – ident: ref60 doi: 10.1016/j.asoc.2013.09.018 – ident: ref44 doi: 10.1109/TCYB.2014.2347372 |
| SSID | ssj0000816957 |
| Score | 2.4664311 |
| Snippet | Feature selection is a technique commonly used in Data Mining and Machine Learning. Traditional feature selection methods, when applied to large datasets,... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 14867 |
| SubjectTerms | Accuracy Algorithms Computer science Data mining Data transformation Datasets fast independent component analysis Feature extraction Feature selection Genetic algorithms Independent component analysis Machine learning Optimization Principal component analysis Principal components analysis salp swarm optimizer Search algorithms Support vector machines Transforms |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6qE9lBZasZRWPvRIILGdxO5tWYo4oUqhglvkzxZp2UUh26r_Ho_jjVaiqtRLZFm2ZefZ8XiceQ_gM1clC9uiygrHbTigSJop5llmJONeCytk6aPYRH11JW5v5bctOB5jYZxz8eczd4LJeJdvl2aFrrJTyYoqmAvbsF3X1RCrNfpTUEBClnUiFipyeTqdzcIYwhGQFid4mVSihMrG5hM5-pOoyrMvcdxeLnb_r2Nv4HUyI8l0wP0tbLnFHuyuJRpIWrF78GqDb3AfbnTTTL-QsxiDSxo1fyDNb9Xdk-n8x7K763_ek5vwJJd_MI6LnKtekesNy3a5ICFF0GxcdY40UUMn5L6D7xdfr2eXWVJWyAzPRZ8xL5iuvTDSlVpS5HAT1vBgPDJdalUrrZjlzla5cl5xanCAtVSe6sLm2rD3sLNYLtwBEO9VpahxlWDYdq2dlNRKXjrUGivlBOj6lbcm0Y6j-sW8jcePXLYDTi3i1CacJnA8VnoYWDf-XfwMsRyLImV2zAggtWkFtpoVpaFeWF9VvPBUOuSxQbaiMD6u3AT2EdixkYTpBI7WM6NNy_uxpVwgkWGof_j3Wh_gJXZw8NUcwU7frdxHeGF-9XeP3ac4c58A3AzrJQ priority: 102 providerName: IEEE |
| Title | bSSA: Binary Salp Swarm Algorithm With Hybrid Data Transformation for Feature Selection |
| URI | https://ieeexplore.ieee.org/document/9316226 https://www.proquest.com/docview/2483240675 https://doaj.org/article/b315c2f8df6641f29e7675097342c4ae |
| Volume | 9 |
| WOSCitedRecordID | wos000613204000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUq1EM5IFpALGyRDz02JfFH4ultdwFxKaoUKrhZtmMD0rKLlgXEpb-9HiesIiHBpRcrsmzHM57YM0nmPUK-CSN5PBZNVnjRxAAFWGZ44JkDLoJVjQIZEtlEdXamLi_hd4_qC_8Ja-GBW8UdWl5Ix4JqQlmKIjDwCD-CIDOCOWE87r55Bb1gKu3BqihBVh3MUJHD4WgyiRLFgJAVP_DTkkRCld5RlBD7O4qVV_tyOmxONslG5yXSUTu7z-SDn30h6z3swC1yYet69JOOUz4trc30jtZPZnFLR9OreYz4r2_pRSzp6TPmZNEjszT0vOelzmc0XlF0AR8WntaJDyfWbpM_J8fnk9OsY0nInMjVMuNBcVsF5cBLCwzx2FTjRHQEuZXWVMYa3gjflLnxwUSlASa_gwnMFk1uHd8ha7P5zO8SGoIpDXO-VBzHrqwHYA0I6ZE3TMKAsBeFaddBiCOTxVSnUCIH3WpZo5Z1p-UB-b7qdNciaLzdfIwrsWqK8NepIhqF7oxCv2cUA7KF67gaBEWOfuaADF_WVXeP6r1mQiEoYey_9z9uvU8-oTjtW5ohWVsuHvxX8tE9Lm_uFwfJSmP56-_xQco1_Aeo0Olw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLbGQAIODDYQhQE-cFy2xD8Sm1tXmIoYFVKKtptlOzZM6topS0H89_g5blQJhMQlsizbsvPZ8fNz3vch9JZpTsO2qLPCsSYcUCTJNPU0s5Iyb0QjJPdRbKKazcTlpfyyg46GWBjnXPz5zB1DMt7lNyu7BlfZiaRFGcyFO-guZ4zkfbTW4FEBCQnJq0QtVOTyZDyZhFGEQyApjuE6iYOIytb2E1n6k6zKH9_iuMGc7f1f1x6jR8mQxOMe-Sdoxy330d5GpAGnNbuPHm4xDh6gC1PX43f4NEbh4lovbnD9U7fXeLz4tmqvuu_X-CI88fQXRHLh97rTeL5l266WOKQwGI7r1uE6quiE3Kfo69mH-WSaJW2FzLJcdBn1gprKCysdN5IAi5toLAvmIzXc6EobTRvmmjLXzmtGLAywktoTUzS5sfQZ2l2ulu45wt7rUhPrSkGh7co4KUkjGXegNsblCJHNK1c2EY-D_sVCxQNILlWPkwKcVMJphI6GSjc978a_i58ClkNRIM2OGQEkldagMrTglnjR-LJkhSfSAZMN8BWF8THtRugAgB0aSZiO0OFmZqi0wG8VYQKoDEP9F3-v9Qbdn84_n6vzj7NPL9ED6GzvuTlEu127dq_QPfuju7ptX8dZ_Bs6U-5s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=bSSA%3A+Binary+Salp+Swarm+Algorithm+With+Hybrid+Data+Transformation+for+Feature+Selection&rft.jtitle=IEEE+access&rft.au=Shekhawat%2C+Sayar+Singh&rft.au=Sharma%2C+Harish&rft.au=Kumar%2C+Sandeep&rft.au=Nayyar%2C+Anand&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=14867&rft.epage=14882&rft_id=info:doi/10.1109%2FACCESS.2021.3049547&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3049547 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |