bSSA: Binary Salp Swarm Algorithm With Hybrid Data Transformation for Feature Selection

Feature selection is a technique commonly used in Data Mining and Machine Learning. Traditional feature selection methods, when applied to large datasets, generate a large number of feature subsets. Selecting optimal features within this high dimensional data space is time-consuming and negatively a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 9; pp. 14867 - 14882
Main Authors: Shekhawat, Sayar Singh, Sharma, Harish, Kumar, Sandeep, Nayyar, Anand, Qureshi, Basit
Format: Journal Article
Language:English
Published: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Feature selection is a technique commonly used in Data Mining and Machine Learning. Traditional feature selection methods, when applied to large datasets, generate a large number of feature subsets. Selecting optimal features within this high dimensional data space is time-consuming and negatively affects the system's performance. This paper proposes a new binary Salp Swarm Algorithm (bSSA) for selecting the best feature set from transformed datasets. The proposed feature selection method first transforms the original data-set using Principal Component Analysis (PCA) and fast Independent Component Analysis (fastICA) based hybrid data transformation methods; next, a binary Salp Swarm optimizer is used for finding the best features. The proposed feature selection approach improves accuracy and eliminates the selection of irrelevant features. We validate our technique on fifteen different benchmark data sets. We conduct an extensive study to measure the performance and feature selection accuracy of the proposed technique. The proposed bSSA is compared to Binary Genetic Algorithm (bGA), Binary Binomial Cuckoo Search (bBCS), Binary Grey Wolf Optimizer (bGWO), Binary Competitive Swarm Optimizer (bCSO), and Binary Crow Search Algorithm (bCSA). The proposed method attains a mean accuracy of 95.26% with 7.78% features on PCA-fastICA transformed datasets. The results show that bSSA outperforms the existing methods for the majority of the performance measures.
AbstractList Feature selection is a technique commonly used in Data Mining and Machine Learning. Traditional feature selection methods, when applied to large datasets, generate a large number of feature subsets. Selecting optimal features within this high dimensional data space is time-consuming and negatively affects the system's performance. This paper proposes a new binary Salp Swarm Algorithm (bSSA) for selecting the best feature set from transformed datasets. The proposed feature selection method first transforms the original data-set using Principal Component Analysis (PCA) and fast Independent Component Analysis (fastICA) based hybrid data transformation methods; next, a binary Salp Swarm optimizer is used for finding the best features. The proposed feature selection approach improves accuracy and eliminates the selection of irrelevant features. We validate our technique on fifteen different benchmark data sets. We conduct an extensive study to measure the performance and feature selection accuracy of the proposed technique. The proposed bSSA is compared to Binary Genetic Algorithm (bGA), Binary Binomial Cuckoo Search (bBCS), Binary Grey Wolf Optimizer (bGWO), Binary Competitive Swarm Optimizer (bCSO), and Binary Crow Search Algorithm (bCSA). The proposed method attains a mean accuracy of 95.26% with 7.78% features on PCA-fastICA transformed datasets. The results show that bSSA outperforms the existing methods for the majority of the performance measures.
Author Shekhawat, Sayar Singh
Kumar, Sandeep
Nayyar, Anand
Sharma, Harish
Qureshi, Basit
Author_xml – sequence: 1
  givenname: Sayar Singh
  orcidid: 0000-0002-4208-1780
  surname: Shekhawat
  fullname: Shekhawat, Sayar Singh
  organization: Department of Computer Science and Engineering, Rajasthan Technical University, Kota, India
– sequence: 2
  givenname: Harish
  surname: Sharma
  fullname: Sharma, Harish
  organization: Department of Computer Science and Engineering, Rajasthan Technical University, Kota, India
– sequence: 3
  givenname: Sandeep
  orcidid: 0000-0003-4125-4165
  surname: Kumar
  fullname: Kumar, Sandeep
  organization: Department of Computer Science and Engineering, CHRIST (Deemed to be University), Bengaluru, India
– sequence: 4
  givenname: Anand
  orcidid: 0000-0002-9821-6146
  surname: Nayyar
  fullname: Nayyar, Anand
  email: anandnayyar@duytan.edu.vn
  organization: Graduate School, Duy Tan University, Da Nang, Vietnam
– sequence: 5
  givenname: Basit
  orcidid: 0000-0001-7389-519X
  surname: Qureshi
  fullname: Qureshi, Basit
  email: qureshi@psu.edu.sa
  organization: Department of Computer Science, Prince Sultan University, Riyadh, Saudi Arabia
BookMark eNqFUU1PGzEUtCqQoMAv4GKp56T-WnvdW5pCQULqYUEcrWevTR1t1qnXUcW_r8MihLjUB_tpNDPv-c1ndDSm0SN0ScmSUqK_rtbrq65bMsLokhOhG6E-oVNGpV7whsujd_UJupimDamnrVCjTtGj7brVN_w9jpCfcQfDDnd_IW_xanhKOZbfW_xYb3zzbHPs8Q8ogO8zjFNIeQslphHXCl97KPvscecH7w7oOToOMEz-4vU9Qw_XV_frm8Xdr5-369XdwgnSlgUPLbcqtE77xmomFdFt70RLCLeNBQUWeC98Lwn4AII5zalUGgKztCfW8TN0O_v2CTZml-O2_sMkiOYFSPnJQC7RDd5YThvHQtsHKQUNTHslVUO04tVXgK9eX2avXU5_9n4qZpP2eazjGyZazgSp_MriM8vlNE3Zh7eulJhDIGYOxBwCMa-BVJX-oHKxvOyvZIjDf7SXszZ679-6HTbBmOT_ACcwme0
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s00366_021_01464_x
crossref_primary_10_1007_s12065_022_00726_x
crossref_primary_10_1016_j_eswa_2024_123977
crossref_primary_10_1109_THMS_2023_3238113
crossref_primary_10_1109_ACCESS_2024_3366495
crossref_primary_10_3390_biomimetics9110662
crossref_primary_10_1109_ACCESS_2022_3156593
crossref_primary_10_1109_ACCESS_2024_3372859
crossref_primary_10_1186_s40537_024_01015_3
crossref_primary_10_3390_biomimetics10010053
crossref_primary_10_1016_j_future_2023_01_006
crossref_primary_10_1016_j_neucom_2024_129018
crossref_primary_10_3233_JIFS_231389
crossref_primary_10_1002_ett_4953
crossref_primary_10_3390_electronics12102290
crossref_primary_10_1007_s00521_024_09581_6
crossref_primary_10_1007_s13369_024_09113_3
crossref_primary_10_1016_j_neucom_2025_129372
crossref_primary_10_3233_JIFS_221036
crossref_primary_10_1016_j_eswa_2023_122390
crossref_primary_10_1016_j_jhydrol_2022_128995
crossref_primary_10_1007_s10586_022_03706_z
crossref_primary_10_1007_s00521_023_08772_x
crossref_primary_10_1007_s10723_023_09728_0
crossref_primary_10_1109_JIOT_2023_3328795
crossref_primary_10_1016_j_neucom_2022_06_075
crossref_primary_10_1016_j_matcom_2023_07_032
crossref_primary_10_1007_s00366_021_01448_x
crossref_primary_10_1016_j_knosys_2023_110697
crossref_primary_10_1093_jcde_qwac021
crossref_primary_10_1016_j_asoc_2022_109166
crossref_primary_10_1016_j_neucom_2025_130603
Cites_doi 10.1109/TCBB.2012.33
10.1016/j.asoc.2017.03.002
10.1109/TEVC.2015.2504420
10.1007/978-981-10-3773-3_35
10.1007/s00500-020-05164-4
10.1002/bimj.200510285
10.1007/978-3-540-87527-7_1
10.1109/ICCIT.2008.81
10.1109/ICNN.1995.488968
10.1109/IC3.2016.7880262
10.1109/IC3.2016.7880195
10.1016/j.knosys.2009.02.006
10.1016/j.asoc.2017.04.061
10.1016/j.dss.2011.01.015
10.1007/978-3-319-03680-9_23
10.1002/cem.1180060506
10.1016/j.eswa.2019.06.044
10.1016/j.knosys.2011.04.014
10.1016/j.compeleceng.2013.11.024
10.1016/j.asoc.2014.01.018
10.1109/NABIC.2009.5393690
10.1016/j.ins.2009.03.004
10.1016/j.compbiolchem.2007.09.005
10.1109/ICIIP47207.2019.8985722
10.1186/1752-153X-2-21
10.1016/j.physrep.2004.08.022
10.1109/ICCSE49874.2020.9201790
10.1016/j.ins.2019.05.038
10.1063/1.4954617
10.1186/1471-2105-13-24
10.1109/TNN.2006.880980
10.1109/IVCNZ.2009.5378375
10.1016/j.eswa.2007.08.010
10.1016/S0004-3702(97)00043-X
10.1016/S1088-467X(97)00008-5
10.1016/j.eswa.2020.113572
10.1016/j.patcog.2014.11.010
10.1007/978-3-642-02319-4_67
10.1109/TPAMI.2010.84
10.1016/j.neucom.2017.04.053
10.1007/s00521-017-2988-6
10.1007/978-1-4757-1904-8_7
10.1109/TIE.2016.2527623
10.1109/SIU.2015.7129845
10.1109/ACCESS.2020.2991543
10.1109/IC3.2017.8284285
10.1007/s10489-018-1261-8
10.1109/SIU.2018.8404843
10.1109/ISCON47742.2019.9036293
10.1016/j.patrec.2008.02.006
10.1016/j.asoc.2020.106092
10.1007/s11517-014-1200-8
10.1016/j.advengsoft.2017.07.002
10.1007/s10651-014-0287-2
10.1007/s11042-019-7354-5
10.1109/TNNLS.2014.2314123
10.1137/080736417
10.1137/1.9781611972771.75
10.1109/TKDE.2005.66
10.1016/j.neucom.2015.06.083
10.1109/TSMCB.2005.854499
10.1016/j.ipm.2017.02.004
10.2174/2213275912666190408111828
10.1109/TCBB.2015.2476796
10.1145/1273496.1273641
10.1016/j.asoc.2012.11.042
10.1007/s00500-016-2385-6
10.1007/s12652-019-01330-1
10.1007/s00521-020-05210-0
10.1109/ACCESS.2020.2991968
10.1109/IC3.2018.8530571
10.1109/ACCESS.2019.2919991
10.1007/s12293-015-0173-y
10.1109/PACCS.2010.5627071
10.1007/s12065-019-00218-5
10.1145/2783258.2783345
10.1007/978-3-319-13563-2_43
10.1016/j.asoc.2013.09.018
10.1109/TCYB.2014.2347372
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3049547
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2169-3536
EndPage 14882
ExternalDocumentID oai_doaj_org_article_b315c2f8df6641f29e7675097342c4ae
10_1109_ACCESS_2021_3049547
9316226
Genre orig-research
GrantInformation_xml – fundername: Robotics and IoT Laboratory, Prince Sultan University
  funderid: 10.13039/501100012639
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-3f83b7f8c9e5b9267098dc48003b5ba7aba3d4ed60aefa42c931679af2b1d0bc3
IEDL.DBID DOA
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000613204000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:37:54 EDT 2025
Mon Jun 30 05:01:54 EDT 2025
Sat Nov 29 06:11:51 EST 2025
Tue Nov 18 21:07:26 EST 2025
Wed Aug 27 05:54:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-3f83b7f8c9e5b9267098dc48003b5ba7aba3d4ed60aefa42c931679af2b1d0bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4125-4165
0000-0001-7389-519X
0000-0002-4208-1780
0000-0002-9821-6146
OpenAccessLink https://doaj.org/article/b315c2f8df6641f29e7675097342c4ae
PQID 2483240675
PQPubID 4845423
PageCount 16
ParticipantIDs crossref_primary_10_1109_ACCESS_2021_3049547
proquest_journals_2483240675
doaj_primary_oai_doaj_org_article_b315c2f8df6641f29e7675097342c4ae
crossref_citationtrail_10_1109_ACCESS_2021_3049547
ieee_primary_9316226
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
chang (ref41) 2014
ref54
ref10
dheeru (ref88) 2020
ref17
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref86
ref42
ref85
ref44
ref87
ref43
ref49
ref8
ref7
ref9
ref4
ref3
hu (ref81) 2020
ref6
ref5
ref82
ref40
ref83
ref80
han (ref35) 2013; 13
ref79
ref78
ref34
ref37
ref75
han (ref33) 2015; 26
ref74
ref30
ref77
ref76
ref32
ref2
ref1
ref39
ref71
ref70
ref73
ref72
he (ref36) 2012
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref65
kaya (ref22) 2017; 28
ref21
ref28
ref27
ref29
hyvärinen (ref84) 2004; 46
lopez-paz (ref16) 2014
wolf (ref38) 2005; 6
ref60
ref62
ref61
peña (ref31) 2010; 32
References_xml – ident: ref8
  doi: 10.1109/TCBB.2012.33
– ident: ref67
  doi: 10.1016/j.asoc.2017.03.002
– ident: ref2
  doi: 10.1109/TEVC.2015.2504420
– ident: ref40
  doi: 10.1007/978-981-10-3773-3_35
– start-page: 1359
  year: 2014
  ident: ref16
  article-title: Randomized nonlinear component analysis
  publication-title: Proc Int Conf Mach Learn
– ident: ref76
  doi: 10.1007/s00500-020-05164-4
– ident: ref18
  doi: 10.1002/bimj.200510285
– volume: 28
  start-page: 7594
  year: 2017
  ident: ref22
  article-title: Effective ECG beat classification using higher order statistic features and genetic feature selection
  publication-title: Biomed Res
– ident: ref51
  doi: 10.1007/978-3-540-87527-7_1
– ident: ref65
  doi: 10.1109/ICCIT.2008.81
– ident: ref48
  doi: 10.1109/ICNN.1995.488968
– ident: ref37
  doi: 10.1109/IC3.2016.7880262
– ident: ref50
  doi: 10.1109/IC3.2016.7880195
– start-page: 2504
  year: 2012
  ident: ref36
  article-title: L?, 1 Regularized correntropy for robust feature selection
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref7
  doi: 10.1016/j.knosys.2009.02.006
– ident: ref4
  doi: 10.1016/j.asoc.2017.04.061
– ident: ref42
  doi: 10.1016/j.dss.2011.01.015
– ident: ref57
  doi: 10.1007/978-3-319-03680-9_23
– ident: ref24
  doi: 10.1002/cem.1180060506
– ident: ref80
  doi: 10.1016/j.eswa.2019.06.044
– ident: ref13
  doi: 10.1016/j.knosys.2011.04.014
– ident: ref9
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: ref6
  doi: 10.1016/j.asoc.2014.01.018
– ident: ref49
  doi: 10.1109/NABIC.2009.5393690
– ident: ref52
  doi: 10.1016/j.ins.2009.03.004
– volume: 6
  start-page: 1855
  year: 2005
  ident: ref38
  article-title: Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
  publication-title: J Mach Learn Res
– ident: ref59
  doi: 10.1016/j.compbiolchem.2007.09.005
– ident: ref47
  doi: 10.1109/ICIIP47207.2019.8985722
– ident: ref62
  doi: 10.1186/1752-153X-2-21
– ident: ref85
  doi: 10.1016/j.physrep.2004.08.022
– ident: ref83
  doi: 10.1109/ICCSE49874.2020.9201790
– ident: ref71
  doi: 10.1016/j.ins.2019.05.038
– ident: ref14
  doi: 10.1063/1.4954617
– ident: ref19
  doi: 10.1186/1471-2105-13-24
– ident: ref23
  doi: 10.1109/TNN.2006.880980
– start-page: 1171
  year: 2014
  ident: ref41
  article-title: A convex formulation for semi-supervised multi-label feature selection
  publication-title: Proc AAAI
– ident: ref56
  doi: 10.1109/IVCNZ.2009.5378375
– ident: ref53
  doi: 10.1016/j.eswa.2007.08.010
– year: 2020
  ident: ref81
  article-title: Multiobjective particle swarm optimization for feature selection with fuzzy cost
  publication-title: IEEE Trans Cybern
– volume: 46
  year: 2004
  ident: ref84
  publication-title: Independent Component Analysis
– ident: ref5
  doi: 10.1016/S0004-3702(97)00043-X
– ident: ref43
  doi: 10.1016/S1088-467X(97)00008-5
– ident: ref73
  doi: 10.1016/j.eswa.2020.113572
– ident: ref10
  doi: 10.1016/j.patcog.2014.11.010
– ident: ref54
  doi: 10.1007/978-3-642-02319-4_67
– volume: 32
  start-page: 1517
  year: 2010
  ident: ref31
  article-title: On the complexity of discrete feature selection for optimal classification
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.84
– ident: ref1
  doi: 10.1016/j.neucom.2017.04.053
– ident: ref28
  doi: 10.1007/s00521-017-2988-6
– ident: ref12
  doi: 10.1007/978-1-4757-1904-8_7
– ident: ref66
  doi: 10.1109/TIE.2016.2527623
– ident: ref21
  doi: 10.1109/SIU.2015.7129845
– ident: ref75
  doi: 10.1109/ACCESS.2020.2991543
– ident: ref46
  doi: 10.1109/IC3.2017.8284285
– ident: ref69
  doi: 10.1007/s10489-018-1261-8
– ident: ref68
  doi: 10.1109/SIU.2018.8404843
– ident: ref87
  doi: 10.1109/ISCON47742.2019.9036293
– ident: ref61
  doi: 10.1016/j.patrec.2008.02.006
– ident: ref72
  doi: 10.1016/j.asoc.2020.106092
– ident: ref3
  doi: 10.1007/s11517-014-1200-8
– ident: ref86
  doi: 10.1016/j.advengsoft.2017.07.002
– ident: ref17
  doi: 10.1007/s10651-014-0287-2
– ident: ref78
  doi: 10.1007/s11042-019-7354-5
– volume: 26
  start-page: 252
  year: 2015
  ident: ref33
  article-title: Semisupervised feature selection via spline regression for video semantic recognition
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2014.2314123
– ident: ref15
  doi: 10.1137/080736417
– volume: 13
  start-page: 1380
  year: 2013
  ident: ref35
  article-title: Co-regularized ensemble for feature selection
  publication-title: Proc IJCAI
– ident: ref34
  doi: 10.1137/1.9781611972771.75
– ident: ref45
  doi: 10.1109/TKDE.2005.66
– ident: ref26
  doi: 10.1016/j.neucom.2015.06.083
– ident: ref55
  doi: 10.1109/TSMCB.2005.854499
– ident: ref39
  doi: 10.1016/j.ipm.2017.02.004
– ident: ref27
  doi: 10.2174/2213275912666190408111828
– ident: ref79
  doi: 10.1109/TCBB.2015.2476796
– ident: ref30
  doi: 10.1145/1273496.1273641
– ident: ref63
  doi: 10.1016/j.asoc.2012.11.042
– ident: ref25
  doi: 10.1007/s00500-016-2385-6
– ident: ref29
  doi: 10.1007/s12652-019-01330-1
– ident: ref77
  doi: 10.1007/s00521-020-05210-0
– ident: ref82
  doi: 10.1109/ACCESS.2020.2991968
– year: 2020
  ident: ref88
  publication-title: UCI Machine Learning Repository Data Sets
– ident: ref20
  doi: 10.1109/IC3.2018.8530571
– ident: ref74
  doi: 10.1109/ACCESS.2019.2919991
– ident: ref11
  doi: 10.1007/s12293-015-0173-y
– ident: ref64
  doi: 10.1109/PACCS.2010.5627071
– ident: ref70
  doi: 10.1007/s12065-019-00218-5
– ident: ref32
  doi: 10.1145/2783258.2783345
– ident: ref58
  doi: 10.1007/978-3-319-13563-2_43
– ident: ref60
  doi: 10.1016/j.asoc.2013.09.018
– ident: ref44
  doi: 10.1109/TCYB.2014.2347372
SSID ssj0000816957
Score 2.4664311
Snippet Feature selection is a technique commonly used in Data Mining and Machine Learning. Traditional feature selection methods, when applied to large datasets,...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14867
SubjectTerms Accuracy
Algorithms
Computer science
Data mining
Data transformation
Datasets
fast independent component analysis
Feature extraction
Feature selection
Genetic algorithms
Independent component analysis
Machine learning
Optimization
Principal component analysis
Principal components analysis
salp swarm optimizer
Search algorithms
Support vector machines
Transforms
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6qE9lBZasZRWPvRIILGdxO5tWYo4oUqhglvkzxZp2UUh26r_Ho_jjVaiqtRLZFm2ZefZ8XiceQ_gM1clC9uiygrHbTigSJop5llmJONeCytk6aPYRH11JW5v5bctOB5jYZxz8eczd4LJeJdvl2aFrrJTyYoqmAvbsF3X1RCrNfpTUEBClnUiFipyeTqdzcIYwhGQFid4mVSihMrG5hM5-pOoyrMvcdxeLnb_r2Nv4HUyI8l0wP0tbLnFHuyuJRpIWrF78GqDb3AfbnTTTL-QsxiDSxo1fyDNb9Xdk-n8x7K763_ek5vwJJd_MI6LnKtekesNy3a5ICFF0GxcdY40UUMn5L6D7xdfr2eXWVJWyAzPRZ8xL5iuvTDSlVpS5HAT1vBgPDJdalUrrZjlzla5cl5xanCAtVSe6sLm2rD3sLNYLtwBEO9VpahxlWDYdq2dlNRKXjrUGivlBOj6lbcm0Y6j-sW8jcePXLYDTi3i1CacJnA8VnoYWDf-XfwMsRyLImV2zAggtWkFtpoVpaFeWF9VvPBUOuSxQbaiMD6u3AT2EdixkYTpBI7WM6NNy_uxpVwgkWGof_j3Wh_gJXZw8NUcwU7frdxHeGF-9XeP3ac4c58A3AzrJQ
  priority: 102
  providerName: IEEE
Title bSSA: Binary Salp Swarm Algorithm With Hybrid Data Transformation for Feature Selection
URI https://ieeexplore.ieee.org/document/9316226
https://www.proquest.com/docview/2483240675
https://doaj.org/article/b315c2f8df6641f29e7675097342c4ae
Volume 9
WOSCitedRecordID wos000613204000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUq1EM5IFpALGyRDz02JfFH4ultdwFxKaoUKrhZtmMD0rKLlgXEpb-9HiesIiHBpRcrsmzHM57YM0nmPUK-CSN5PBZNVnjRxAAFWGZ44JkDLoJVjQIZEtlEdXamLi_hd4_qC_8Ja-GBW8UdWl5Ix4JqQlmKIjDwCD-CIDOCOWE87r55Bb1gKu3BqihBVh3MUJHD4WgyiRLFgJAVP_DTkkRCld5RlBD7O4qVV_tyOmxONslG5yXSUTu7z-SDn30h6z3swC1yYet69JOOUz4trc30jtZPZnFLR9OreYz4r2_pRSzp6TPmZNEjszT0vOelzmc0XlF0AR8WntaJDyfWbpM_J8fnk9OsY0nInMjVMuNBcVsF5cBLCwzx2FTjRHQEuZXWVMYa3gjflLnxwUSlASa_gwnMFk1uHd8ha7P5zO8SGoIpDXO-VBzHrqwHYA0I6ZE3TMKAsBeFaddBiCOTxVSnUCIH3WpZo5Z1p-UB-b7qdNciaLzdfIwrsWqK8NepIhqF7oxCv2cUA7KF67gaBEWOfuaADF_WVXeP6r1mQiEoYey_9z9uvU8-oTjtW5ohWVsuHvxX8tE9Lm_uFwfJSmP56-_xQco1_Aeo0Olw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLbGQAIODDYQhQE-cFy2xD8Sm1tXmIoYFVKKtptlOzZM6topS0H89_g5blQJhMQlsizbsvPZ8fNz3vch9JZpTsO2qLPCsSYcUCTJNPU0s5Iyb0QjJPdRbKKazcTlpfyyg46GWBjnXPz5zB1DMt7lNyu7BlfZiaRFGcyFO-guZ4zkfbTW4FEBCQnJq0QtVOTyZDyZhFGEQyApjuE6iYOIytb2E1n6k6zKH9_iuMGc7f1f1x6jR8mQxOMe-Sdoxy330d5GpAGnNbuPHm4xDh6gC1PX43f4NEbh4lovbnD9U7fXeLz4tmqvuu_X-CI88fQXRHLh97rTeL5l266WOKQwGI7r1uE6quiE3Kfo69mH-WSaJW2FzLJcdBn1gprKCysdN5IAi5toLAvmIzXc6EobTRvmmjLXzmtGLAywktoTUzS5sfQZ2l2ulu45wt7rUhPrSkGh7co4KUkjGXegNsblCJHNK1c2EY-D_sVCxQNILlWPkwKcVMJphI6GSjc978a_i58ClkNRIM2OGQEkldagMrTglnjR-LJkhSfSAZMN8BWF8THtRugAgB0aSZiO0OFmZqi0wG8VYQKoDEP9F3-v9Qbdn84_n6vzj7NPL9ED6GzvuTlEu127dq_QPfuju7ptX8dZ_Bs6U-5s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=bSSA%3A+Binary+Salp+Swarm+Algorithm+With+Hybrid+Data+Transformation+for+Feature+Selection&rft.jtitle=IEEE+access&rft.au=Shekhawat%2C+Sayar+Singh&rft.au=Sharma%2C+Harish&rft.au=Kumar%2C+Sandeep&rft.au=Nayyar%2C+Anand&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=14867&rft.epage=14882&rft_id=info:doi/10.1109%2FACCESS.2021.3049547&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3049547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon