Deep Learning Algorithms for the Work Function Fluctuation of Random Nanosized Metal Grains on Gate-All-Around Silicon Nanowire MOSFETs

Device simulation has been explored and industrialized for over 40 years; however, it still requires huge computational cost. Therefore, it can be further advanced using deep learning (DL) algorithms. We for the first time report an efficient and accurate DL approach with device simulation for gate-...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 9; pp. 73467 - 73481
Main Authors: Akbar, Chandni, Li, Yiming, Sung, Wen-Li
Format: Journal Article
Language:English
Published: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Device simulation has been explored and industrialized for over 40 years; however, it still requires huge computational cost. Therefore, it can be further advanced using deep learning (DL) algorithms. We for the first time report an efficient and accurate DL approach with device simulation for gate-all-around silicon nanowire metal-oxide-semiconductor field-effect transistors (MOSFETs) to predict electrical characteristics of device induced by work function fluctuation. By using three different DL models: artificial neural network (ANN), convolutional neural network (CNN), and long short term memory (LSTM), the variability of threshold voltage, on-current and off-current is predicted with respect to different metal-grain number and location of the low and high values of work function. The comparison is established among the ANN, CNN and the LSTM models and results depict that the CNN model outperforms in terms of the root mean squared error and the percentage error rate. The integration of device simulation with DL models exhibits the characteristic estimation of the explored device efficiently; and, the accurate prediction from the DL models can accelerate the process of device simulation. Notably, the DL approach is able to extract crucial electrical characteristics of a complicated device accurately with 2% error in a cost-effective manner computationally.
AbstractList Device simulation has been explored and industrialized for over 40 years; however, it still requires huge computational cost. Therefore, it can be further advanced using deep learning (DL) algorithms. We for the first time report an efficient and accurate DL approach with device simulation for gate-all-around silicon nanowire metal-oxide-semiconductor field-effect transistors (MOSFETs) to predict electrical characteristics of device induced by work function fluctuation. By using three different DL models: artificial neural network (ANN), convolutional neural network (CNN), and long short term memory (LSTM), the variability of threshold voltage, on-current and off-current is predicted with respect to different metal-grain number and location of the low and high values of work function. The comparison is established among the ANN, CNN and the LSTM models and results depict that the CNN model outperforms in terms of the root mean squared error and the percentage error rate. The integration of device simulation with DL models exhibits the characteristic estimation of the explored device efficiently; and, the accurate prediction from the DL models can accelerate the process of device simulation. Notably, the DL approach is able to extract crucial electrical characteristics of a complicated device accurately with 2% error in a cost-effective manner computationally.
Author Sung, Wen-Li
Akbar, Chandni
Li, Yiming
Author_xml – sequence: 1
  givenname: Chandni
  surname: Akbar
  fullname: Akbar, Chandni
  organization: Parallel and Scientific Computing Laboratory, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
– sequence: 2
  givenname: Yiming
  orcidid: 0000-0001-7374-0964
  surname: Li
  fullname: Li, Yiming
  email: ymli@faculty.nctu.edu.tw
  organization: Parallel and Scientific Computing Laboratory, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
– sequence: 3
  givenname: Wen-Li
  surname: Sung
  fullname: Sung, Wen-Li
  organization: Parallel and Scientific Computing Laboratory, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
BookMark eNp9kc2O0zAUhSM0SAzDPMFsLLFO8U8S28uoTMtIHUaiIJaW41x3XFK7OI4QvACvjdsMCLHAG18dne_q6pyXxYUPHorihuAFIVi-aZfL2-12QTElC4a5lII8Ky4paWTJatZc_DW_KK7HcY_zE1mq-WXx8y3AEW1AR-_8DrXDLkSXHg8jsiGi9Ajoc4hf0GryJrng0WqYTJr0eQ4WfdC-Dwf0Xvswuh_Qo3tIekDrqJ0fUfasdYKyHYayjWHyPdq6wZmsn4hvLgK6f9iubj-Or4rnVg8jXD_9V8WnLC_flZuH9d2y3ZSmwiKVzDamEZJazkXVNRQTbTQBTS01jGkthdCy6XrLcUVlbwUH6BjwhnBLCe_YVXE37-2D3qtjdAcdv6ugnToLIe6UjsmZAVTPSNXQnF1Xd5WglQDBes5MJ6S0GHje9XredYzh6wRjUvswRZ_PV7RmmBDOa5ZdcnaZGMYxglXGpXOAKac0KILVqUY116hONaqnGjPL_mF_X_x_6mamHAD8IWTFcN1U7BfdYaqc
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3090956
crossref_primary_10_1109_ACCESS_2022_3174685
crossref_primary_10_12677_MOS_2023_125394
crossref_primary_10_1109_ACCESS_2021_3137851
crossref_primary_10_1109_ACCESS_2022_3188690
crossref_primary_10_1109_TSM_2021_3116250
crossref_primary_10_1016_j_compeleceng_2022_108392
crossref_primary_10_1109_ACCESS_2021_3131980
crossref_primary_10_1109_TMTT_2022_3198659
crossref_primary_10_1080_15421406_2023_2243691
crossref_primary_10_1088_1361_6528_ad2c52
crossref_primary_10_1088_1361_6641_ac836d
Cites_doi 10.1016/S0957-4174(98)00017-7
10.1016/j.ejor.2017.11.054
10.23919/JCC.2019.10.014
10.1016/j.compbiomed.2017.08.022
10.1109/TSMCC.2011.2170420
10.1016/j.compbiomed.2020.103912
10.1109/TED.2014.2383352
10.1007/s10825-020-01572-9
10.1007/s43236-019-00028-z
10.1016/j.cmpb.2019.105198
10.35848/1347-4065/ab99db
10.1109/SURV.2008.080406
10.1038/nature14541
10.1109/CVPR.2019.00289
10.1016/j.compind.2018.12.016
10.1109/IEDM.2012.6479091
10.1109/IEDM.2003.1269163
10.1109/LED.2012.2194690
10.1109/TSM.2018.2825482
10.1109/TSM.2010.2056710
10.1016/j.ymssp.2020.106885
10.1109/TED.2019.2937786
10.1109/TSM.2017.2753251
10.1016/j.mee.2005.12.001
10.1109/IEDM.2006.346838
10.1109/TED.2014.2335192
10.1109/ICEngTechnol.2017.8308186
10.1007/978-3-319-46475-6_25
10.1364/OME.3.000035
10.1109/ICPHM.2017.7998311
10.1016/j.comnet.2019.107034
10.1109/TED.2016.2574328
10.1016/j.apradiso.2020.109239
10.1109/66.983448
10.1016/j.rser.2020.110287
10.1016/j.copbio.2019.08.010
10.1023/B:MACH.0000019802.64038.6c
10.1016/j.neucom.2008.11.035
10.1145/1162678.1162679
10.1016/j.matcom.2020.05.010
10.1109/64.193054
10.1016/j.mssp.2019.104681
10.1109/JIOT.2019.2896174
10.1016/j.neunet.2019.12.024
10.1109/TED.2018.2822484
10.1088/1757-899X/533/1/012011
10.1016/j.chaos.2020.110121
10.1016/j.jpowsour.2019.227149
10.1371/journal.pcbi.0030116
10.1007/978-1-4419-7276-7_1
10.1109/ACCESS.2013.2260816
10.1109/JEDS.2020.3046608
10.1109/ITEC.2019.8790564
10.1016/j.enbuild.2008.06.013
10.1109/ISAOM.2001.916555
10.1109/MSP.2020.3003836
10.1016/j.mee.2008.09.015
10.1109/LED.2014.2310119
10.1109/IEDM.2015.7409827
10.1109/TED.2009.2036309
10.1007/s10586-018-2289-6
10.1007/978-3-319-46478-7_47
10.1109/TGRS.2017.2756911
10.1109/TED.2020.2971784
10.1109/LED.2019.2931839
10.1016/j.asoc.2019.105963
10.1109/LED.2011.2169645
10.1007/JHEP06(2020)114
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3079981
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 73481
ExternalDocumentID oai_doaj_org_article_d31462216b5b48248e83d73cb899f0e7
10_1109_ACCESS_2021_3079981
9430564
Genre orig-research
GrantInformation_xml – fundername: Center for mm-Wave Smart Radar Systems and Technologies under the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education, Taiwan
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 109-2221-E-009-033; MOST 109-2634-F-009-030
  funderid: 10.13039/501100004663
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-3f6c6892f7784b6201aca1ea2f2c33aa988a96bdf70429df87eeb3e7617f217b3
IEDL.DBID DOA
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673537400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:53 EDT 2025
Mon Jun 30 03:09:24 EDT 2025
Sat Nov 29 06:12:16 EST 2025
Tue Nov 18 22:35:00 EST 2025
Wed Aug 27 02:51:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-3f6c6892f7784b6201aca1ea2f2c33aa988a96bdf70429df87eeb3e7617f217b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7374-0964
OpenAccessLink https://doaj.org/article/d31462216b5b48248e83d73cb899f0e7
PQID 2530117753
PQPubID 4845423
PageCount 15
ParticipantIDs ieee_primary_9430564
doaj_primary_oai_doaj_org_article_d31462216b5b48248e83d73cb899f0e7
crossref_primary_10_1109_ACCESS_2021_3079981
proquest_journals_2530117753
crossref_citationtrail_10_1109_ACCESS_2021_3079981
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref48
lin (ref21) 2012; 42
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
partin-vaisband (ref37) 2019
ref5
suzuki (ref45) 2017; 35
ref40
ref35
ref34
lin (ref67) 2017
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref68
ref24
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref28
ref27
ref29
pedregosa (ref51) 2011; 12
ref60
ref62
ref61
References_xml – ident: ref41
  doi: 10.1016/S0957-4174(98)00017-7
– volume: 35
  start-page: 212
  year: 2017
  ident: ref45
  article-title: Survey of deep learning applications to medical image analysis
  publication-title: Med Imag Technol
– ident: ref68
  doi: 10.1016/j.ejor.2017.11.054
– ident: ref56
  doi: 10.23919/JCC.2019.10.014
– ident: ref63
  doi: 10.1016/j.compbiomed.2017.08.022
– volume: 42
  start-page: 421
  year: 2012
  ident: ref21
  article-title: Machine learning in financial crisis prediction: A survey
  publication-title: IEEE Trans Syst Man Cybern C Appl Rev
  doi: 10.1109/TSMCC.2011.2170420
– ident: ref60
  doi: 10.1016/j.compbiomed.2020.103912
– ident: ref16
  doi: 10.1109/TED.2014.2383352
– ident: ref17
  doi: 10.1007/s10825-020-01572-9
– ident: ref34
  doi: 10.1007/s43236-019-00028-z
– ident: ref55
  doi: 10.1016/j.cmpb.2019.105198
– ident: ref6
  doi: 10.35848/1347-4065/ab99db
– ident: ref44
  doi: 10.1109/SURV.2008.080406
– ident: ref39
  doi: 10.1038/nature14541
– ident: ref65
  doi: 10.1109/CVPR.2019.00289
– ident: ref69
  doi: 10.1016/j.compind.2018.12.016
– ident: ref11
  doi: 10.1109/IEDM.2012.6479091
– year: 2019
  ident: ref37
  article-title: A single-MOSFET MAC for confidence and resolution (CORE) driven machine learning classification
  publication-title: arXiv 1910 09597
– ident: ref4
  doi: 10.1109/IEDM.2003.1269163
– ident: ref7
  doi: 10.1109/LED.2012.2194690
– ident: ref31
  doi: 10.1109/TSM.2018.2825482
– ident: ref50
  doi: 10.1109/TSM.2010.2056710
– ident: ref62
  doi: 10.1016/j.ymssp.2020.106885
– ident: ref48
  doi: 10.1109/TED.2019.2937786
– ident: ref32
  doi: 10.1109/TSM.2017.2753251
– ident: ref27
  doi: 10.1016/j.mee.2005.12.001
– ident: ref10
  doi: 10.1109/IEDM.2006.346838
– ident: ref8
  doi: 10.1109/TED.2014.2335192
– ident: ref64
  doi: 10.1109/ICEngTechnol.2017.8308186
– ident: ref66
  doi: 10.1007/978-3-319-46475-6_25
– ident: ref2
  doi: 10.1364/OME.3.000035
– ident: ref71
  doi: 10.1109/ICPHM.2017.7998311
– ident: ref59
  doi: 10.1016/j.comnet.2019.107034
– ident: ref14
  doi: 10.1109/TED.2016.2574328
– ident: ref52
  doi: 10.1016/j.apradiso.2020.109239
– ident: ref29
  doi: 10.1109/66.983448
– ident: ref24
  doi: 10.1016/j.rser.2020.110287
– ident: ref25
  doi: 10.1016/j.copbio.2019.08.010
– ident: ref40
  doi: 10.1023/B:MACH.0000019802.64038.6c
– ident: ref23
  doi: 10.1016/j.neucom.2008.11.035
– ident: ref22
  doi: 10.1145/1162678.1162679
– ident: ref54
  doi: 10.1016/j.matcom.2020.05.010
– ident: ref30
  doi: 10.1109/64.193054
– ident: ref5
  doi: 10.1016/j.mssp.2019.104681
– ident: ref35
  doi: 10.1109/JIOT.2019.2896174
– ident: ref61
  doi: 10.1016/j.neunet.2019.12.024
– ident: ref19
  doi: 10.1109/TED.2018.2822484
– start-page: 1
  year: 2017
  ident: ref67
  article-title: Towards accurate binary convolutional neural network
  publication-title: Proc Conf Neural Inf Process Syst (NeurIPS)
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref51
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– ident: ref33
  doi: 10.1088/1757-899X/533/1/012011
– ident: ref58
  doi: 10.1016/j.chaos.2020.110121
– ident: ref72
  doi: 10.1016/j.jpowsour.2019.227149
– ident: ref46
  doi: 10.1371/journal.pcbi.0030116
– ident: ref1
  doi: 10.1007/978-1-4419-7276-7_1
– ident: ref20
  doi: 10.1371/journal.pcbi.0030116
– ident: ref15
  doi: 10.1109/ACCESS.2013.2260816
– ident: ref73
  doi: 10.1109/JEDS.2020.3046608
– ident: ref36
  doi: 10.1109/ITEC.2019.8790564
– ident: ref43
  doi: 10.1016/j.enbuild.2008.06.013
– ident: ref3
  doi: 10.1109/ISAOM.2001.916555
– ident: ref26
  doi: 10.1109/MSP.2020.3003836
– ident: ref28
  doi: 10.1016/j.mee.2008.09.015
– ident: ref12
  doi: 10.1109/LED.2014.2310119
– ident: ref13
  doi: 10.1109/IEDM.2015.7409827
– ident: ref18
  doi: 10.1109/TED.2009.2036309
– ident: ref38
  doi: 10.1007/s10586-018-2289-6
– ident: ref70
  doi: 10.1007/978-3-319-46478-7_47
– ident: ref42
  doi: 10.1109/TGRS.2017.2756911
– ident: ref49
  doi: 10.1109/TED.2020.2971784
– ident: ref47
  doi: 10.1109/LED.2019.2931839
– ident: ref57
  doi: 10.1016/j.asoc.2019.105963
– ident: ref9
  doi: 10.1109/LED.2011.2169645
– ident: ref53
  doi: 10.1007/JHEP06(2020)114
SSID ssj0000816957
Score 2.3205295
Snippet Device simulation has been explored and industrialized for over 40 years; however, it still requires huge computational cost. Therefore, it can be further...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 73467
SubjectTerms Algorithms
artificial neural network
Artificial neural networks
Computer simulation
Computing costs
convolutional neural network
Deep learning
Electric variables
Errors
Field effect transistors
Fluctuations
Gallium arsenide
gate-all-around
Learning theory
long short term memory
Machine learning
Metal oxide semiconductors
MOSFET
MOSFETs
nanosized metal grain
nanowire
Nanowires
Neural networks
Predictive models
root mean squared error
Semiconductor devices
Silicon
Simulation
statistical device simulation
Threshold voltage
Transistors
Work function fluctuation
Work functions
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXaigMc-CqIhYJ84Ni0ifNh-xgWFg60IApSb5HtjMtKaVJtdnvoH-BvM-O4KxAIiVOsyI4cvbFn3iR-w9jrtAVbVsolhSptgh7aJiZDsmKk9UYUZVu6ULXkozw9Vefn-vMOO9yehQGA8PMZHFEzfMtvB7ehVNkxSYWXVbHLdqWsprNa23wKFZDQpYzCQlmqj-v5HN8BKaDIjtCSkVdkvzmfoNEfi6r8sRMH97J48H8Te8juxzCS1xPuj9gO9I_ZvV_EBffZj7cAVzzqp17wursYVsv198uRY5zKMe7jlCjnC3RsBA5fdBs6TBLag-dfTN8Olxx332Fc3kDLTwDjdP6eSkqMHPtQ3i2puy6pV1SaiZ8tO7SqPowgAWR-8uls8e7r-IR9w8v8QxLLLiSuSNU6yX3lKqWFl1IVtsIIwTiTgRFeuDw3RitldGVbL8mZtV5JQEYOEmMhjwTH5k_ZXj_08IzxLMd-GKN4LVxReq2cBAPaI82yQho3Y-IWj8ZFTXIqjdE1gZukuplAbAjEJoI4Y4fbQVeTJMe_u78hoLddSU873EAEm7g8mzZHjyFEVtnSFkoUClTeytxZpKM-BTlj-4T69iER8Bk7uDWbJq79sRElbZoSeeDzv496we7SBKdEzgHbW6828JLdcdfr5bh6Fcz6Jz599eg
  priority: 102
  providerName: IEEE
Title Deep Learning Algorithms for the Work Function Fluctuation of Random Nanosized Metal Grains on Gate-All-Around Silicon Nanowire MOSFETs
URI https://ieeexplore.ieee.org/document/9430564
https://www.proquest.com/docview/2530117753
https://doaj.org/article/d31462216b5b48248e83d73cb899f0e7
Volume 9
WOSCitedRecordID wos000673537400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQxQEOCCiIhVL5wJHQxIlj-xiWLhzYgihIvVm2Y5eV0qTabDn00Cu_zYzjrhYhwYVLEkXjJPaMZ-ZZ8RtCXuWtt7yWLqsktxlEaJuZAsCKETYYVvGWu1i15KM4OZFnZ-rzTqkv_CdsogeeBu6oLWEuM1bUlttKskp6WbaidBaAQsh93EeeC7UDpqIPlkWtuEg0Q0Wujpr5HHoEgJAVb8CuAWUUv4WiyNifSqz84ZdjsFk8JA9Slkib6esekTu-f0zu73AH7pOf77y_pIke9Zw23fkAOP_7xUghDaWQ1lFcB6cLiFs49nTRXeFekXg9BPrF9O1wQcG5DuPq2rd06SENp--xYsRIQQaX1bKm67JmjZWX6OmqA6PpYwvkN6bLT6eL46_jE_INTvMPWaqqkLkql5usDLWrpWJBCFnZGhIA40zhDQvMlaUxSkqjatsGgbGqDVJ4ANxeQKoTAL_Y8inZ64fePyO0KEEOUpCgmKt4UNIJb7wKgKIsE8bNCLsdYO0S5ThWvuh0hB650pNWNGpFJ63MyOtto8uJcePv4m9Rc1tRpMuON8CIdDIi_S8jmpF91Pv2IchJz-tqRg5u7UCnqT1qxtEnCoB5z__Hq1-Qe9idaVXngOxt1lf-JbnrfmxW4_owWjUclzfHh3Fv4i_xpPob
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKQQIOfLWIhQI-cGzaxLFj-xgWliJ2F0SL1FtkO3ZZKU2qzS4H_gB_m7HjRiAQEqdYkR05emPPvEn8BqFXaW01K4RJqGA6AQ-tE5UBWVFcO0Uoq5kJVUvmfLkU5-fy0w46HM_CWGvDz2f2yDfDt_y6M1ufKjv2UuGsoDfQTUYpSYfTWmNGxZeQkIxHaaEslcfldApvASSQZEdgy8Asst_cT1Dpj2VV_tiLg4OZ3f-_qT1A92IgicsB-Ydox7aP0N1f5AX30I831l7hqKB6gcvmoluvNl8vewyRKobID_tUOZ6Ba_Pw4Fmz9cdJQrtz-LNq6-4Sw_7b9avvtsYLC5E6fueLSvQY-vjMW1I2TVKufXEmfLpqwK7aMMJLIOPFx9PZ27N-H32By_QkiYUXEkNTsUlyV5hCSOI4F1QXECMoozKriCMmz5WSQihZ6Npx785qJ7gFTm45REMOKI7OH6PdtmvtE4SzHPpBlOIkMZQ5KQy3ykoHREsTrswEkWs8KhNVyX1xjKYK7CSV1QBi5UGsIogTdDgOuhpEOf7d_bUHeuzqFbXDDUCwigu0qnPwGYRkhWaaCkKFFXnNc6OBkLrU8gna86iPD4mAT9DBtdlUcfX3FWF-2-TABJ_-fdRLdPvkbDGv5u-XH56hO36yQ1rnAO1u1lv7HN0y3zarfv0imPhPKSX5Lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Algorithms+for+the+Work+Function+Fluctuation+of+Random+Nanosized+Metal+Grains+on+Gate-All-Around+Silicon+Nanowire+MOSFETs&rft.jtitle=IEEE+access&rft.au=Akbar%2C+Chandni&rft.au=Li%2C+Yiming&rft.au=Sung%2C+Wen-Li&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=73467&rft.epage=73481&rft_id=info:doi/10.1109%2FACCESS.2021.3079981&rft.externalDocID=9430564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon