Deep Learning Algorithms for the Work Function Fluctuation of Random Nanosized Metal Grains on Gate-All-Around Silicon Nanowire MOSFETs
Device simulation has been explored and industrialized for over 40 years; however, it still requires huge computational cost. Therefore, it can be further advanced using deep learning (DL) algorithms. We for the first time report an efficient and accurate DL approach with device simulation for gate-...
Saved in:
| Published in: | IEEE access Vol. 9; pp. 73467 - 73481 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Device simulation has been explored and industrialized for over 40 years; however, it still requires huge computational cost. Therefore, it can be further advanced using deep learning (DL) algorithms. We for the first time report an efficient and accurate DL approach with device simulation for gate-all-around silicon nanowire metal-oxide-semiconductor field-effect transistors (MOSFETs) to predict electrical characteristics of device induced by work function fluctuation. By using three different DL models: artificial neural network (ANN), convolutional neural network (CNN), and long short term memory (LSTM), the variability of threshold voltage, on-current and off-current is predicted with respect to different metal-grain number and location of the low and high values of work function. The comparison is established among the ANN, CNN and the LSTM models and results depict that the CNN model outperforms in terms of the root mean squared error and the percentage error rate. The integration of device simulation with DL models exhibits the characteristic estimation of the explored device efficiently; and, the accurate prediction from the DL models can accelerate the process of device simulation. Notably, the DL approach is able to extract crucial electrical characteristics of a complicated device accurately with 2% error in a cost-effective manner computationally. |
|---|---|
| AbstractList | Device simulation has been explored and industrialized for over 40 years; however, it still requires huge computational cost. Therefore, it can be further advanced using deep learning (DL) algorithms. We for the first time report an efficient and accurate DL approach with device simulation for gate-all-around silicon nanowire metal-oxide-semiconductor field-effect transistors (MOSFETs) to predict electrical characteristics of device induced by work function fluctuation. By using three different DL models: artificial neural network (ANN), convolutional neural network (CNN), and long short term memory (LSTM), the variability of threshold voltage, on-current and off-current is predicted with respect to different metal-grain number and location of the low and high values of work function. The comparison is established among the ANN, CNN and the LSTM models and results depict that the CNN model outperforms in terms of the root mean squared error and the percentage error rate. The integration of device simulation with DL models exhibits the characteristic estimation of the explored device efficiently; and, the accurate prediction from the DL models can accelerate the process of device simulation. Notably, the DL approach is able to extract crucial electrical characteristics of a complicated device accurately with 2% error in a cost-effective manner computationally. |
| Author | Sung, Wen-Li Akbar, Chandni Li, Yiming |
| Author_xml | – sequence: 1 givenname: Chandni surname: Akbar fullname: Akbar, Chandni organization: Parallel and Scientific Computing Laboratory, National Yang Ming Chiao Tung University, Hsinchu, Taiwan – sequence: 2 givenname: Yiming orcidid: 0000-0001-7374-0964 surname: Li fullname: Li, Yiming email: ymli@faculty.nctu.edu.tw organization: Parallel and Scientific Computing Laboratory, National Yang Ming Chiao Tung University, Hsinchu, Taiwan – sequence: 3 givenname: Wen-Li surname: Sung fullname: Sung, Wen-Li organization: Parallel and Scientific Computing Laboratory, National Yang Ming Chiao Tung University, Hsinchu, Taiwan |
| BookMark | eNp9kc2O0zAUhSM0SAzDPMFsLLFO8U8S28uoTMtIHUaiIJaW41x3XFK7OI4QvACvjdsMCLHAG18dne_q6pyXxYUPHorihuAFIVi-aZfL2-12QTElC4a5lII8Ky4paWTJatZc_DW_KK7HcY_zE1mq-WXx8y3AEW1AR-_8DrXDLkSXHg8jsiGi9Ajoc4hf0GryJrng0WqYTJr0eQ4WfdC-Dwf0Xvswuh_Qo3tIekDrqJ0fUfasdYKyHYayjWHyPdq6wZmsn4hvLgK6f9iubj-Or4rnVg8jXD_9V8WnLC_flZuH9d2y3ZSmwiKVzDamEZJazkXVNRQTbTQBTS01jGkthdCy6XrLcUVlbwUH6BjwhnBLCe_YVXE37-2D3qtjdAcdv6ugnToLIe6UjsmZAVTPSNXQnF1Xd5WglQDBes5MJ6S0GHje9XredYzh6wRjUvswRZ_PV7RmmBDOa5ZdcnaZGMYxglXGpXOAKac0KILVqUY116hONaqnGjPL_mF_X_x_6mamHAD8IWTFcN1U7BfdYaqc |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3090956 crossref_primary_10_1109_ACCESS_2022_3174685 crossref_primary_10_12677_MOS_2023_125394 crossref_primary_10_1109_ACCESS_2021_3137851 crossref_primary_10_1109_ACCESS_2022_3188690 crossref_primary_10_1109_TSM_2021_3116250 crossref_primary_10_1016_j_compeleceng_2022_108392 crossref_primary_10_1109_ACCESS_2021_3131980 crossref_primary_10_1109_TMTT_2022_3198659 crossref_primary_10_1080_15421406_2023_2243691 crossref_primary_10_1088_1361_6528_ad2c52 crossref_primary_10_1088_1361_6641_ac836d |
| Cites_doi | 10.1016/S0957-4174(98)00017-7 10.1016/j.ejor.2017.11.054 10.23919/JCC.2019.10.014 10.1016/j.compbiomed.2017.08.022 10.1109/TSMCC.2011.2170420 10.1016/j.compbiomed.2020.103912 10.1109/TED.2014.2383352 10.1007/s10825-020-01572-9 10.1007/s43236-019-00028-z 10.1016/j.cmpb.2019.105198 10.35848/1347-4065/ab99db 10.1109/SURV.2008.080406 10.1038/nature14541 10.1109/CVPR.2019.00289 10.1016/j.compind.2018.12.016 10.1109/IEDM.2012.6479091 10.1109/IEDM.2003.1269163 10.1109/LED.2012.2194690 10.1109/TSM.2018.2825482 10.1109/TSM.2010.2056710 10.1016/j.ymssp.2020.106885 10.1109/TED.2019.2937786 10.1109/TSM.2017.2753251 10.1016/j.mee.2005.12.001 10.1109/IEDM.2006.346838 10.1109/TED.2014.2335192 10.1109/ICEngTechnol.2017.8308186 10.1007/978-3-319-46475-6_25 10.1364/OME.3.000035 10.1109/ICPHM.2017.7998311 10.1016/j.comnet.2019.107034 10.1109/TED.2016.2574328 10.1016/j.apradiso.2020.109239 10.1109/66.983448 10.1016/j.rser.2020.110287 10.1016/j.copbio.2019.08.010 10.1023/B:MACH.0000019802.64038.6c 10.1016/j.neucom.2008.11.035 10.1145/1162678.1162679 10.1016/j.matcom.2020.05.010 10.1109/64.193054 10.1016/j.mssp.2019.104681 10.1109/JIOT.2019.2896174 10.1016/j.neunet.2019.12.024 10.1109/TED.2018.2822484 10.1088/1757-899X/533/1/012011 10.1016/j.chaos.2020.110121 10.1016/j.jpowsour.2019.227149 10.1371/journal.pcbi.0030116 10.1007/978-1-4419-7276-7_1 10.1109/ACCESS.2013.2260816 10.1109/JEDS.2020.3046608 10.1109/ITEC.2019.8790564 10.1016/j.enbuild.2008.06.013 10.1109/ISAOM.2001.916555 10.1109/MSP.2020.3003836 10.1016/j.mee.2008.09.015 10.1109/LED.2014.2310119 10.1109/IEDM.2015.7409827 10.1109/TED.2009.2036309 10.1007/s10586-018-2289-6 10.1007/978-3-319-46478-7_47 10.1109/TGRS.2017.2756911 10.1109/TED.2020.2971784 10.1109/LED.2019.2931839 10.1016/j.asoc.2019.105963 10.1109/LED.2011.2169645 10.1007/JHEP06(2020)114 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2021.3079981 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 73481 |
| ExternalDocumentID | oai_doaj_org_article_d31462216b5b48248e83d73cb899f0e7 10_1109_ACCESS_2021_3079981 9430564 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Center for mm-Wave Smart Radar Systems and Technologies under the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education, Taiwan – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 109-2221-E-009-033; MOST 109-2634-F-009-030 funderid: 10.13039/501100004663 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-3f6c6892f7784b6201aca1ea2f2c33aa988a96bdf70429df87eeb3e7617f217b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673537400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:53 EDT 2025 Mon Jun 30 03:09:24 EDT 2025 Sat Nov 29 06:12:16 EST 2025 Tue Nov 18 22:35:00 EST 2025 Wed Aug 27 02:51:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-3f6c6892f7784b6201aca1ea2f2c33aa988a96bdf70429df87eeb3e7617f217b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7374-0964 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9430564 |
| PQID | 2530117753 |
| PQPubID | 4845423 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_9430564 doaj_primary_oai_doaj_org_article_d31462216b5b48248e83d73cb899f0e7 crossref_primary_10_1109_ACCESS_2021_3079981 proquest_journals_2530117753 crossref_citationtrail_10_1109_ACCESS_2021_3079981 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref50 ref46 ref48 lin (ref21) 2012; 42 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 partin-vaisband (ref37) 2019 ref5 suzuki (ref45) 2017; 35 ref40 ref35 ref34 lin (ref67) 2017 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref68 ref24 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref28 ref27 ref29 pedregosa (ref51) 2011; 12 ref60 ref62 ref61 |
| References_xml | – ident: ref41 doi: 10.1016/S0957-4174(98)00017-7 – volume: 35 start-page: 212 year: 2017 ident: ref45 article-title: Survey of deep learning applications to medical image analysis publication-title: Med Imag Technol – ident: ref68 doi: 10.1016/j.ejor.2017.11.054 – ident: ref56 doi: 10.23919/JCC.2019.10.014 – ident: ref63 doi: 10.1016/j.compbiomed.2017.08.022 – volume: 42 start-page: 421 year: 2012 ident: ref21 article-title: Machine learning in financial crisis prediction: A survey publication-title: IEEE Trans Syst Man Cybern C Appl Rev doi: 10.1109/TSMCC.2011.2170420 – ident: ref60 doi: 10.1016/j.compbiomed.2020.103912 – ident: ref16 doi: 10.1109/TED.2014.2383352 – ident: ref17 doi: 10.1007/s10825-020-01572-9 – ident: ref34 doi: 10.1007/s43236-019-00028-z – ident: ref55 doi: 10.1016/j.cmpb.2019.105198 – ident: ref6 doi: 10.35848/1347-4065/ab99db – ident: ref44 doi: 10.1109/SURV.2008.080406 – ident: ref39 doi: 10.1038/nature14541 – ident: ref65 doi: 10.1109/CVPR.2019.00289 – ident: ref69 doi: 10.1016/j.compind.2018.12.016 – ident: ref11 doi: 10.1109/IEDM.2012.6479091 – year: 2019 ident: ref37 article-title: A single-MOSFET MAC for confidence and resolution (CORE) driven machine learning classification publication-title: arXiv 1910 09597 – ident: ref4 doi: 10.1109/IEDM.2003.1269163 – ident: ref7 doi: 10.1109/LED.2012.2194690 – ident: ref31 doi: 10.1109/TSM.2018.2825482 – ident: ref50 doi: 10.1109/TSM.2010.2056710 – ident: ref62 doi: 10.1016/j.ymssp.2020.106885 – ident: ref48 doi: 10.1109/TED.2019.2937786 – ident: ref32 doi: 10.1109/TSM.2017.2753251 – ident: ref27 doi: 10.1016/j.mee.2005.12.001 – ident: ref10 doi: 10.1109/IEDM.2006.346838 – ident: ref8 doi: 10.1109/TED.2014.2335192 – ident: ref64 doi: 10.1109/ICEngTechnol.2017.8308186 – ident: ref66 doi: 10.1007/978-3-319-46475-6_25 – ident: ref2 doi: 10.1364/OME.3.000035 – ident: ref71 doi: 10.1109/ICPHM.2017.7998311 – ident: ref59 doi: 10.1016/j.comnet.2019.107034 – ident: ref14 doi: 10.1109/TED.2016.2574328 – ident: ref52 doi: 10.1016/j.apradiso.2020.109239 – ident: ref29 doi: 10.1109/66.983448 – ident: ref24 doi: 10.1016/j.rser.2020.110287 – ident: ref25 doi: 10.1016/j.copbio.2019.08.010 – ident: ref40 doi: 10.1023/B:MACH.0000019802.64038.6c – ident: ref23 doi: 10.1016/j.neucom.2008.11.035 – ident: ref22 doi: 10.1145/1162678.1162679 – ident: ref54 doi: 10.1016/j.matcom.2020.05.010 – ident: ref30 doi: 10.1109/64.193054 – ident: ref5 doi: 10.1016/j.mssp.2019.104681 – ident: ref35 doi: 10.1109/JIOT.2019.2896174 – ident: ref61 doi: 10.1016/j.neunet.2019.12.024 – ident: ref19 doi: 10.1109/TED.2018.2822484 – start-page: 1 year: 2017 ident: ref67 article-title: Towards accurate binary convolutional neural network publication-title: Proc Conf Neural Inf Process Syst (NeurIPS) – volume: 12 start-page: 2825 year: 2011 ident: ref51 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – ident: ref33 doi: 10.1088/1757-899X/533/1/012011 – ident: ref58 doi: 10.1016/j.chaos.2020.110121 – ident: ref72 doi: 10.1016/j.jpowsour.2019.227149 – ident: ref46 doi: 10.1371/journal.pcbi.0030116 – ident: ref1 doi: 10.1007/978-1-4419-7276-7_1 – ident: ref20 doi: 10.1371/journal.pcbi.0030116 – ident: ref15 doi: 10.1109/ACCESS.2013.2260816 – ident: ref73 doi: 10.1109/JEDS.2020.3046608 – ident: ref36 doi: 10.1109/ITEC.2019.8790564 – ident: ref43 doi: 10.1016/j.enbuild.2008.06.013 – ident: ref3 doi: 10.1109/ISAOM.2001.916555 – ident: ref26 doi: 10.1109/MSP.2020.3003836 – ident: ref28 doi: 10.1016/j.mee.2008.09.015 – ident: ref12 doi: 10.1109/LED.2014.2310119 – ident: ref13 doi: 10.1109/IEDM.2015.7409827 – ident: ref18 doi: 10.1109/TED.2009.2036309 – ident: ref38 doi: 10.1007/s10586-018-2289-6 – ident: ref70 doi: 10.1007/978-3-319-46478-7_47 – ident: ref42 doi: 10.1109/TGRS.2017.2756911 – ident: ref49 doi: 10.1109/TED.2020.2971784 – ident: ref47 doi: 10.1109/LED.2019.2931839 – ident: ref57 doi: 10.1016/j.asoc.2019.105963 – ident: ref9 doi: 10.1109/LED.2011.2169645 – ident: ref53 doi: 10.1007/JHEP06(2020)114 |
| SSID | ssj0000816957 |
| Score | 2.3205295 |
| Snippet | Device simulation has been explored and industrialized for over 40 years; however, it still requires huge computational cost. Therefore, it can be further... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 73467 |
| SubjectTerms | Algorithms artificial neural network Artificial neural networks Computer simulation Computing costs convolutional neural network Deep learning Electric variables Errors Field effect transistors Fluctuations Gallium arsenide gate-all-around Learning theory long short term memory Machine learning Metal oxide semiconductors MOSFET MOSFETs nanosized metal grain nanowire Nanowires Neural networks Predictive models root mean squared error Semiconductor devices Silicon Simulation statistical device simulation Threshold voltage Transistors Work function fluctuation Work functions |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOCCiIhYJ84IhpYif-OIaFhUsLoiD1FtmxXVZKk2qz5cAf4G8z47irRUhw4ZQospPYMx6_58RvCHlpVRSlkIEJbx2rlPPMBVGyWkiH3w8B0lYp2YQ6PdXn5-bTXqov_CdslgeeO-7YCxjLnJfS1a6Cijpo4ZXoHBCFWIS0j7xQZo9MpRisS2lqlWWGysIcN8sltAgIIS9fg18Dyyh_m4qSYn9OsfJHXE6Tzeo-uZdRIm3mt3tAboXhIbm7px14SH6-DeGKZnnUC9r0FyPw_G-XEwUYSgHWUVwHpyuYt7Dv6aq_xr0i6XyM9LMd_HhJIbiO0_pH8PQkAAyn7zFjxEShDC6rsabvWbPBzEv0bN2D0wypBuob05OPZ6t3X6ZH5Csclh9YzqrAuqrQWyai7KQ2PCqlKycBANjOlsHyyDshrDVaWyOdjwrnKh-1CkC4gwKoE4G_OPGYHAzjEJ4QyqM2wSinK2BxwRUW0GW0seLeiyikWBB-08FtlyXHMfNF3ybqUZh2tkqLVmmzVRbk1a7S1ay48ffib9Byu6Iol50ugBO12YnafznRghyi3Xc3QU36WlYLcnTjB20e2lPLa4yJCmje0__x6GfkDjZnXtU5IgfbzXV4Tm5337frafMiefUvkBn3Nw priority: 102 providerName: Directory of Open Access Journals |
| Title | Deep Learning Algorithms for the Work Function Fluctuation of Random Nanosized Metal Grains on Gate-All-Around Silicon Nanowire MOSFETs |
| URI | https://ieeexplore.ieee.org/document/9430564 https://www.proquest.com/docview/2530117753 https://doaj.org/article/d31462216b5b48248e83d73cb899f0e7 |
| Volume | 9 |
| WOSCitedRecordID | wos000673537400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXaigMc-CqILaXygWPTJnZiO8ewdOGyBVGQeovs2C4rpUm12eXQA1f-NjOOG4FASFwSK7KjRG_smTeJ3xDyWkvPMy5cwq02SS6NTYzjWVJwYfD7IYS0eSg2Ic_P1eVl-XGHHE97YZxz4eczd4LN8C3f9s0WU2WnKBVeiHyX7Eopxr1aUz4FC0iUhYzCQllanlbzObwDUECWnYAlA6_IfnM-QaM_FlX5YyUO7mXx6P8e7DF5GMNIWo24PyE7rntKHvwiLrhPfrx17oZG_dQrWrVX_Xq1-Xo9UIhTKcR9FBPldAGODcGhi3aLm0lCu_f0k-5sf01h9e2H1a2zdOkgTqfvsKTEQKEP5t2Sqm2Tao2lmejFqgWr6sIIFECmyw8Xi7PPwzPyBU7z90ksu5A0eao2CfeiEapkXkqVGwERgm505jTzrOFc61IpXQpjvURnZr2SDhi5kxALeSA4hj8ne13fuReEMq9KV0qjcqB5zqQawk-vfc6s5Z4LPiPsDo-6iZrkWBqjrQM3Sct6BLFGEOsI4owcT4NuRkmOf3d_g0BPXVFPO1wABOs4PWvLwWMwlglTmBzMUznFreSNATrqUydnZB9Rn24SAZ-RwzuzqePcH2pW4KIpgQce_H3US3IfH3BM5BySvc16616Re823zWpYH4WsAByX38-Ogon_BCXP91w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKQYIe-GoRCwV84Ni0ie3EzjEsLEV0F0SL1Jtlx3ZZKU2qzW4P_AH-NmPHjUAgJE6xIjtK9MaeN-P4DUKvFXc0o4VNqFE6YVybRFuaJTkttN8_BErLQrEJvliI8_Py8xY6GM_CWGvDz2f20DfDXr7p6o1PlR15qfC8YLfQ7Zwxkg6ntcaMii8hUeY8SgtlaXlUTafwFRAEkuwQbBkii-w39xNU-mNZlT_W4uBgZg_-79UeovuRSOJqQP4R2rLtY7Tzi7zgLvrx1torHBVUL3DVXHSr5frbZY-BqWJgftinyvEMXJuHB8-ajT9OEtqdw19Ua7pLDOtv1y-_W4PnFpg6fu-LSvQY-vjMW1I1TVKtfHEmfLpswK7aMMJLIOP5p9PZu7N-D32Fy_Q4iYUXkpqlYp1QV9SFKInjXDBdAEdQtcqsIo7UlCpVCqHKQhvHvTszTnALMbnlwIYchDiaPkHbbdfapwgTJ0pbci0YBHpWpwoIqFOOEWOoowWdIHKDh6yjKrkvjtHIEJ2kpRxAlB5EGUGcoINx0NUgyvHv7m880GNXr6gdbgCCMk5QaSj4DEKyQueagYEKK6jhtNYQkLrU8gna9aiPD4mAT9D-jdnIOPt7SXK_bHKIBJ_9fdQrdPf4bH4iTz4sPj5H9_zLDmmdfbS9Xm3sC3Snvl4v-9XLYOI_AXwa-H0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Algorithms+for+the+Work+Function+Fluctuation+of+Random+Nanosized+Metal+Grains+on+Gate-All-Around+Silicon+Nanowire+MOSFETs&rft.jtitle=IEEE+access&rft.au=Akbar%2C+Chandni&rft.au=Li%2C+Yiming&rft.au=Sung%2C+Wen-Li&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=73467&rft.epage=73481&rft_id=info:doi/10.1109%2FACCESS.2021.3079981&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3079981 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |