Missing-Insensitive Short-Term Load Forecasting Leveraging Autoencoder and LSTM
In most deep learning-based load forecasting, an intact dataset is required. Since many real-world datasets contain missing values for various reasons, missing imputation using deep learning is actively studied. However, missing imputation and load forecasting have been considered independently so f...
Saved in:
| Published in: | IEEE access Vol. 8; pp. 206039 - 206048 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!